mirror of
https://github.com/docling-project/docling-serve.git
synced 2025-11-29 08:33:50 +00:00
docs: simplify README and move details to docs (#102)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
@@ -3,7 +3,7 @@ config:
|
||||
no-emphasis-as-header: false
|
||||
first-line-heading: false
|
||||
MD033:
|
||||
allowed_elements: ["details", "summary"]
|
||||
allowed_elements: ["details", "summary", "br"]
|
||||
MD024:
|
||||
siblings_only: true
|
||||
globs:
|
||||
|
||||
2
Makefile
2
Makefile
@@ -66,7 +66,7 @@ action-lint: .action-lint ## Lint GitHub Action workflows
|
||||
md-lint: .md-lint ## Lint markdown files
|
||||
.md-lint: $(wildcard */**/*.md) | md-lint-file
|
||||
$(ECHO_PREFIX) printf " %-12s ./...\n" "[MD LINT]"
|
||||
$(CMD_PREFIX) docker run --rm -v $$(pwd):/workdir davidanson/markdownlint-cli2:v0.14.0 "**/*.md"
|
||||
$(CMD_PREFIX) docker run --rm -v $$(pwd):/workdir davidanson/markdownlint-cli2:v0.16.0 "**/*.md" "#.venv"
|
||||
$(CMD_PREFIX) touch $@
|
||||
|
||||
.PHONY: py-Lint
|
||||
|
||||
435
README.md
435
README.md
@@ -1,423 +1,70 @@
|
||||
# Docling Serve
|
||||
|
||||
Running [Docling](https://github.com/docling-project/docling) as an API service.
|
||||
Running [Docling](https://github.com/docling-project/docling) as an API service.
|
||||
|
||||
## Usage
|
||||
## Getting started
|
||||
|
||||
The API provides two endpoints: one for urls, one for files. This is necessary to send files directly in binary format instead of base64-encoded strings.
|
||||
Install the `docling-serve` package and run the server.
|
||||
|
||||
### Common parameters
|
||||
```bash
|
||||
# Using the python package
|
||||
pip install "docling-serve"
|
||||
docling-serve run
|
||||
|
||||
On top of the source of file (see below), both endpoints support the same parameters, which are almost the same as the Docling CLI.
|
||||
|
||||
- `from_format` (List[str]): Input format(s) to convert from. Allowed values: `docx`, `pptx`, `html`, `image`, `pdf`, `asciidoc`, `md`. Defaults to all formats.
|
||||
- `to_formats` (List[str]): Output format(s) to convert to. Allowed values: `md`, `json`, `html`, `text`, `doctags`. Defaults to `md`.
|
||||
- `do_ocr` (bool): If enabled, the bitmap content will be processed using OCR. Defaults to `True`.
|
||||
- `image_export_mode`: Image export mode for the document (only in case of JSON, Markdown or HTML). Allowed values: embedded, placeholder, referenced. Optional, defaults to `embedded`.
|
||||
- `force_ocr` (bool): If enabled, replace any existing text with OCR-generated text over the full content. Defaults to `False`.
|
||||
- `ocr_engine` (str): OCR engine to use. Allowed values: `easyocr`, `tesseract_cli`, `tesseract`, `rapidocr`, `ocrmac`. Defaults to `easyocr`.
|
||||
- `ocr_lang` (List[str]): List of languages used by the OCR engine. Note that each OCR engine has different values for the language names. Defaults to empty.
|
||||
- `pdf_backend` (str): PDF backend to use. Allowed values: `pypdfium2`, `dlparse_v1`, `dlparse_v2`. Defaults to `dlparse_v2`.
|
||||
- `table_mode` (str): Table mode to use. Allowed values: `fast`, `accurate`. Defaults to `fast`.
|
||||
- `abort_on_error` (bool): If enabled, abort on error. Defaults to false.
|
||||
- `return_as_file` (boo): If enabled, return the output as a file. Defaults to false.
|
||||
- `do_table_structure` (bool): If enabled, the table structure will be extracted. Defaults to true.
|
||||
- `include_images` (bool): If enabled, images will be extracted from the document. Defaults to true.
|
||||
- `images_scale` (float): Scale factor for images. Defaults to 2.0.
|
||||
|
||||
### URL endpoint
|
||||
|
||||
The endpoint is `/v1alpha/convert/source`, listening for POST requests of JSON payloads.
|
||||
|
||||
On top of the above parameters, you must send the URL(s) of the document you want process with either the `http_sources` or `file_sources` fields.
|
||||
The first is fetching URL(s) (optionally using with extra headers), the second allows to provide documents as base64-encoded strings.
|
||||
No `options` is required, they can be partially or completely omitted.
|
||||
|
||||
Simple payload example:
|
||||
|
||||
```json
|
||||
{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
# Using container images, e.g. with Podman
|
||||
podman run -p 5001:5001 quay.io/docling-project/docling-serve
|
||||
```
|
||||
|
||||
<details>
|
||||
The server is available at
|
||||
|
||||
<summary>Complete payload example:</summary>
|
||||
- API <http://127.0.0.1:5001>
|
||||
- API documentation <http://127.0.0.1:5001/docs>
|
||||

|
||||
|
||||
```json
|
||||
{
|
||||
"options": {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": true,
|
||||
"force_ocr": false,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": ["en"],
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
```
|
||||
Try it out with a simple conversion:
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>CURL example:</summary>
|
||||
|
||||
```sh
|
||||
```bash
|
||||
curl -X 'POST' \
|
||||
'http://localhost:5001/v1alpha/convert/source' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"options": {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
"pptx",
|
||||
"html",
|
||||
"image",
|
||||
"pdf",
|
||||
"asciidoc",
|
||||
"md",
|
||||
"xlsx"
|
||||
],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": true,
|
||||
"force_ocr": false,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": [
|
||||
"fr",
|
||||
"de",
|
||||
"es",
|
||||
"en"
|
||||
],
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
"do_table_structure": true,
|
||||
"include_images": true,
|
||||
"images_scale": 2
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}'
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
|
||||
}'
|
||||
```
|
||||
|
||||
</details>
|
||||
### Container images
|
||||
|
||||
<details>
|
||||
<summary>Python example:</summary>
|
||||
Available container images:
|
||||
|
||||
```python
|
||||
import httpx
|
||||
| Name | Description | Arch | Size |
|
||||
| -----|-------------|------|------|
|
||||
| [`ghcr.io/docling-project/docling-serve`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve) <br /> [`quay.io/docling-project/docling-serve`](https://quay.io/repository/docling-project/docling-serve) | Simple image for Docling Serve, installing all packages from the official pypi.org index. | `linux/amd64`, `linux/arm64` | 3.6 GB |
|
||||
| [`ghcr.io/docling-project/docling-serve-cpu`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cpu) <br /> [`quay.io/docling-project/docling-serve-cpu`](https://quay.io/repository/docling-project/docling-serve-cpu) | Cpu-only image which installs `torch` from the pytorch cpu index. | `linux/amd64`, `linux/arm64` | 3.6 GB |
|
||||
| [`ghcr.io/docling-project/docling-serve-cu124`](https://github.com/docling-project/docling-serve/pkgs/container/docling-serve-cu124) <br /> [`quay.io/docling-project/docling-serve-cu124`](https://quay.io/repository/docling-project/docling-serve-cu124) | Cuda 12.4 image which installs `torch` from the pytorch cu124 index. | `linux/amd64` | 8.7 GB |
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": True,
|
||||
"force_ocr": False,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": "en",
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
Coming soon: `docling-serve-slim` images will reduce the size by skipping the model weights download.
|
||||
|
||||
response = await async_client_client.post(url, json=payload)
|
||||
|
||||
data = response.json()
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### File as base64
|
||||
|
||||
The `file_sources` argument in the endpoint allows to send files as base64-encoded strings.
|
||||
When your PDF or other file type is too large, encoding it and passing it inline to curl
|
||||
can lead to an “Argument list too long” error on some systems. To avoid this, we write
|
||||
the JSON request body to a file and have curl read from that file.
|
||||
|
||||
<details>
|
||||
<summary>CURL steps:</summary>
|
||||
|
||||
```sh
|
||||
# 1. Base64-encode the file
|
||||
B64_DATA=$(base64 -w 0 /path/to/file/pdf-to-convert.pdf)
|
||||
|
||||
# 2. Build the JSON with your options
|
||||
cat <<EOF > /tmp/request_body.json
|
||||
{
|
||||
"options": {
|
||||
},
|
||||
"file_sources": [{
|
||||
"base64_string": "${B64_DATA}",
|
||||
"filename": "pdf-to-convert.pdf"
|
||||
}]
|
||||
}
|
||||
EOF
|
||||
|
||||
# 3. POST the request to the docling service
|
||||
curl -X POST "localhost:5001/v1alpha/convert/source" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d @/tmp/request_body.json
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### File endpoint
|
||||
|
||||
The endpoint is: `/v1alpha/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
|
||||
|
||||
<details>
|
||||
<summary>CURL example:</summary>
|
||||
|
||||
```sh
|
||||
curl -X 'POST' \
|
||||
'http://127.0.0.1:5001/v1alpha/convert/file' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: multipart/form-data' \
|
||||
-F 'ocr_engine=easyocr' \
|
||||
-F 'pdf_backend=dlparse_v2' \
|
||||
-F 'from_formats=pdf' \
|
||||
-F 'from_formats=docx' \
|
||||
-F 'force_ocr=false' \
|
||||
-F 'image_export_mode=embedded' \
|
||||
-F 'ocr_lang=en' \
|
||||
-F 'ocr_lang=pl' \
|
||||
-F 'table_mode=fast' \
|
||||
-F 'files=@2206.01062v1.pdf;type=application/pdf' \
|
||||
-F 'abort_on_error=false' \
|
||||
-F 'to_formats=md' \
|
||||
-F 'to_formats=text' \
|
||||
-F 'return_as_file=false' \
|
||||
-F 'do_ocr=true'
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Python example:</summary>
|
||||
|
||||
```python
|
||||
import httpx
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
parameters = {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": True,
|
||||
"force_ocr": False,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": ["en"],
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
file_path = os.path.join(current_dir, '2206.01062v1.pdf')
|
||||
|
||||
files = {
|
||||
'files': ('2206.01062v1.pdf', open(file_path, 'rb'), 'application/pdf'),
|
||||
}
|
||||
|
||||
response = await async_client.post(url, files=files, data={"parameters": json.dumps(parameters)})
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
data = response.json()
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Response format
|
||||
|
||||
The response can be a JSON Document or a File.
|
||||
|
||||
- If you process only one file, the response will be a JSON document with the following format:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"document": {
|
||||
"md_content": "",
|
||||
"json_content": {},
|
||||
"html_content": "",
|
||||
"text_content": "",
|
||||
"doctags_content": ""
|
||||
},
|
||||
"status": "<success|partial_success|skipped|failure>",
|
||||
"processing_time": 0.0,
|
||||
"timings": {},
|
||||
"errors": []
|
||||
}
|
||||
```
|
||||
|
||||
Depending on the value you set in `output_formats`, the different items will be populated with their respective results or empty.
|
||||
|
||||
`processing_time` is the Docling processing time in seconds, and `timings` (when enabled in the backend) provides the detailed
|
||||
timing of all the internal Docling components.
|
||||
|
||||
- If you set the parameter `return_as_file` to True, the response will be a zip file.
|
||||
- If multiple files are generated (multiple inputs, or one input but multiple outputs with `return_as_file` True), the response will be a zip file.
|
||||
|
||||
## Run docling-serve
|
||||
|
||||
Clone the repository and run the following from within the cloned directory root.
|
||||
### Demonstration UI
|
||||
|
||||
```bash
|
||||
python -m venv venv
|
||||
source venv/bin/activate
|
||||
# Install the Python package with the extra dependencies
|
||||
pip install "docling-serve[ui]"
|
||||
docling-serve run --enable-ui
|
||||
|
||||
# Run the container image with the extra env parameters
|
||||
podman run -p 5001:5001 -e DOCLING_SERVE_ENABLE_UI=true quay.io/docling-project/docling-serve
|
||||
```
|
||||
|
||||
## Helpers
|
||||
|
||||
- A full Swagger UI is available at the `/docs` endpoint.
|
||||
|
||||

|
||||
|
||||
- An easy to use UI is available at the `/ui` endpoint.
|
||||
An easy to use UI is available at the `/ui` endpoint.
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
## Development
|
||||
## Documentation and advance usages
|
||||
|
||||
### CPU only
|
||||
|
||||
```sh
|
||||
# Install uv if not already available
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
# Install dependencies
|
||||
uv sync --extra cpu
|
||||
```
|
||||
|
||||
### Cuda GPU
|
||||
|
||||
For GPU support use the following command:
|
||||
|
||||
```sh
|
||||
# Install dependencies
|
||||
uv sync
|
||||
```
|
||||
|
||||
### Gradio UI and different OCR backends
|
||||
|
||||
`/ui` endpoint using `gradio` and different OCR backends can be enabled via package extras:
|
||||
|
||||
```sh
|
||||
# Enable ui and rapidocr
|
||||
uv sync --extra ui --extra rapidocr
|
||||
```
|
||||
|
||||
```sh
|
||||
# Enable tesserocr
|
||||
uv sync --extra tesserocr
|
||||
```
|
||||
|
||||
See `[project.optional-dependencies]` section in `pyproject.toml` for full list of options and runtime options with `uv run docling-serve --help`.
|
||||
|
||||
### Run the server
|
||||
|
||||
The `docling-serve` executable is a convenient script for launching the webserver both in
|
||||
development and production mode.
|
||||
|
||||
```sh
|
||||
# Run the server in development mode
|
||||
# - reload is enabled by default
|
||||
# - listening on the 127.0.0.1 address
|
||||
# - ui is enabled by default
|
||||
docling-serve dev
|
||||
|
||||
# Run the server in production mode
|
||||
# - reload is disabled by default
|
||||
# - listening on the 0.0.0.0 address
|
||||
# - ui is disabled by default
|
||||
docling-serve run
|
||||
```
|
||||
|
||||
### Options
|
||||
|
||||
The `docling-serve` executable allows is controlled with both command line
|
||||
options and environment variables.
|
||||
|
||||
<details>
|
||||
<summary>`docling-serve` help message</summary>
|
||||
|
||||
```sh
|
||||
$ docling-serve dev --help
|
||||
|
||||
Usage: docling-serve dev [OPTIONS]
|
||||
|
||||
Run a Docling Serve app in development mode. 🧪
|
||||
This is equivalent to docling-serve run but with reload
|
||||
enabled and listening on the 127.0.0.1 address.
|
||||
|
||||
Options can be set also with the corresponding ENV variable, with the exception
|
||||
of --enable-ui, --host and --reload.
|
||||
|
||||
╭─ Options ──────────────────────────────────────────────────────────────────────────────────────────────────╮
|
||||
│ --host TEXT The host to serve on. For local development in localhost │
|
||||
│ use 127.0.0.1. To enable public access, e.g. in a │
|
||||
│ container, use all the IP addresses available with │
|
||||
│ 0.0.0.0. │
|
||||
│ [default: 127.0.0.1] │
|
||||
│ --port INTEGER The port to serve on. [default: 5001] │
|
||||
│ --reload --no-reload Enable auto-reload of the server when (code) files │
|
||||
│ change. This is resource intensive, use it only during │
|
||||
│ development. │
|
||||
│ [default: reload] │
|
||||
│ --root-path TEXT The root path is used to tell your app that it is being │
|
||||
│ served to the outside world with some path prefix set up │
|
||||
│ in some termination proxy or similar. │
|
||||
│ --proxy-headers --no-proxy-headers Enable/Disable X-Forwarded-Proto, X-Forwarded-For, │
|
||||
│ X-Forwarded-Port to populate remote address info. │
|
||||
│ [default: proxy-headers] │
|
||||
│ --artifacts-path PATH If set to a valid directory, the model weights will be │
|
||||
│ loaded from this path. │
|
||||
│ [default: None] │
|
||||
│ --enable-ui --no-enable-ui Enable the development UI. [default: enable-ui] │
|
||||
│ --help Show this message and exit. │
|
||||
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### Environment variables
|
||||
|
||||
The environment variables controlling the `uvicorn` execution can be specified with the `UVICORN_` prefix:
|
||||
|
||||
- `UVICORN_WORKERS`: Number of workers to use.
|
||||
- `UVICORN_RELOAD`: If `True`, this will enable auto-reload when you modify files, useful for development.
|
||||
|
||||
The environment variables controlling specifics of the Docling Serve app can be specified with the
|
||||
`DOCLING_SERVE_` prefix:
|
||||
|
||||
- `DOCLING_SERVE_ARTIFACTS_PATH`: if set Docling will use only the local weights of models, for example `/opt/app-root/src/.cache/docling/models`.
|
||||
- `DOCLING_SERVE_ENABLE_UI`: If `True`, The Gradio UI will be available at `/ui`.
|
||||
|
||||
Others:
|
||||
|
||||
- `TESSDATA_PREFIX`: Tesseract data location, example `/usr/share/tesseract/tessdata/`.
|
||||
Visit the [Docling Serve documentation](./docs/README.md) for learning how to [configure the webserver](./docs/configuration.md), use all the [runtime options](./docs/usage.md) of the API and [deployment examples](./docs/deployment.md).
|
||||
|
||||
## Get help and support
|
||||
|
||||
@@ -433,14 +80,14 @@ If you use Docling in your projects, please consider citing the following:
|
||||
|
||||
```bib
|
||||
@techreport{Docling,
|
||||
author = {Deep Search Team},
|
||||
month = {8},
|
||||
title = {Docling Technical Report},
|
||||
url = {https://arxiv.org/abs/2408.09869},
|
||||
eprint = {2408.09869},
|
||||
doi = {10.48550/arXiv.2408.09869},
|
||||
version = {1.0.0},
|
||||
year = {2024}
|
||||
author = {Docling Contributors},
|
||||
month = {1},
|
||||
title = {Docling: An Efficient Open-Source Toolkit for AI-driven Document Conversion},
|
||||
url = {https://arxiv.org/abs/2501.17887},
|
||||
eprint = {2501.17887},
|
||||
doi = {10.48550/arXiv.2501.17887},
|
||||
version = {2.0.0},
|
||||
year = {2025}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
8
docs/README.md
Normal file
8
docs/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
# Dolcing Serve documentation
|
||||
|
||||
This documentation pages explore the webserver configurations, runtime options, deployment examples as well as development best practices.
|
||||
|
||||
- [Configuration](./configuration.md)
|
||||
- [Advance usage](./usage.md)
|
||||
- [Deployment](./deployment.md)
|
||||
- [Development](./development.md)
|
||||
40
docs/configuration.md
Normal file
40
docs/configuration.md
Normal file
@@ -0,0 +1,40 @@
|
||||
# Configuration
|
||||
|
||||
The `docling-serve` executable allows to configure the server via command line
|
||||
options as well as environment variables.
|
||||
Configurations are divided between the settings used for the `uvicorn` asgi
|
||||
server and the actual app-specific configurations.
|
||||
|
||||
> [!WARNING]
|
||||
> When the server is running with `reload` or with multiple `workers`, uvicorn
|
||||
> will spawn multiple subprocessed. This invalides all the values configured
|
||||
> via the CLI command line options. Please use environment variables in this
|
||||
> type of deployments.
|
||||
|
||||
## Webserver configuration
|
||||
|
||||
The following table shows the options which are propagated directly to the
|
||||
`uvicorn` webserver runtime.
|
||||
|
||||
| CLI option | ENV | Default | Description |
|
||||
| -----------|-----|---------|-------------|
|
||||
| `--host` | `UVICORN_HOST` | `0.0.0.0` for `run`, `localhost` for `dev` | THe host to serve on. |
|
||||
| `--port` | `UVICORN_PORT` | `5001` | The port to serve on. |
|
||||
| `--reload` | `UVICORN_RELOAD` | `false` for `run`, `true` for `dev` | Enable auto-reload of the server when (code) files change. |
|
||||
| `--workers` | `UVICORN_WORKERS` | `1` | Use multiple worker processes. |
|
||||
| `--root-path` | `UVICORN_ROOT_PATH` | `""` | The root path is used to tell your app that it is being served to the outside world with some |
|
||||
| `--proxy-headers` | `UVICORN_PROXY_HEADERS` | `true` | Enable/Disable X-Forwarded-Proto, X-Forwarded-For, X-Forwarded-Port to populate remote address info. |
|
||||
| `--timeout-keep-alive` | `UVICORN_TIMEOUT_KEEP_ALIVE` | `60` | Timeout for the server response. |
|
||||
|
||||
## Docling Serve configuration
|
||||
|
||||
THe following table describes the options to configure the Docling Serve app.
|
||||
|
||||
| CLI option | ENV | Default | Description |
|
||||
| -----------|-----|---------|-------------|
|
||||
| `--artifacts-path` | `DOCLING_SERVE_ARTIFACTS_PATH` | unset | If set to a valid directory, the model weights will be loaded from this path |
|
||||
| `--enable-ui` | `DOCLING_SERVE_ENABLE_UI` | `false` | Enable the demonstrator UI. |
|
||||
| | `DOCLING_SERVE_OPTIONS_CACHE_SIZE` | `2` | How many DocumentConveter objects (including their loaded models) to keep in the cache. |
|
||||
| | `DOCLING_SERVE_CORS_ORIGINS` | `["*"]` | A list of origins that should be permitted to make cross-origin requests. |
|
||||
| | `DOCLING_SERVE_CORS_METHODS` | `["*"]` | A list of HTTP methods that should be allowed for cross-origin requests. |
|
||||
| | `DOCLING_SERVE_CORS_HEADERS` | `["*"]` | A list of HTTP request headers that should be supported for cross-origin requests. |
|
||||
12
docs/deployment.md
Normal file
12
docs/deployment.md
Normal file
@@ -0,0 +1,12 @@
|
||||
# Deployment
|
||||
|
||||
## Kubernetes and OpenShift
|
||||
|
||||
### Knative
|
||||
|
||||
The following manifest will launch Docling Serve using Knative to expose the application
|
||||
with an external ingress endpoint.
|
||||
|
||||
```yaml
|
||||
# TODO
|
||||
```
|
||||
57
docs/development.md
Normal file
57
docs/development.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# Development
|
||||
|
||||
## Install dependencies
|
||||
|
||||
### CPU only
|
||||
|
||||
```sh
|
||||
# Install uv if not already available
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
# Install dependencies
|
||||
uv sync --extra cpu
|
||||
```
|
||||
|
||||
### Cuda GPU
|
||||
|
||||
For GPU support use the following command:
|
||||
|
||||
```sh
|
||||
# Install dependencies
|
||||
uv sync
|
||||
```
|
||||
|
||||
### Gradio UI and different OCR backends
|
||||
|
||||
`/ui` endpoint using `gradio` and different OCR backends can be enabled via package extras:
|
||||
|
||||
```sh
|
||||
# Enable ui and rapidocr
|
||||
uv sync --extra ui --extra rapidocr
|
||||
```
|
||||
|
||||
```sh
|
||||
# Enable tesserocr
|
||||
uv sync --extra tesserocr
|
||||
```
|
||||
|
||||
See `[project.optional-dependencies]` section in `pyproject.toml` for full list of options and runtime options with `uv run docling-serve --help`.
|
||||
|
||||
### Run the server
|
||||
|
||||
The `docling-serve` executable is a convenient script for launching the webserver both in
|
||||
development and production mode.
|
||||
|
||||
```sh
|
||||
# Run the server in development mode
|
||||
# - reload is enabled by default
|
||||
# - listening on the 127.0.0.1 address
|
||||
# - ui is enabled by default
|
||||
docling-serve dev
|
||||
|
||||
# Run the server in production mode
|
||||
# - reload is disabled by default
|
||||
# - listening on the 0.0.0.0 address
|
||||
# - ui is disabled by default
|
||||
docling-serve run
|
||||
```
|
||||
279
docs/usage.md
Normal file
279
docs/usage.md
Normal file
@@ -0,0 +1,279 @@
|
||||
# Usage
|
||||
|
||||
The API provides two endpoints: one for urls, one for files. This is necessary to send files directly in binary format instead of base64-encoded strings.
|
||||
|
||||
## Common parameters
|
||||
|
||||
On top of the source of file (see below), both endpoints support the same parameters, which are almost the same as the Docling CLI.
|
||||
|
||||
- `from_format` (List[str]): Input format(s) to convert from. Allowed values: `docx`, `pptx`, `html`, `image`, `pdf`, `asciidoc`, `md`. Defaults to all formats.
|
||||
- `to_formats` (List[str]): Output format(s) to convert to. Allowed values: `md`, `json`, `html`, `text`, `doctags`. Defaults to `md`.
|
||||
- `do_ocr` (bool): If enabled, the bitmap content will be processed using OCR. Defaults to `True`.
|
||||
- `image_export_mode`: Image export mode for the document (only in case of JSON, Markdown or HTML). Allowed values: embedded, placeholder, referenced. Optional, defaults to `embedded`.
|
||||
- `force_ocr` (bool): If enabled, replace any existing text with OCR-generated text over the full content. Defaults to `False`.
|
||||
- `ocr_engine` (str): OCR engine to use. Allowed values: `easyocr`, `tesseract_cli`, `tesseract`, `rapidocr`, `ocrmac`. Defaults to `easyocr`.
|
||||
- `ocr_lang` (List[str]): List of languages used by the OCR engine. Note that each OCR engine has different values for the language names. Defaults to empty.
|
||||
- `pdf_backend` (str): PDF backend to use. Allowed values: `pypdfium2`, `dlparse_v1`, `dlparse_v2`. Defaults to `dlparse_v2`.
|
||||
- `table_mode` (str): Table mode to use. Allowed values: `fast`, `accurate`. Defaults to `fast`.
|
||||
- `abort_on_error` (bool): If enabled, abort on error. Defaults to false.
|
||||
- `return_as_file` (boo): If enabled, return the output as a file. Defaults to false.
|
||||
- `do_table_structure` (bool): If enabled, the table structure will be extracted. Defaults to true.
|
||||
- `include_images` (bool): If enabled, images will be extracted from the document. Defaults to true.
|
||||
- `images_scale` (float): Scale factor for images. Defaults to 2.0.
|
||||
|
||||
## Convert endpoints
|
||||
|
||||
### Source endpoint
|
||||
|
||||
The endpoint is `/v1alpha/convert/source`, listening for POST requests of JSON payloads.
|
||||
|
||||
On top of the above parameters, you must send the URL(s) of the document you want process with either the `http_sources` or `file_sources` fields.
|
||||
The first is fetching URL(s) (optionally using with extra headers), the second allows to provide documents as base64-encoded strings.
|
||||
No `options` is required, they can be partially or completely omitted.
|
||||
|
||||
Simple payload example:
|
||||
|
||||
```json
|
||||
{
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
```
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Complete payload example:</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
"options": {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": true,
|
||||
"force_ocr": false,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": ["en"],
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>CURL example:</summary>
|
||||
|
||||
```sh
|
||||
curl -X 'POST' \
|
||||
'http://localhost:5001/v1alpha/convert/source' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"options": {
|
||||
"from_formats": [
|
||||
"docx",
|
||||
"pptx",
|
||||
"html",
|
||||
"image",
|
||||
"pdf",
|
||||
"asciidoc",
|
||||
"md",
|
||||
"xlsx"
|
||||
],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": true,
|
||||
"force_ocr": false,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": [
|
||||
"fr",
|
||||
"de",
|
||||
"es",
|
||||
"en"
|
||||
],
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": false,
|
||||
"return_as_file": false,
|
||||
"do_table_structure": true,
|
||||
"include_images": true,
|
||||
"images_scale": 2
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}'
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Python example:</summary>
|
||||
|
||||
```python
|
||||
import httpx
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/source"
|
||||
payload = {
|
||||
"options": {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": True,
|
||||
"force_ocr": False,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": "en",
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False,
|
||||
},
|
||||
"http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
|
||||
}
|
||||
|
||||
response = await async_client_client.post(url, json=payload)
|
||||
|
||||
data = response.json()
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### File as base64
|
||||
|
||||
The `file_sources` argument in the endpoint allows to send files as base64-encoded strings.
|
||||
When your PDF or other file type is too large, encoding it and passing it inline to curl
|
||||
can lead to an “Argument list too long” error on some systems. To avoid this, we write
|
||||
the JSON request body to a file and have curl read from that file.
|
||||
|
||||
<details>
|
||||
<summary>CURL steps:</summary>
|
||||
|
||||
```sh
|
||||
# 1. Base64-encode the file
|
||||
B64_DATA=$(base64 -w 0 /path/to/file/pdf-to-convert.pdf)
|
||||
|
||||
# 2. Build the JSON with your options
|
||||
cat <<EOF > /tmp/request_body.json
|
||||
{
|
||||
"options": {
|
||||
},
|
||||
"file_sources": [{
|
||||
"base64_string": "${B64_DATA}",
|
||||
"filename": "pdf-to-convert.pdf"
|
||||
}]
|
||||
}
|
||||
EOF
|
||||
|
||||
# 3. POST the request to the docling service
|
||||
curl -X POST "localhost:5001/v1alpha/convert/source" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d @/tmp/request_body.json
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### File endpoint
|
||||
|
||||
The endpoint is: `/v1alpha/convert/file`, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.
|
||||
|
||||
<details>
|
||||
<summary>CURL example:</summary>
|
||||
|
||||
```sh
|
||||
curl -X 'POST' \
|
||||
'http://127.0.0.1:5001/v1alpha/convert/file' \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: multipart/form-data' \
|
||||
-F 'ocr_engine=easyocr' \
|
||||
-F 'pdf_backend=dlparse_v2' \
|
||||
-F 'from_formats=pdf' \
|
||||
-F 'from_formats=docx' \
|
||||
-F 'force_ocr=false' \
|
||||
-F 'image_export_mode=embedded' \
|
||||
-F 'ocr_lang=en' \
|
||||
-F 'ocr_lang=pl' \
|
||||
-F 'table_mode=fast' \
|
||||
-F 'files=@2206.01062v1.pdf;type=application/pdf' \
|
||||
-F 'abort_on_error=false' \
|
||||
-F 'to_formats=md' \
|
||||
-F 'to_formats=text' \
|
||||
-F 'return_as_file=false' \
|
||||
-F 'do_ocr=true'
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Python example:</summary>
|
||||
|
||||
```python
|
||||
import httpx
|
||||
|
||||
async_client = httpx.AsyncClient(timeout=60.0)
|
||||
url = "http://localhost:5001/v1alpha/convert/file"
|
||||
parameters = {
|
||||
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
|
||||
"to_formats": ["md", "json", "html", "text", "doctags"],
|
||||
"image_export_mode": "placeholder",
|
||||
"do_ocr": True,
|
||||
"force_ocr": False,
|
||||
"ocr_engine": "easyocr",
|
||||
"ocr_lang": ["en"],
|
||||
"pdf_backend": "dlparse_v2",
|
||||
"table_mode": "fast",
|
||||
"abort_on_error": False,
|
||||
"return_as_file": False
|
||||
}
|
||||
|
||||
current_dir = os.path.dirname(__file__)
|
||||
file_path = os.path.join(current_dir, '2206.01062v1.pdf')
|
||||
|
||||
files = {
|
||||
'files': ('2206.01062v1.pdf', open(file_path, 'rb'), 'application/pdf'),
|
||||
}
|
||||
|
||||
response = await async_client.post(url, files=files, data={"parameters": json.dumps(parameters)})
|
||||
assert response.status_code == 200, "Response should be 200 OK"
|
||||
|
||||
data = response.json()
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Response format
|
||||
|
||||
The response can be a JSON Document or a File.
|
||||
|
||||
- If you process only one file, the response will be a JSON document with the following format:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"document": {
|
||||
"md_content": "",
|
||||
"json_content": {},
|
||||
"html_content": "",
|
||||
"text_content": "",
|
||||
"doctags_content": ""
|
||||
},
|
||||
"status": "<success|partial_success|skipped|failure>",
|
||||
"processing_time": 0.0,
|
||||
"timings": {},
|
||||
"errors": []
|
||||
}
|
||||
```
|
||||
|
||||
Depending on the value you set in `output_formats`, the different items will be populated with their respective results or empty.
|
||||
|
||||
`processing_time` is the Docling processing time in seconds, and `timings` (when enabled in the backend) provides the detailed
|
||||
timing of all the internal Docling components.
|
||||
|
||||
- If you set the parameter `return_as_file` to True, the response will be a zip file.
|
||||
- If multiple files are generated (multiple inputs, or one input but multiple outputs with `return_as_file` True), the response will be a zip file.
|
||||
|
||||
## Asynchronous API
|
||||
|
||||
TBA
|
||||
Reference in New Issue
Block a user