docs: update deployment examples (#135)

Signed-off-by: rmdg88 <rmdg88@gmail.com>
Signed-off-by: Rui Dias Gomes <66125272+rmdg88@users.noreply.github.com>
This commit is contained in:
Rui Dias Gomes
2025-04-17 13:29:34 +01:00
committed by GitHub
parent c1ce4719c9
commit 525a43ff6f
4 changed files with 230 additions and 3 deletions

View File

@@ -3,7 +3,7 @@ config:
no-emphasis-as-header: false
first-line-heading: false
MD033:
allowed_elements: ["details", "summary", "br", "a", "p", "img"]
allowed_elements: ["details", "summary", "br", "a", "b", "p", "img"]
MD024:
siblings_only: true
globs:

View File

@@ -0,0 +1,15 @@
services:
docling:
image: ghcr.io/docling-project/docling-serve-cu124
container_name: docling-serve
ports:
- 5001:5001
environment:
- DOCLING_SERVE_ENABLE_UI=true
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all # nvidia-smi
capabilities: [gpu]

View File

@@ -0,0 +1,58 @@
# This example deployment configures Docling Serve with a Service and cuda image
---
apiVersion: v1
kind: Service
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
spec:
ports:
- name: http
port: 5001
targetPort: http
selector:
app: docling-serve
component: docling-serve-api
---
kind: Deployment
apiVersion: apps/v1
metadata:
name: docling-serve
labels:
app: docling-serve
component: docling-serve-api
spec:
replicas: 1
selector:
matchLabels:
app: docling-serve
component: docling-serve-api
template:
metadata:
labels:
app: docling-serve
component: docling-serve-api
spec:
restartPolicy: Always
containers:
- name: api
resources:
limits:
cpu: 500m
memory: 2Gi
nvidia.com/gpu: 1 # Limit to one GPU
requests:
cpu: 250m
memory: 1Gi
nvidia.com/gpu: 1 # Limit to one GPU
env:
- name: DOCLING_SERVE_ENABLE_UI
value: 'true'
ports:
- name: http
containerPort: 5001
protocol: TCP
imagePullPolicy: Always
image: 'ghcr.io/docling-project/docling-serve-cu124'

View File

@@ -1,7 +1,161 @@
# Deployment
# Deployment Examples
This document provides deployment examples for running the application in different environments.
Choose the deployment option that best fits your setup.
- **[Local GPU](#local-gpu)**: For deploying the application locally on a machine with a NVIDIA GPU (using Docker Compose).
- **[OpenShift](#openshift)**: For deploying the application on an OpenShift cluster, designed for cloud-native environments.
---
## Local GPU
### Docker compose
Manifest example: [compose-gpu.yaml](./deploy-examples/compose-gpu.yaml)
This deployment has the following features:
- NVIDIA cuda enabled
Install the app with:
```sh
docker compose -f docs/deploy-examples/compose-gpu.yaml up -d
```
For using the API:
```sh
# Make a test query
curl -X 'POST' \
"localhost:5001/v1alpha/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
<details>
<summary><b>Requirements</b></summary>
- debian/ubuntu/rhel/fedora/opensuse
- docker
- nvidia drivers >=550.54.14
- nvidia-container-toolkit
Docs:
- [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/supported-platforms.html)
- [CUDA Toolkit Release Notes](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#id6)
</details>
<details>
<summary><b>Steps</b></summary>
1. Check driver version and which GPU you want to use (0/1/2/3.. and update [compose-gpu.yaml](./deploy-examples/compose-gpu.yaml) file or use `count: all`)
```sh
nvidia-smi
```
2. Check if the NVIDIA Container Toolkit is installed/updated
```sh
# debian
dpkg -l | grep nvidia-container-toolkit
```
```sh
# rhel
rpm -q nvidia-container-toolkit
```
NVIDIA Container Toolkit install steps can be found here:
<https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html>
3. Check which runtime is being used by Docker
```sh
# docker
docker info | grep -i runtime
```
4. If the default Docker runtime changes back from 'nvidia' to 'default' after restarting the Docker service (optional):
Backup the daemon.json file:
```sh
sudo cp /etc/docker/daemon.json /etc/docker/daemon.json.bak
```
Update the daemon.json file:
```sh
echo '{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime"
}
},
"default-runtime": "nvidia"
}' | sudo tee /etc/docker/daemon.json > /dev/null
```
Restart the Docker service:
```sh
sudo systemctl restart docker
```
Confirm 'nvidia' is the default runtime used by Docker by repeating step 3.
5. Run the container:
```sh
docker compose -f docs/deploy-examples/compose-gpu.yaml up -d
```
</details>
## OpenShift
### Simple deployment
Manifest example: [docling-serve-simple.yaml](./deploy-examples/docling-serve-simple.yaml)
This deployment example has the following features:
- Deployment configuration
- Service configuration
- NVIDIA cuda enabled
Install the app with:
```sh
oc apply -f docs/deploy-examples/docling-serve-simple.yaml
```
For using the API:
```sh
# Port-forward the service
oc port-forward svc/docling-serve 5001:5001
# Make a test query
curl -X 'POST' \
"localhost:5001/v1alpha/convert/source/async" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"http_sources": [{"url": "https://arxiv.org/pdf/2501.17887"}]
}'
```
### Secure deployment with `oauth-proxy`
Manifest example: [docling-serve-oauth.yaml](./deploy-examples/docling-serve-oauth.yaml)
@@ -15,7 +169,7 @@ This deployment has the following features:
Install the app with:
```sh
kubectl apply -f docs/deploy-examples/docling-serve-oauth.yaml
oc apply -f docs/deploy-examples/docling-serve-oauth.yaml
```
For using the API: