Compare commits

..

1 Commits

Author SHA1 Message Date
Pavel
5a891647bf parser functions change
token_func proposed change to chunking. open_ai_func proposed change to embedding_pipeline. Late chunking first  implementation requires further testing.
2024-11-20 21:40:57 +04:00
146 changed files with 5190 additions and 10041 deletions

3
.github/FUNDING.yml vendored
View File

@@ -1,3 +0,0 @@
# These are supported funding model platforms
github: arc53

View File

@@ -8,12 +8,12 @@ updates:
- package-ecosystem: "pip" # See documentation for possible values
directory: "/application" # Location of package manifests
schedule:
interval: "daily"
interval: "weekly"
- package-ecosystem: "npm" # See documentation for possible values
directory: "/frontend" # Location of package manifests
schedule:
interval: "daily"
interval: "weekly"
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "daily"
interval: "weekly"

View File

@@ -6,7 +6,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.12"]
python-version: ["3.11"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
@@ -23,8 +23,8 @@ jobs:
run: |
python -m pytest --cov=application --cov-report=xml
- name: Upload coverage reports to Codecov
if: github.event_name == 'pull_request' && matrix.python-version == '3.12'
uses: codecov/codecov-action@v5
if: github.event_name == 'pull_request' && matrix.python-version == '3.11'
uses: codecov/codecov-action@v4
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}

38
.vscode/launch.json vendored
View File

@@ -11,44 +11,6 @@
"skipFiles": [
"<node_internals>/**"
]
},
{
"name": "Flask Debugger",
"type": "debugpy",
"request": "launch",
"module": "flask",
"env": {
"FLASK_APP": "application/app.py",
"PYTHONPATH": "${workspaceFolder}",
"FLASK_ENV": "development",
"FLASK_DEBUG": "1",
"FLASK_RUN_PORT": "7091",
"FLASK_RUN_HOST": "0.0.0.0"
},
"args": [
"run",
"--no-debugger"
],
"cwd": "${workspaceFolder}",
},
{
"name": "Celery Debugger",
"type": "debugpy",
"request": "launch",
"module": "celery",
"env": {
"PYTHONPATH": "${workspaceFolder}",
},
"args": [
"-A",
"application.app.celery",
"worker",
"-l",
"INFO",
"--pool=solo"
],
"cwd": "${workspaceFolder}"
}
]
}

View File

@@ -27,7 +27,6 @@ Before creating issues, please check out how the latest version of our app looks
### 👨‍💻 If you're interested in contributing code, here are some important things to know:
For instructions on setting up a development environment, please refer to our [Development Deployment Guide](https://docs.docsgpt.cloud/Deploying/Development-Environment).
Tech Stack Overview:
@@ -37,14 +36,15 @@ Tech Stack Overview:
### 🌐 If you are looking to contribute to frontend (⚛React, Vite):
- The current frontend is being migrated from [`/application`](https://github.com/arc53/DocsGPT/tree/main/application) to [`/frontend`](https://github.com/arc53/DocsGPT/tree/main/frontend) with a new design, so please contribute to the new one.
- Check out this [milestone](https://github.com/arc53/DocsGPT/milestone/1) and its issues.
- The updated Figma design can be found [here](https://www.figma.com/file/OXLtrl1EAy885to6S69554/DocsGPT?node-id=0%3A1&t=hjWVuxRg9yi5YkJ9-1).
Please try to follow the guidelines.
### 🖥 If you are looking to contribute to Backend (🐍 Python):
- Review our issues and contribute to [`/application`](https://github.com/arc53/DocsGPT/tree/main/application)
- Review our issues and contribute to [`/application`](https://github.com/arc53/DocsGPT/tree/main/application) or [`/scripts`](https://github.com/arc53/DocsGPT/tree/main/scripts) (please disregard old [`ingest_rst.py`](https://github.com/arc53/DocsGPT/blob/main/scripts/old/ingest_rst.py) [`ingest_rst_sphinx.py`](https://github.com/arc53/DocsGPT/blob/main/scripts/old/ingest_rst_sphinx.py) files; these will be deprecated soon).
- All new code should be covered with unit tests ([pytest](https://github.com/pytest-dev/pytest)). Please find tests under [`/tests`](https://github.com/arc53/DocsGPT/tree/main/tests) folder.
- Before submitting your Pull Request, ensure it can be queried after ingesting some test data.

41
HACKTOBERFEST.md Normal file
View File

@@ -0,0 +1,41 @@
# **🎉 Join the Hacktoberfest with DocsGPT and win a Free T-shirt and other prizes! 🎉**
Welcome, contributors! We're excited to announce that DocsGPT is participating in Hacktoberfest. Get involved by submitting meaningful pull requests.
All contributors with accepted PRs will receive a cool Holopin! 🤩 (Watch out for a reply in your PR to collect it).
### 🏆 Top 50 contributors will receive a special T-shirt
### 🏆 [LLM Document analysis by LexEU competition](https://github.com/arc53/DocsGPT/blob/main/lexeu-competition.md):
A separate competition is available for those who submit new retrieval / workflow method that will analyze a Document using EU laws.
With 200$, 100$, 50$ prize for 1st, 2nd and 3rd place respectively.
You can find more information [here](https://github.com/arc53/DocsGPT/blob/main/lexeu-competition.md)
## 📜 Here's How to Contribute:
```text
🛠️ Code: This is the golden ticket! Make meaningful contributions through PRs.
🧩 API extension: Build an app utilising DocsGPT API. We prefer submissions that showcase original ideas and turn the API into an AI agent.
They can be a completely separate repos.
For example:
https://github.com/arc53/tg-bot-docsgpt-extenstion or
https://github.com/arc53/DocsGPT-cli
Non-Code Contributions:
📚 Wiki: Improve our documentation, create a guide or change existing documentation.
🖥️ Design: Improve the UI/UX or design a new feature.
📝 Blogging or Content Creation: Write articles or create videos to showcase DocsGPT or highlight your contributions!
```
### 📝 Guidelines for Pull Requests:
- Familiarize yourself with the current contributions and our [Roadmap](https://github.com/orgs/arc53/projects/2).
- Before contributing we highly advise that you check existing [issues](https://github.com/arc53/DocsGPT/issues) or [create](https://github.com/arc53/DocsGPT/issues/new/choose) an issue and wait to get assigned.
- Once you are finished with your contribution, please fill in this [form](https://airtable.com/appikMaJwdHhC1SDP/pagoblCJ9W29wf6Hf/form).
- Refer to the [Documentation](https://docs.docsgpt.cloud/).
- Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/n5BX8dh8rU).
Thank you very much for considering contributing to DocsGPT during Hacktoberfest! 🙏 Your contributions (not just simple typos) could earn you a stylish new t-shirt and other prizes as a token of our appreciation. 🎁 Join us, and let's code together! 🚀

205
README.md
View File

@@ -3,11 +3,13 @@
</h1>
<p align="center">
<strong>Open-Source RAG Assistant</strong>
<strong>Open-Source Documentation Assistant</strong>
</p>
<p align="left">
<strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> is an open-source genAI tool that helps users get reliable answers from any knowledge source, while avoiding hallucinations. It enables quick and reliable information retrieval, with tooling and agentic system capability built in.
<strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> is a cutting-edge open-source solution that streamlines the process of finding information in the project documentation. With its integration of the powerful <strong>GPT</strong> models, developers can easily ask questions about a project and receive accurate answers.
Say goodbye to time-consuming manual searches, and let <strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
</p>
<div align="center">
@@ -18,122 +20,175 @@
<a href="https://discord.gg/n5BX8dh8rU">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://twitter.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
<br>
[☁️ Cloud Version](https://app.docsgpt.cloud/) • [💬 Discord](https://discord.gg/n5BX8dh8rU) • [📖 Guides](https://docs.docsgpt.cloud/)
<br>
[👫 Contribute](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md) • [🏠 Self-host](https://docs.docsgpt.cloud/Guides/How-to-use-different-LLM) • [⚡️ Quickstart](https://github.com/arc53/DocsGPT#quickstart)
</div>
<div align="center">
<img src="https://d3dg1063dc54p9.cloudfront.net/videos/demov7.gif" alt="video-example-of-docs-gpt" width="800" height="450">
</div>
<h3 align="left">
<strong>Key Features:</strong>
</h3>
<ul align="left">
<li><strong>🗂️ Wide Format Support:</strong> Reads PDF, DOCX, CSV, XLSX, EPUB, MD, RST, HTML, MDX, JSON, PPTX, and images.</li>
<li><strong>🌐 Web & Data Integration:</strong> Ingests from URLs, sitemaps, Reddit, GitHub and web crawlers.</li>
<li><strong>✅ Reliable Answers:</strong> Get accurate, hallucination-free responses with source citations viewable in a clean UI.</li>
<li><strong>🔗 Actionable Tooling:</strong> Connect to APIs, tools, and other services to enable LLM actions.</li>
<li><strong>🧩 Pre-built Integrations:</strong> Use readily available HTML/React chat widgets, search tools, Discord/Telegram bots, and more.</li>
<li><strong>🔌 Flexible Deployment:</strong> Works with major LLMs (OpenAI, Google, Anthropic) and local models (Ollama, llama_cpp).</li>
<li><strong>🏢 Secure & Scalable:</strong> Run privately and securely with Kubernetes support, designed for enterprise-grade reliability.</li>
</ul>
## Roadmap
- [x] Full GoogleAI compatibility (Jan 2025)
- [x] Add tools (Jan 2025)
- [ ] Anthropic Tool compatibility
- [ ] Add triggerable actions / tools (webhook)
- [ ] Add OAuth 2.0 authentication for tools and sources
- [ ] Manually updating chunks in the app UI
- [ ] Devcontainer for easy development
- [ ] Chatbots menu re-design to handle tools, scheduling, and more
You can find our full roadmap [here](https://github.com/orgs/arc53/projects/2). Please don't hesitate to contribute or create issues, it helps us improve DocsGPT!
### Production Support / Help for Companies:
We're eager to provide personalized assistance when deploying your DocsGPT to a live environment.
[Get a Demo :wave:](https://www.docsgpt.cloud/contact)
[Book a Meeting :wave:](https://cal.com/arc53/docsgpt-demo-b2b)
[Send Email :email:](mailto:support@docsgpt.cloud?subject=DocsGPT%20support%2Fsolutions)
[Send Email :email:](mailto:contact@arc53.com?subject=DocsGPT%20support%2Fsolutions)
<img src="https://github.com/user-attachments/assets/9a1f21de-7a15-4e42-9424-70d22ba5a913" alt="video-example-of-docs-gpt" width="1000" height="500">
## Roadmap
You can find our roadmap [here](https://github.com/orgs/arc53/projects/2). Please don't hesitate to contribute or create issues, it helps us improve DocsGPT!
## Our Open-Source Models Optimized for DocsGPT:
| Name | Base Model | Requirements (or similar) |
| --------------------------------------------------------------------- | ----------- | ------------------------- |
| [Docsgpt-7b-mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral) | Mistral-7b | 1xA10G gpu |
| [Docsgpt-14b](https://huggingface.co/Arc53/docsgpt-14b) | llama-2-14b | 2xA10 gpu's |
| [Docsgpt-40b-falcon](https://huggingface.co/Arc53/docsgpt-40b-falcon) | falcon-40b | 8xA10G gpu's |
If you don't have enough resources to run it, you can use bitsnbytes to quantize.
## End to End AI Framework for Information Retrieval
![Architecture chart](https://github.com/user-attachments/assets/fc6a7841-ddfc-45e6-b5a0-d05fe648cbe2)
## Useful Links
- :mag: :fire: [Cloud Version](https://app.docsgpt.cloud/)
- :speech_balloon: :tada: [Join our Discord](https://discord.gg/n5BX8dh8rU)
- :books: :sunglasses: [Guides](https://docs.docsgpt.cloud/)
- :couple: [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
- :file_folder: :rocket: [How to use any other documentation](https://docs.docsgpt.cloud/Guides/How-to-train-on-other-documentation)
- :house: :closed_lock_with_key: [How to host it locally (so all data will stay on-premises)](https://docs.docsgpt.cloud/Guides/How-to-use-different-LLM)
## Project Structure
- Application - Flask app (main application).
- Extensions - Chrome extension.
- Scripts - Script that creates similarity search index for other libraries.
- Frontend - Frontend uses <a href="https://vitejs.dev/">Vite</a> and <a href="https://react.dev/">React</a>.
## QuickStart
> [!Note]
> Make sure you have [Docker](https://docs.docker.com/engine/install/) installed
1. Clone the repository and run the following command:
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
```
On Mac OS or Linux, write:
2. Run the following command:
```bash
./setup.sh
```
`./setup.sh`
It will install all the dependencies and allow you to download the local model, use OpenAI or use our LLM API.
Otherwise, refer to this Guide for Windows:
On windows:
2. Create a `.env` file in your root directory and set the env variables.
1. Download and open this repository with `git clone https://github.com/arc53/DocsGPT.git`
2. Create a `.env` file in your root directory and set the env variables and `VITE_API_STREAMING` to true or false, depending on whether you want streaming answers or not.
It should look like this inside:
```
LLM_NAME=[docsgpt or openai or others]
VITE_API_STREAMING=true
API_KEY=[if LLM_NAME is openai]
```
See optional environment variables in the [/application/.env_sample](https://github.com/arc53/DocsGPT/blob/main/application/.env_sample) file.
See optional environment variables in the [/.env-template](https://github.com/arc53/DocsGPT/blob/main/.env-template) and [/application/.env_sample](https://github.com/arc53/DocsGPT/blob/main/application/.env_sample) files.
3. Run the following command:
```bash
docker compose up --build
```
3. Run [./run-with-docker-compose.sh](https://github.com/arc53/DocsGPT/blob/main/run-with-docker-compose.sh).
4. Navigate to http://localhost:5173/.
To stop, just run `Ctrl + C`.
## Development Environments
### Spin up Mongo and Redis
For development, only two containers are used from [docker-compose.yaml](https://github.com/arc53/DocsGPT/blob/main/docker-compose.yaml) (by deleting all services except for Redis and Mongo).
See file [docker-compose-dev.yaml](./docker-compose-dev.yaml).
Run
```
docker compose -f docker-compose-dev.yaml build
docker compose -f docker-compose-dev.yaml up -d
```
### Run the Backend
> [!Note]
> For development environment setup instructions, please refer to the [Development Environment Guide](https://docs.docsgpt.cloud/Deploying/Development-Environment).
> Make sure you have Python 3.10 or 3.11 installed.
1. Export required environment variables or prepare a `.env` file in the project folder:
- Copy [.env-template](https://github.com/arc53/DocsGPT/blob/main/application/.env-template) and create `.env`.
(check out [`application/core/settings.py`](application/core/settings.py) if you want to see more config options.)
2. (optional) Create a Python virtual environment:
You can follow the [Python official documentation](https://docs.python.org/3/tutorial/venv.html) for virtual environments.
a) On Mac OS and Linux
```commandline
python -m venv venv
. venv/bin/activate
```
b) On Windows
```commandline
python -m venv venv
venv/Scripts/activate
```
3. Download embedding model and save it in the `model/` folder:
You can use the script below, or download it manually from [here](https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip), unzip it and save it in the `model/` folder.
```commandline
wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip
unzip mpnet-base-v2.zip -d model
rm mpnet-base-v2.zip
```
4. Install dependencies for the backend:
```commandline
pip install -r application/requirements.txt
```
5. Run the app using `flask --app application/app.py run --host=0.0.0.0 --port=7091`.
6. Start worker with `celery -A application.app.celery worker -l INFO`.
### Start Frontend
> [!Note]
> Make sure you have Node version 16 or higher.
1. Navigate to the [/frontend](https://github.com/arc53/DocsGPT/tree/main/frontend) folder.
2. Install the required packages `husky` and `vite` (ignore if already installed).
```commandline
npm install husky -g
npm install vite -g
```
3. Install dependencies by running `npm install --include=dev`.
4. Run the app using `npm run dev`.
## Contributing
Please refer to the [CONTRIBUTING.md](CONTRIBUTING.md) file for information about how to get involved. We welcome issues, questions, and pull requests.
## Architecture
![Architecture chart](https://github.com/user-attachments/assets/fc6a7841-ddfc-45e6-b5a0-d05fe648cbe2)
## Project Structure
- Application - Flask app (main application).
- Extensions - Extensions, like react widget or discord bot.
- Frontend - Frontend uses <a href="https://vitejs.dev/">Vite</a> and <a href="https://react.dev/">React</a>.
- Scripts - Miscellaneous scripts.
## Code Of Conduct
We as members, contributors, and leaders, pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. Please refer to the [CODE_OF_CONDUCT.md](CODE_OF_CONDUCT.md) file for more information about contributing.
## Many Thanks To Our Contributors⚡
<a href="https://github.com/arc53/DocsGPT/graphs/contributors" alt="View Contributors">

View File

@@ -8,14 +8,14 @@ RUN apt-get update && \
add-apt-repository ppa:deadsnakes/ppa && \
# Install necessary packages and Python
apt-get update && \
apt-get install -y --no-install-recommends gcc wget unzip libc6-dev python3.12 python3.12-venv && \
apt-get install -y --no-install-recommends gcc wget unzip libc6-dev python3.11 python3.11-distutils python3.11-venv && \
rm -rf /var/lib/apt/lists/*
# Verify Python installation and setup symlink
RUN if [ -f /usr/bin/python3.12 ]; then \
ln -s /usr/bin/python3.12 /usr/bin/python; \
RUN if [ -f /usr/bin/python3.11 ]; then \
ln -s /usr/bin/python3.11 /usr/bin/python; \
else \
echo "Python 3.12 not found"; exit 1; \
echo "Python 3.11 not found"; exit 1; \
fi
# Download and unzip the model
@@ -33,7 +33,7 @@ RUN apt-get remove --purge -y wget unzip && apt-get autoremove -y && rm -rf /var
COPY requirements.txt .
# Setup Python virtual environment
RUN python3.12 -m venv /venv
RUN python3.11 -m venv /venv
# Activate virtual environment and install Python packages
ENV PATH="/venv/bin:$PATH"
@@ -50,8 +50,8 @@ RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
# Install Python
apt-get update && apt-get install -y --no-install-recommends python3.12 && \
ln -s /usr/bin/python3.12 /usr/bin/python && \
apt-get update && apt-get install -y --no-install-recommends python3.11 && \
ln -s /usr/bin/python3.11 /usr/bin/python && \
rm -rf /var/lib/apt/lists/*
# Set working directory

View File

@@ -18,7 +18,7 @@ from application.error import bad_request
from application.extensions import api
from application.llm.llm_creator import LLMCreator
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import check_required_fields, limit_chat_history
from application.utils import check_required_fields
logger = logging.getLogger(__name__)
@@ -37,7 +37,7 @@ api.add_namespace(answer_ns)
gpt_model = ""
# to have some kind of default behaviour
if settings.LLM_NAME == "openai":
gpt_model = "gpt-4o-mini"
gpt_model = "gpt-3.5-turbo"
elif settings.LLM_NAME == "anthropic":
gpt_model = "claude-2"
elif settings.LLM_NAME == "groq":
@@ -118,31 +118,8 @@ def is_azure_configured():
)
def save_conversation(conversation_id, question, response, source_log_docs, llm,index=None):
if conversation_id is not None and index is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id), f"queries.{index}": {"$exists": True}},
{
"$set": {
f"queries.{index}.prompt": question,
f"queries.{index}.response": response,
f"queries.{index}.sources": source_log_docs,
}
}
)
##remove following queries from the array
conversations_collection.update_one(
{"_id": ObjectId(conversation_id), f"queries.{index}": {"$exists": True}},
{
"$push":{
"queries":{
"$each":[],
"$slice":index+1
}
}
}
)
elif conversation_id is not None and conversation_id != "None":
def save_conversation(conversation_id, question, response, source_log_docs, llm):
if conversation_id is not None and conversation_id != "None":
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{
@@ -209,7 +186,7 @@ def get_prompt(prompt_id):
def complete_stream(
question, retriever, conversation_id, user_api_key, isNoneDoc=False,index=None
question, retriever, conversation_id, user_api_key, isNoneDoc=False
):
try:
@@ -240,7 +217,7 @@ def complete_stream(
)
if user_api_key is None:
conversation_id = save_conversation(
conversation_id, question, response_full, source_log_docs, llm,index
conversation_id, question, response_full, source_log_docs, llm
)
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
@@ -305,9 +282,6 @@ class Stream(Resource):
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
"index":fields.Integer(
required=False, description="The position where query is to be updated"
),
},
)
@@ -316,23 +290,23 @@ class Stream(Resource):
def post(self):
data = request.get_json()
required_fields = ["question"]
if "index" in data:
required_fields = ["question","conversation_id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
question = data["question"]
history = limit_chat_history(json.loads(data.get("history", [])), gpt_model=gpt_model)
history = data.get("history", [])
history = json.loads(history)
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")
index=data.get("index",None)
chunks = int(data.get("chunks", 2))
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key.get("chunks", 2))
@@ -369,7 +343,7 @@ class Stream(Resource):
gpt_model=gpt_model,
user_api_key=user_api_key,
)
return Response(
complete_stream(
question=question,
@@ -377,7 +351,6 @@ class Stream(Resource):
conversation_id=conversation_id,
user_api_key=user_api_key,
isNoneDoc=data.get("isNoneDoc"),
index=index,
),
mimetype="text/event-stream",
)
@@ -455,7 +428,7 @@ class Answer(Resource):
try:
question = data["question"]
history = limit_chat_history(json.loads(data.get("history", [])), gpt_model=gpt_model)
history = data.get("history", [])
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")
chunks = int(data.get("chunks", 2))

View File

@@ -1,14 +1,14 @@
import datetime
import math
import os
import shutil
import uuid
import math
from bson.binary import Binary, UuidRepresentation
from bson.dbref import DBRef
from bson.objectid import ObjectId
from flask import Blueprint, jsonify, make_response, redirect, request
from flask_restx import fields, inputs, Namespace, Resource
from flask import Blueprint, jsonify, make_response, request, redirect
from flask_restx import inputs, fields, Namespace, Resource
from werkzeug.utils import secure_filename
from application.api.user.tasks import ingest, ingest_remote
@@ -16,10 +16,9 @@ from application.api.user.tasks import ingest, ingest_remote
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.extensions import api
from application.tools.tool_manager import ToolManager
from application.tts.google_tts import GoogleTTS
from application.utils import check_required_fields
from application.vectorstore.vector_creator import VectorCreator
from application.tts.google_tts import GoogleTTS
mongo = MongoDB.get_client()
db = mongo["docsgpt"]
@@ -31,7 +30,6 @@ api_key_collection = db["api_keys"]
token_usage_collection = db["token_usage"]
shared_conversations_collections = db["shared_conversations"]
user_logs_collection = db["user_logs"]
user_tools_collection = db["user_tools"]
user = Blueprint("user", __name__)
user_ns = Namespace("user", description="User related operations", path="/")
@@ -41,9 +39,6 @@ current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
tool_config = {}
tool_manager = ToolManager(config=tool_config)
def generate_minute_range(start_date, end_date):
return {
@@ -181,17 +176,10 @@ class SubmitFeedback(Resource):
"FeedbackModel",
{
"question": fields.String(
required=False, description="The user question"
required=True, description="The user question"
),
"answer": fields.String(required=False, description="The AI answer"),
"answer": fields.String(required=True, description="The AI answer"),
"feedback": fields.String(required=True, description="User feedback"),
"question_index": fields.Integer(
required=True,
description="The question number in that particular conversation",
),
"conversation_id": fields.String(
required=True, description="id of the particular conversation"
),
"api_key": fields.String(description="Optional API key"),
},
)
@@ -201,24 +189,23 @@ class SubmitFeedback(Resource):
)
def post(self):
data = request.get_json()
required_fields = ["feedback", "conversation_id", "question_index"]
required_fields = ["question", "answer", "feedback"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
conversations_collection.update_one(
{
"_id": ObjectId(data["conversation_id"]),
f"queries.{data['question_index']}": {"$exists": True},
},
{
"$set": {
f"queries.{data['question_index']}.feedback": data["feedback"]
}
},
)
new_doc = {
"question": data["question"],
"answer": data["answer"],
"feedback": data["feedback"],
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
if "api_key" in data:
new_doc["api_key"] = data["api_key"]
try:
feedback_collection.insert_one(new_doc)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
@@ -261,10 +248,13 @@ class DeleteOldIndexes(Resource):
jsonify({"success": False, "message": "Missing required fields"}), 400
)
doc = sources_collection.find_one({"_id": ObjectId(source_id), "user": "local"})
if not doc:
return make_response(jsonify({"status": "not found"}), 404)
try:
doc = sources_collection.find_one(
{"_id": ObjectId(source_id), "user": "local"}
)
if not doc:
return make_response(jsonify({"status": "not found"}), 404)
if settings.VECTOR_STORE == "faiss":
shutil.rmtree(os.path.join(current_dir, "indexes", str(doc["_id"])))
else:
@@ -273,12 +263,12 @@ class DeleteOldIndexes(Resource):
)
vectorstore.delete_index()
sources_collection.delete_one({"_id": ObjectId(source_id)})
except FileNotFoundError:
pass
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
sources_collection.delete_one({"_id": ObjectId(source_id)})
return make_response(jsonify({"success": True}), 200)
@@ -349,9 +339,6 @@ class UploadFile(Resource):
".json",
".xlsx",
".pptx",
".png",
".jpg",
".jpeg",
],
job_name,
final_filename,
@@ -378,9 +365,6 @@ class UploadFile(Resource):
".json",
".xlsx",
".pptx",
".png",
".jpg",
".jpeg",
],
job_name,
final_filename,
@@ -489,24 +473,11 @@ class PaginatedSources(Resource):
sort_order = request.args.get("order", "desc") # Default to 'desc'
page = int(request.args.get("page", 1)) # Default to 1
rows_per_page = int(request.args.get("rows", 10)) # Default to 10
# add .strip() to remove leading and trailing whitespaces
search_term = request.args.get(
"search", ""
).strip() # add search for filter documents
# Prepare query for filtering
# Prepare
query = {"user": user}
if search_term:
query["name"] = {
"$regex": search_term,
"$options": "i", # using case-insensitive search
}
total_documents = sources_collection.count_documents(query)
total_pages = max(1, math.ceil(total_documents / rows_per_page))
page = min(
max(1, page), total_pages
) # add this to make sure page inbound is within the range
sort_order = 1 if sort_order == "asc" else -1
skip = (page - 1) * rows_per_page
@@ -551,7 +522,7 @@ class CombinedJson(Resource):
user = "local"
data = [
{
"name": "Default",
"name": "default",
"date": "default",
"model": settings.EMBEDDINGS_NAME,
"location": "remote",
@@ -1478,17 +1449,90 @@ class GetFeedbackAnalytics(Resource):
)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
end_date = datetime.datetime.now(datetime.timezone.utc)
if filter_option == "last_hour":
start_date = end_date - datetime.timedelta(hours=1)
group_format = "%Y-%m-%d %H:%M:00"
date_field = {"$dateToString": {"format": group_format, "date": "$date"}}
group_stage_1 = {
"$group": {
"_id": {
"minute": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
},
"feedback": "$feedback",
},
"count": {"$sum": 1},
}
}
group_stage_2 = {
"$group": {
"_id": "$_id.minute",
"likes": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "LIKE"]},
"$count",
0,
]
}
},
"dislikes": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "DISLIKE"]},
"$count",
0,
]
}
},
}
}
elif filter_option == "last_24_hour":
start_date = end_date - datetime.timedelta(hours=24)
group_format = "%Y-%m-%d %H:00"
date_field = {"$dateToString": {"format": group_format, "date": "$date"}}
group_stage_1 = {
"$group": {
"_id": {
"hour": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
},
"feedback": "$feedback",
},
"count": {"$sum": 1},
}
}
group_stage_2 = {
"$group": {
"_id": "$_id.hour",
"likes": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "LIKE"]},
"$count",
0,
]
}
},
"dislikes": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "DISLIKE"]},
"$count",
0,
]
}
},
}
}
else:
if filter_option in ["last_7_days", "last_15_days", "last_30_days"]:
filter_days = (
@@ -1506,59 +1550,61 @@ class GetFeedbackAnalytics(Resource):
hour=23, minute=59, second=59, microsecond=999999
)
group_format = "%Y-%m-%d"
date_field = {"$dateToString": {"format": group_format, "date": "$date"}}
group_stage_1 = {
"$group": {
"_id": {
"day": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
},
"feedback": "$feedback",
},
"count": {"$sum": 1},
}
}
group_stage_2 = {
"$group": {
"_id": "$_id.day",
"likes": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "LIKE"]},
"$count",
0,
]
}
},
"dislikes": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "DISLIKE"]},
"$count",
0,
]
}
},
}
}
try:
match_stage = {
"$match": {
"date": {"$gte": start_date, "$lte": end_date},
"queries": {"$exists": True, "$ne": []},
"timestamp": {"$gte": start_date, "$lte": end_date},
}
}
if api_key:
match_stage["$match"]["api_key"] = api_key
# Unwind the queries array to process each query separately
pipeline = [
match_stage,
{"$unwind": "$queries"},
{"$match": {"queries.feedback": {"$exists": True}}},
{
"$group": {
"_id": {
"time": date_field,
"feedback": "$queries.feedback"
},
"count": {"$sum": 1}
}
},
{
"$group": {
"_id": "$_id.time",
"positive": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "LIKE"]},
"$count",
0
]
}
},
"negative": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "DISLIKE"]},
"$count",
0
]
}
}
}
},
{"$sort": {"_id": 1}}
]
feedback_data = conversations_collection.aggregate(pipeline)
feedback_data = feedback_collection.aggregate(
[
match_stage,
group_stage_1,
group_stage_2,
{"$sort": {"_id": 1}},
]
)
if filter_option == "last_hour":
intervals = generate_minute_range(start_date, end_date)
@@ -1573,8 +1619,8 @@ class GetFeedbackAnalytics(Resource):
for entry in feedback_data:
daily_feedback[entry["_id"]] = {
"positive": entry["positive"],
"negative": entry["negative"]
"positive": entry["likes"],
"negative": entry["dislikes"],
}
except Exception as err:
@@ -1740,294 +1786,3 @@ class TextToSpeech(Resource):
)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
@user_ns.route("/api/available_tools")
class AvailableTools(Resource):
@api.doc(description="Get available tools for a user")
def get(self):
try:
tools_metadata = []
for tool_name, tool_instance in tool_manager.tools.items():
doc = tool_instance.__doc__.strip()
lines = doc.split("\n", 1)
name = lines[0].strip()
description = lines[1].strip() if len(lines) > 1 else ""
tools_metadata.append(
{
"name": tool_name,
"displayName": name,
"description": description,
"configRequirements": tool_instance.get_config_requirements(),
"actions": tool_instance.get_actions_metadata(),
}
)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
return make_response(jsonify({"success": True, "data": tools_metadata}), 200)
@user_ns.route("/api/get_tools")
class GetTools(Resource):
@api.doc(description="Get tools created by a user")
def get(self):
try:
user = "local"
tools = user_tools_collection.find({"user": user})
user_tools = []
for tool in tools:
tool["id"] = str(tool["_id"])
tool.pop("_id")
user_tools.append(tool)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
return make_response(jsonify({"success": True, "tools": user_tools}), 200)
@user_ns.route("/api/create_tool")
class CreateTool(Resource):
@api.expect(
api.model(
"CreateToolModel",
{
"name": fields.String(required=True, description="Name of the tool"),
"displayName": fields.String(
required=True, description="Display name for the tool"
),
"description": fields.String(
required=True, description="Tool description"
),
"config": fields.Raw(
required=True, description="Configuration of the tool"
),
"actions": fields.List(
fields.Raw,
required=True,
description="Actions the tool can perform",
),
"status": fields.Boolean(
required=True, description="Status of the tool"
),
},
)
)
@api.doc(description="Create a new tool")
def post(self):
data = request.get_json()
required_fields = [
"name",
"displayName",
"description",
"actions",
"config",
"status",
]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
user = "local"
transformed_actions = []
for action in data["actions"]:
action["active"] = True
if "parameters" in action:
if "properties" in action["parameters"]:
for param_name, param_details in action["parameters"][
"properties"
].items():
param_details["filled_by_llm"] = True
param_details["value"] = ""
transformed_actions.append(action)
try:
new_tool = {
"user": user,
"name": data["name"],
"displayName": data["displayName"],
"description": data["description"],
"actions": transformed_actions,
"config": data["config"],
"status": data["status"],
}
resp = user_tools_collection.insert_one(new_tool)
new_id = str(resp.inserted_id)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
return make_response(jsonify({"id": new_id}), 200)
@user_ns.route("/api/update_tool")
class UpdateTool(Resource):
@api.expect(
api.model(
"UpdateToolModel",
{
"id": fields.String(required=True, description="Tool ID"),
"name": fields.String(description="Name of the tool"),
"displayName": fields.String(description="Display name for the tool"),
"description": fields.String(description="Tool description"),
"config": fields.Raw(description="Configuration of the tool"),
"actions": fields.List(
fields.Raw, description="Actions the tool can perform"
),
"status": fields.Boolean(description="Status of the tool"),
},
)
)
@api.doc(description="Update a tool by ID")
def post(self):
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
update_data = {}
if "name" in data:
update_data["name"] = data["name"]
if "displayName" in data:
update_data["displayName"] = data["displayName"]
if "description" in data:
update_data["description"] = data["description"]
if "actions" in data:
update_data["actions"] = data["actions"]
if "config" in data:
update_data["config"] = data["config"]
if "status" in data:
update_data["status"] = data["status"]
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": "local"},
{"$set": update_data},
)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
return make_response(jsonify({"success": True}), 200)
@user_ns.route("/api/update_tool_config")
class UpdateToolConfig(Resource):
@api.expect(
api.model(
"UpdateToolConfigModel",
{
"id": fields.String(required=True, description="Tool ID"),
"config": fields.Raw(
required=True, description="Configuration of the tool"
),
},
)
)
@api.doc(description="Update the configuration of a tool")
def post(self):
data = request.get_json()
required_fields = ["id", "config"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"])},
{"$set": {"config": data["config"]}},
)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
return make_response(jsonify({"success": True}), 200)
@user_ns.route("/api/update_tool_actions")
class UpdateToolActions(Resource):
@api.expect(
api.model(
"UpdateToolActionsModel",
{
"id": fields.String(required=True, description="Tool ID"),
"actions": fields.List(
fields.Raw,
required=True,
description="Actions the tool can perform",
),
},
)
)
@api.doc(description="Update the actions of a tool")
def post(self):
data = request.get_json()
required_fields = ["id", "actions"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"])},
{"$set": {"actions": data["actions"]}},
)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
return make_response(jsonify({"success": True}), 200)
@user_ns.route("/api/update_tool_status")
class UpdateToolStatus(Resource):
@api.expect(
api.model(
"UpdateToolStatusModel",
{
"id": fields.String(required=True, description="Tool ID"),
"status": fields.Boolean(
required=True, description="Status of the tool"
),
},
)
)
@api.doc(description="Update the status of a tool")
def post(self):
data = request.get_json()
required_fields = ["id", "status"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"])},
{"$set": {"status": data["status"]}},
)
except Exception as err:
return make_response(jsonify({"success": False, "error": str(err)}), 400)
return make_response(jsonify({"success": True}), 200)
@user_ns.route("/api/delete_tool")
class DeleteTool(Resource):
@api.expect(
api.model(
"DeleteToolModel",
{"id": fields.String(required=True, description="Tool ID")},
)
)
@api.doc(description="Delete a tool by ID")
def post(self):
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
result = user_tools_collection.delete_one({"_id": ObjectId(data["id"])})
if result.deleted_count == 0:
return {"success": False, "message": "Tool not found"}, 404
except Exception as err:
return {"success": False, "error": str(err)}, 400
return {"success": True}, 200

View File

@@ -1,10 +1,8 @@
import redis
import time
import json
import logging
import time
from threading import Lock
import redis
from application.core.settings import settings
from application.utils import get_hash
@@ -13,47 +11,41 @@ logger = logging.getLogger(__name__)
_redis_instance = None
_instance_lock = Lock()
def get_redis_instance():
global _redis_instance
if _redis_instance is None:
with _instance_lock:
if _redis_instance is None:
try:
_redis_instance = redis.Redis.from_url(
settings.CACHE_REDIS_URL, socket_connect_timeout=2
)
_redis_instance = redis.Redis.from_url(settings.CACHE_REDIS_URL, socket_connect_timeout=2)
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
_redis_instance = None
return _redis_instance
def gen_cache_key(messages, model="docgpt", tools=None):
def gen_cache_key(*messages, model="docgpt"):
if not all(isinstance(msg, dict) for msg in messages):
raise ValueError("All messages must be dictionaries.")
messages_str = json.dumps(messages)
tools_str = json.dumps(str(tools)) if tools else ""
combined = f"{model}_{messages_str}_{tools_str}"
messages_str = json.dumps(list(messages), sort_keys=True)
combined = f"{model}_{messages_str}"
cache_key = get_hash(combined)
return cache_key
def gen_cache(func):
def wrapper(self, model, messages, stream, tools=None, *args, **kwargs):
def wrapper(self, model, messages, *args, **kwargs):
try:
cache_key = gen_cache_key(messages, model, tools)
cache_key = gen_cache_key(*messages)
redis_client = get_redis_instance()
if redis_client:
try:
cached_response = redis_client.get(cache_key)
if cached_response:
return cached_response.decode("utf-8")
return cached_response.decode('utf-8')
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
result = func(self, model, messages, stream, tools, *args, **kwargs)
if redis_client and isinstance(result, str):
result = func(self, model, messages, *args, **kwargs)
if redis_client:
try:
redis_client.set(cache_key, result, ex=1800)
except redis.ConnectionError as e:
@@ -63,22 +55,20 @@ def gen_cache(func):
except ValueError as e:
logger.error(e)
return "Error: No user message found in the conversation to generate a cache key."
return wrapper
def stream_cache(func):
def wrapper(self, model, messages, stream, tools=None, *args, **kwargs):
cache_key = gen_cache_key(messages, model, tools)
def wrapper(self, model, messages, stream, *args, **kwargs):
cache_key = gen_cache_key(*messages)
logger.info(f"Stream cache key: {cache_key}")
redis_client = get_redis_instance()
if redis_client:
try:
cached_response = redis_client.get(cache_key)
if cached_response:
logger.info(f"Cache hit for stream key: {cache_key}")
cached_response = json.loads(cached_response.decode("utf-8"))
cached_response = json.loads(cached_response.decode('utf-8'))
for chunk in cached_response:
yield chunk
time.sleep(0.03)
@@ -86,18 +76,18 @@ def stream_cache(func):
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
result = func(self, model, messages, stream, tools=tools, *args, **kwargs)
result = func(self, model, messages, stream, *args, **kwargs)
stream_cache_data = []
for chunk in result:
stream_cache_data.append(chunk)
yield chunk
if redis_client:
try:
redis_client.set(cache_key, json.dumps(stream_cache_data), ex=1800)
logger.info(f"Stream cache saved for key: {cache_key}")
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
return wrapper
return wrapper

View File

@@ -2,22 +2,14 @@ from celery import Celery
from application.core.settings import settings
from celery.signals import setup_logging
def make_celery(app_name=__name__):
celery = Celery(
app_name,
broker=settings.CELERY_BROKER_URL,
backend=settings.CELERY_RESULT_BACKEND,
)
celery = Celery(app_name, broker=settings.CELERY_BROKER_URL, backend=settings.CELERY_RESULT_BACKEND)
celery.conf.update(settings)
return celery
@setup_logging.connect
def config_loggers(*args, **kwargs):
from application.core.logging_config import setup_logging
setup_logging()
celery = make_celery()

View File

@@ -16,9 +16,8 @@ class Settings(BaseSettings):
MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
MODEL_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150
MODEL_TOKEN_LIMITS: dict = {"gpt-4o-mini": 128000, "gpt-3.5-turbo": 4096, "claude-2": 1e5}
MODEL_TOKEN_LIMITS: dict = {"gpt-3.5-turbo": 4096, "claude-2": 1e5}
UPLOAD_FOLDER: str = "inputs"
PARSE_PDF_AS_IMAGE: bool = False
VECTOR_STORE: str = "faiss" # "faiss" or "elasticsearch" or "qdrant" or "milvus" or "lancedb"
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search

View File

@@ -17,7 +17,7 @@ class AnthropicLLM(BaseLLM):
self.AI_PROMPT = AI_PROMPT
def _raw_gen(
self, baseself, model, messages, stream=False, tools=None, max_tokens=300, **kwargs
self, baseself, model, messages, stream=False, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
@@ -34,7 +34,7 @@ class AnthropicLLM(BaseLLM):
return completion.completion
def _raw_gen_stream(
self, baseself, model, messages, stream=True, tools=None, max_tokens=300, **kwargs
self, baseself, model, messages, stream=True, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]

View File

@@ -1,7 +1,6 @@
from abc import ABC, abstractmethod
from application.cache import gen_cache, stream_cache
from application.usage import gen_token_usage, stream_token_usage
from application.cache import stream_cache, gen_cache
class BaseLLM(ABC):
@@ -14,43 +13,17 @@ class BaseLLM(ABC):
return method(self, *args, **kwargs)
@abstractmethod
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
def _raw_gen(self, model, messages, stream, *args, **kwargs):
pass
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
def gen(self, model, messages, stream=False, *args, **kwargs):
decorators = [gen_token_usage, gen_cache]
return self._apply_decorator(
self._raw_gen,
decorators=decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs
)
return self._apply_decorator(self._raw_gen, decorators=decorators, model=model, messages=messages, stream=stream, *args, **kwargs)
@abstractmethod
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
pass
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
def gen_stream(self, model, messages, stream=True, *args, **kwargs):
decorators = [stream_cache, stream_token_usage]
return self._apply_decorator(
self._raw_gen_stream,
decorators=decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs
)
def supports_tools(self):
return hasattr(self, "_supports_tools") and callable(
getattr(self, "_supports_tools")
)
def _supports_tools(self):
raise NotImplementedError("Subclass must implement _supports_tools method")
return self._apply_decorator(self._raw_gen_stream, decorators=decorators, model=model, messages=messages, stream=stream, *args, **kwargs)

View File

@@ -1,95 +1,21 @@
from google import genai
from google.genai import types
from application.llm.base import BaseLLM
class GoogleLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
def _clean_messages_google(self, messages):
cleaned_messages = []
for message in messages:
role = message.get("role")
content = message.get("content")
if role == "assistant":
role = "model"
parts = []
if role and content is not None:
if isinstance(content, str):
parts = [types.Part.from_text(content)]
elif isinstance(content, list):
for item in content:
if "text" in item:
parts.append(types.Part.from_text(item["text"]))
elif "function_call" in item:
parts.append(
types.Part.from_function_call(
name=item["function_call"]["name"],
args=item["function_call"]["args"],
)
)
elif "function_response" in item:
parts.append(
types.Part.from_function_response(
name=item["function_response"]["name"],
response=item["function_response"]["response"],
)
)
else:
raise ValueError(
f"Unexpected content dictionary format:{item}"
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
cleaned_messages.append(types.Content(role=role, parts=parts))
return cleaned_messages
def _clean_tools_format(self, tools_list):
genai_tools = []
for tool_data in tools_list:
if tool_data["type"] == "function":
function = tool_data["function"]
parameters = function["parameters"]
properties = parameters.get("properties", {})
if properties:
genai_function = dict(
name=function["name"],
description=function["description"],
parameters={
"type": "OBJECT",
"properties": {
k: {
**v,
"type": v["type"].upper() if v["type"] else None,
}
for k, v in properties.items()
},
"required": (
parameters["required"]
if "required" in parameters
else []
),
},
)
else:
genai_function = dict(
name=function["name"],
description=function["description"],
)
genai_tool = types.Tool(function_declarations=[genai_function])
genai_tools.append(genai_tool)
return genai_tools
return [
{
"role": "model" if message["role"] == "system" else message["role"],
"parts": [message["content"]],
}
for message in messages[1:]
]
def _raw_gen(
self,
@@ -97,32 +23,13 @@ class GoogleLLM(BaseLLM):
model,
messages,
stream=False,
tools=None,
formatting="openai",
**kwargs,
):
client = genai.Client(api_key=self.api_key)
if formatting == "openai":
messages = self._clean_messages_google(messages)
config = types.GenerateContentConfig()
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
response = client.models.generate_content(
model=model,
contents=messages,
config=config,
)
return response
else:
response = client.models.generate_content(
model=model, contents=messages, config=config
)
return response.text
**kwargs
):
import google.generativeai as genai
genai.configure(api_key=self.api_key)
model = genai.GenerativeModel(model, system_instruction=messages[0]["content"])
response = model.generate_content(self._clean_messages_google(messages))
return response.text
def _raw_gen_stream(
self,
@@ -130,30 +37,12 @@ class GoogleLLM(BaseLLM):
model,
messages,
stream=True,
tools=None,
formatting="openai",
**kwargs,
):
client = genai.Client(api_key=self.api_key)
if formatting == "openai":
messages = self._clean_messages_google(messages)
config = types.GenerateContentConfig()
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
response = client.models.generate_content_stream(
model=model,
contents=messages,
config=config,
)
for chunk in response:
if chunk.text is not None:
yield chunk.text
def _supports_tools(self):
return True
**kwargs
):
import google.generativeai as genai
genai.configure(api_key=self.api_key)
model = genai.GenerativeModel(model, system_instruction=messages[0]["content"])
response = model.generate_content(self._clean_messages_google(messages), stream=True)
for line in response:
if line.text is not None:
yield line.text

View File

@@ -1,32 +1,45 @@
from application.llm.base import BaseLLM
from openai import OpenAI
class GroqLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from openai import OpenAI
super().__init__(*args, **kwargs)
self.client = OpenAI(api_key=api_key, base_url="https://api.groq.com/openai/v1")
self.api_key = api_key
self.user_api_key = user_api_key
def _raw_gen(self, baseself, model, messages, stream=False, tools=None, **kwargs):
if tools:
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, tools=tools, **kwargs
)
return response.choices[0]
else:
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def _raw_gen_stream(
self, baseself, model, messages, stream=True, tools=None, **kwargs
):
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
for line in response:
# import sys
# print(line.choices[0].delta.content, file=sys.stderr)
if line.choices[0].delta.content is not None:
yield line.choices[0].delta.content

View File

@@ -1,5 +1,6 @@
from application.core.settings import settings
from application.llm.base import BaseLLM
from application.core.settings import settings
class OpenAILLM(BaseLLM):
@@ -9,7 +10,10 @@ class OpenAILLM(BaseLLM):
super().__init__(*args, **kwargs)
if settings.OPENAI_BASE_URL:
self.client = OpenAI(api_key=api_key, base_url=settings.OPENAI_BASE_URL)
self.client = OpenAI(
api_key=api_key,
base_url=settings.OPENAI_BASE_URL
)
else:
self.client = OpenAI(api_key=api_key)
self.api_key = api_key
@@ -21,20 +25,14 @@ class OpenAILLM(BaseLLM):
model,
messages,
stream=False,
tools=None,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs,
):
if tools:
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, tools=tools, **kwargs
)
return response.choices[0]
else:
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def _raw_gen_stream(
self,
@@ -42,21 +40,19 @@ class OpenAILLM(BaseLLM):
model,
messages,
stream=True,
tools=None,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs,
):
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
for line in response:
# import sys
# print(line.choices[0].delta.content, file=sys.stderr)
if line.choices[0].delta.content is not None:
yield line.choices[0].delta.content
def _supports_tools(self):
return True
class AzureOpenAILLM(OpenAILLM):

View File

@@ -76,7 +76,7 @@ class SagemakerAPILLM(BaseLLM):
self.endpoint = settings.SAGEMAKER_ENDPOINT
self.runtime = runtime
def _raw_gen(self, baseself, model, messages, stream=False, tools=None, **kwargs):
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
@@ -105,7 +105,7 @@ class SagemakerAPILLM(BaseLLM):
print(result[0]["generated_text"], file=sys.stderr)
return result[0]["generated_text"][len(prompt) :]
def _raw_gen_stream(self, baseself, model, messages, stream=True, tools=None, **kwargs):
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"

View File

@@ -1,5 +1,5 @@
import re
from typing import List, Tuple
from typing import List, Tuple, Union
import logging
from application.parser.schema.base import Document
from application.utils import get_encoding

View File

@@ -61,7 +61,7 @@ def embed_and_store_documents(docs, folder_name, source_id, task_status):
# Process and embed documents
for idx, doc in tqdm(
enumerate(docs),
docs,
desc="Embedding 🦖",
unit="docs",
total=total_docs,
@@ -69,7 +69,7 @@ def embed_and_store_documents(docs, folder_name, source_id, task_status):
):
try:
# Update task status for progress tracking
progress = int(((idx + 1) / total_docs) * 100)
progress = int((idx / total_docs) * 100)
task_status.update_state(state="PROGRESS", meta={"current": progress})
# Add document to vector store

View File

@@ -13,7 +13,6 @@ from application.parser.file.rst_parser import RstParser
from application.parser.file.tabular_parser import PandasCSVParser,ExcelParser
from application.parser.file.json_parser import JSONParser
from application.parser.file.pptx_parser import PPTXParser
from application.parser.file.image_parser import ImageParser
from application.parser.schema.base import Document
DEFAULT_FILE_EXTRACTOR: Dict[str, BaseParser] = {
@@ -28,9 +27,6 @@ DEFAULT_FILE_EXTRACTOR: Dict[str, BaseParser] = {
".mdx": MarkdownParser(),
".json":JSONParser(),
".pptx":PPTXParser(),
".png": ImageParser(),
".jpg": ImageParser(),
".jpeg": ImageParser(),
}

View File

@@ -7,8 +7,7 @@ from pathlib import Path
from typing import Dict
from application.parser.file.base_parser import BaseParser
from application.core.settings import settings
import requests
class PDFParser(BaseParser):
"""PDF parser."""
@@ -19,15 +18,6 @@ class PDFParser(BaseParser):
def parse_file(self, file: Path, errors: str = "ignore") -> str:
"""Parse file."""
if settings.PARSE_PDF_AS_IMAGE:
doc2md_service = "https://llm.arc53.com/doc2md"
# alternatively you can use local vision capable LLM
with open(file, "rb") as file_loaded:
files = {'file': file_loaded}
response = requests.post(doc2md_service, files=files)
data = response.json()["markdown"]
return data
try:
import PyPDF2
except ImportError:

View File

@@ -1,27 +0,0 @@
"""Image parser.
Contains parser for .png, .jpg, .jpeg files.
"""
from pathlib import Path
import requests
from typing import Dict, Union
from application.parser.file.base_parser import BaseParser
class ImageParser(BaseParser):
"""Image parser."""
def _init_parser(self) -> Dict:
"""Init parser."""
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, list[str]]:
doc2md_service = "https://llm.arc53.com/doc2md"
# alternatively you can use local vision capable LLM
with open(file, "rb") as file_loaded:
files = {'file': file_loaded}
response = requests.post(doc2md_service, files=files)
data = response.json()["markdown"]
return data

View File

@@ -91,25 +91,6 @@ class RstParser(BaseParser):
]
return rst_tups
def chunk_by_token_count(self, text: str, max_tokens: int = 100) -> List[str]:
"""Chunk text by token count."""
avg_token_length = 5
chunk_size = max_tokens * avg_token_length
chunks = []
for i in range(0, len(text), chunk_size):
chunk = text[i:i+chunk_size]
if i + chunk_size < len(text):
last_space = chunk.rfind(' ')
if last_space != -1:
chunk = chunk[:last_space]
chunks.append(chunk.strip())
return chunks
def remove_images(self, content: str) -> str:
pattern = r"\.\. image:: (.*)"
content = re.sub(pattern, "", content)
@@ -155,7 +136,7 @@ class RstParser(BaseParser):
return {}
def parse_tups(
self, filepath: Path, errors: str = "ignore",max_tokens: Optional[int] = 1000
self, filepath: Path, errors: str = "ignore"
) -> List[Tuple[Optional[str], str]]:
"""Parse file into tuples."""
with open(filepath, "r") as f:
@@ -175,15 +156,6 @@ class RstParser(BaseParser):
rst_tups = self.remove_whitespaces_excess(rst_tups)
if self._remove_characters_excess:
rst_tups = self.remove_characters_excess(rst_tups)
# Apply chunking if max_tokens is provided
if max_tokens is not None:
chunked_tups = []
for header, text in rst_tups:
chunks = self.chunk_by_token_count(text, max_tokens)
for idx, chunk in enumerate(chunks):
chunked_tups.append((f"{header} - Chunk {idx + 1}", chunk))
return chunked_tups
return rst_tups
def parse_file(

View File

@@ -0,0 +1,94 @@
from typing import List, Tuple, Union, Optional
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
import torch
import torch.nn as nn
from application.parser.schema.base import Document
class LateChunker:
def __init__(self, model_name: str, late_tokens: int = 1000, **model_kwargs):
"""
Initialize the LateChunker with a model, tokenizer, and late_tokens limit.
Supports both transformers and sentence-transformers models.
"""
self.late_tokens = late_tokens
self.model_name = model_name
# Load model based on type
if "sentence-transformers" in model_name:
self.model = SentenceTransformer(model_name, **model_kwargs)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.wrapper_type = "sentence_transformers"
else:
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True, **model_kwargs)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.wrapper_type = "transformers"
def tokenize_with_offsets(self, text: str):
"""Tokenize text and return tokens with character offsets."""
tokens = self.tokenizer.encode_plus(
text, return_offsets_mapping=True, add_special_tokens=False
)
return tokens["input_ids"], tokens["offset_mapping"]
def late_chunk_with_embeddings(
self, documents: List[Document]
) -> List[Tuple[str, List[Tuple[int, int]], List[float]]]:
"""
Combines documents into 'super chunks' that fit within `late_tokens` limit.
Outputs each super chunk with span annotations and embeddings.
"""
super_chunks = []
current_super_chunk_text = []
current_token_count = 0
span_annotations = []
for doc in documents:
doc_text = doc.text
input_ids, offsets = self.tokenize_with_offsets(doc_text)
doc_token_count = len(input_ids)
# Check if adding this document exceeds the late_tokens limit
if current_token_count + doc_token_count > self.late_tokens:
# Finalize the current super chunk
combined_text = " ".join(current_super_chunk_text)
embeddings = self.generate_embeddings(combined_text)
super_chunks.append((combined_text, span_annotations, embeddings))
# Reset for a new super chunk
current_super_chunk_text = []
span_annotations = []
current_token_count = 0
# Add document to the current super chunk
start_token = current_token_count
end_token = current_token_count + doc_token_count
span_annotations.append((start_token, end_token))
current_super_chunk_text.append(doc_text)
current_token_count = end_token
# Add the final super chunk if there are remaining documents
if current_super_chunk_text:
combined_text = " ".join(current_super_chunk_text)
embeddings = self.generate_embeddings(combined_text)
super_chunks.append((combined_text, span_annotations, embeddings))
return super_chunks
def generate_embeddings(self, text: str) -> List[float]:
"""Generate embeddings for a given text using the loaded model."""
if self.wrapper_type == "sentence_transformers":
# Sentence-Transformers
embeddings = self.model.encode([text])
return embeddings[0].tolist()
elif self.wrapper_type == "transformers":
# Transformers models
inputs = self.tokenizer(text, return_tensors="pt")
model_output = self.model(**inputs)
return model_output.last_hidden_state.mean(dim=1).squeeze().tolist()
else:
raise ValueError("Unsupported model type for embedding generation.")

View File

@@ -0,0 +1,75 @@
import os
from retry import retry
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_community.embeddings import HuggingFaceInstructEmbeddings
# from langchain_community.embeddings import CohereEmbeddings
@retry(tries=10, delay=60)
def store_add_texts_with_retry(store, i, id):
# add source_id to the metadata
i.metadata["source_id"] = str(id)
store.add_texts([i.page_content], metadatas=[i.metadata])
# store_pine.add_texts([i.page_content], metadatas=[i.metadata])
def call_openai_api(docs, folder_name, id, task_status):
# Function to create a vector store from the documents and save it to disk
if not os.path.exists(f"{folder_name}"):
os.makedirs(f"{folder_name}")
from tqdm import tqdm
c1 = 0
if settings.VECTOR_STORE == "faiss":
docs_init = [docs[0]]
docs.pop(0)
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
docs_init=docs_init,
source_id=f"{folder_name}",
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
else:
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
source_id=str(id),
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
store.delete_index()
# Uncomment for MPNet embeddings
# model_name = "sentence-transformers/all-mpnet-base-v2"
# hf = HuggingFaceEmbeddings(model_name=model_name)
# store = FAISS.from_documents(docs_test, hf)
s1 = len(docs)
for i in tqdm(
docs,
desc="Embedding 🦖",
unit="docs",
total=len(docs),
bar_format="{l_bar}{bar}| Time Left: {remaining}",
):
try:
task_status.update_state(
state="PROGRESS", meta={"current": int((c1 / s1) * 100)}
)
store_add_texts_with_retry(store, i, id)
except Exception as e:
print(e)
print("Error on ", i)
print("Saving progress")
print(f"stopped at {c1} out of {len(docs)}")
store.save_local(f"{folder_name}")
break
c1 += 1
if settings.VECTOR_STORE == "faiss":
store.save_local(f"{folder_name}")

View File

@@ -2,16 +2,16 @@ import requests
from urllib.parse import urlparse, urljoin
from bs4 import BeautifulSoup
from application.parser.remote.base import BaseRemote
from application.parser.schema.base import Document
from langchain_community.document_loaders import WebBaseLoader
class CrawlerLoader(BaseRemote):
def __init__(self, limit=10):
from langchain_community.document_loaders import WebBaseLoader
self.loader = WebBaseLoader # Initialize the document loader
self.limit = limit # Set the limit for the number of pages to scrape
def load_data(self, inputs):
url = inputs
# Check if the input is a list and if it is, use the first element
if isinstance(url, list) and url:
url = url[0]
@@ -19,29 +19,24 @@ class CrawlerLoader(BaseRemote):
if not urlparse(url).scheme:
url = "http://" + url
visited_urls = set()
base_url = urlparse(url).scheme + "://" + urlparse(url).hostname
urls_to_visit = [url]
loaded_content = []
visited_urls = set() # Keep track of URLs that have been visited
base_url = urlparse(url).scheme + "://" + urlparse(url).hostname # Extract the base URL
urls_to_visit = [url] # List of URLs to be visited, starting with the initial URL
loaded_content = [] # Store the loaded content from each URL
# Continue crawling until there are no more URLs to visit
while urls_to_visit:
current_url = urls_to_visit.pop(0)
visited_urls.add(current_url)
current_url = urls_to_visit.pop(0) # Get the next URL to visit
visited_urls.add(current_url) # Mark the URL as visited
# Try to load and process the content from the current URL
try:
response = requests.get(current_url)
response.raise_for_status()
loader = self.loader([current_url])
docs = loader.load()
# Convert the loaded documents to your Document schema
for doc in docs:
loaded_content.append(
Document(
doc.page_content,
extra_info=doc.metadata
)
)
response = requests.get(current_url) # Fetch the content of the current URL
response.raise_for_status() # Raise an exception for HTTP errors
loader = self.loader([current_url]) # Initialize the document loader for the current URL
loaded_content.extend(loader.load()) # Load the content and add it to the loaded_content list
except Exception as e:
# Print an error message if loading or processing fails and continue with the next URL
print(f"Error processing URL {current_url}: {e}")
continue
@@ -50,15 +45,15 @@ class CrawlerLoader(BaseRemote):
all_links = [
urljoin(current_url, a['href'])
for a in soup.find_all('a', href=True)
if base_url in urljoin(current_url, a['href'])
if base_url in urljoin(current_url, a['href']) # Ensure links are from the same domain
]
# Add new links to the list of URLs to visit if they haven't been visited yet
urls_to_visit.extend([link for link in all_links if link not in visited_urls])
urls_to_visit = list(set(urls_to_visit))
urls_to_visit = list(set(urls_to_visit)) # Remove duplicate URLs
# Stop crawling if the limit of pages to scrape is reached
if self.limit is not None and len(visited_urls) >= self.limit:
break
return loaded_content
return loaded_content # Return the loaded content from all visited URLs

View File

@@ -1,139 +0,0 @@
import requests
from urllib.parse import urlparse, urljoin
from bs4 import BeautifulSoup
from application.parser.remote.base import BaseRemote
import re
from markdownify import markdownify
from application.parser.schema.base import Document
import tldextract
class CrawlerLoader(BaseRemote):
def __init__(self, limit=10, allow_subdomains=False):
"""
Given a URL crawl web pages up to `self.limit`,
convert HTML content to Markdown, and returning a list of Document objects.
:param limit: The maximum number of pages to crawl.
:param allow_subdomains: If True, crawl pages on subdomains of the base domain.
"""
self.limit = limit
self.allow_subdomains = allow_subdomains
self.session = requests.Session()
def load_data(self, inputs):
url = inputs
if isinstance(url, list) and url:
url = url[0]
# Ensure the URL has a scheme (if not, default to http)
if not urlparse(url).scheme:
url = "http://" + url
# Keep track of visited URLs to avoid revisiting the same page
visited_urls = set()
# Determine the base domain for link filtering using tldextract
base_domain = self._get_base_domain(url)
urls_to_visit = {url}
documents = []
while urls_to_visit:
current_url = urls_to_visit.pop()
# Skip if already visited
if current_url in visited_urls:
continue
visited_urls.add(current_url)
# Fetch the page content
html_content = self._fetch_page(current_url)
if html_content is None:
continue
# Convert the HTML to Markdown for cleaner text formatting
title, language, processed_markdown = self._process_html_to_markdown(html_content, current_url)
if processed_markdown:
# Create a Document for each visited page
documents.append(
Document(
processed_markdown, # content
None, # doc_id
None, # embedding
{"source": current_url, "title": title, "language": language} # extra_info
)
)
# Extract links and filter them according to domain rules
new_links = self._extract_links(html_content, current_url)
filtered_links = self._filter_links(new_links, base_domain)
# Add any new, not-yet-visited links to the queue
urls_to_visit.update(link for link in filtered_links if link not in visited_urls)
# If we've reached the limit, stop crawling
if self.limit is not None and len(visited_urls) >= self.limit:
break
return documents
def _fetch_page(self, url):
try:
response = self.session.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching URL {url}: {e}")
return None
def _process_html_to_markdown(self, html_content, current_url):
soup = BeautifulSoup(html_content, 'html.parser')
title_tag = soup.find('title')
title = title_tag.text.strip() if title_tag else "No Title"
# Extract language
language_tag = soup.find('html')
language = language_tag.get('lang', 'en') if language_tag else "en"
markdownified = markdownify(html_content, heading_style="ATX", newline_style="BACKSLASH")
# Reduce sequences of more than two newlines to exactly three
markdownified = re.sub(r'\n{3,}', '\n\n\n', markdownified)
return title, language, markdownified
def _extract_links(self, html_content, current_url):
soup = BeautifulSoup(html_content, 'html.parser')
links = []
for a in soup.find_all('a', href=True):
full_url = urljoin(current_url, a['href'])
links.append((full_url, a.text.strip()))
return links
def _get_base_domain(self, url):
extracted = tldextract.extract(url)
# Reconstruct the domain as domain.suffix
base_domain = f"{extracted.domain}.{extracted.suffix}"
return base_domain
def _filter_links(self, links, base_domain):
"""
Filter the extracted links to only include those that match the crawling criteria:
- If allow_subdomains is True, allow any link whose domain ends with the base_domain.
- If allow_subdomains is False, only allow exact matches of the base_domain.
"""
filtered = []
for link, _ in links:
parsed_link = urlparse(link)
if not parsed_link.netloc:
continue
extracted = tldextract.extract(parsed_link.netloc)
link_base = f"{extracted.domain}.{extracted.suffix}"
if self.allow_subdomains:
# For subdomains: sub.example.com ends with example.com
if link_base == base_domain or link_base.endswith("." + base_domain):
filtered.append(link)
else:
# Exact domain match
if link_base == base_domain:
filtered.append(link)
return filtered

View File

@@ -1,7 +1,5 @@
from application.parser.remote.base import BaseRemote
from application.parser.schema.base import Document
from langchain_community.document_loaders import WebBaseLoader
from urllib.parse import urlparse
headers = {
"User-Agent": "Mozilla/5.0",
@@ -25,20 +23,10 @@ class WebLoader(BaseRemote):
urls = [urls]
documents = []
for url in urls:
# Check if the URL scheme is provided, if not, assume http
if not urlparse(url).scheme:
url = "http://" + url
try:
loader = self.loader([url], header_template=headers)
loaded_docs = loader.load()
for doc in loaded_docs:
documents.append(
Document(
doc.page_content,
extra_info=doc.metadata,
)
)
documents.extend(loader.load())
except Exception as e:
print(f"Error processing URL {url}: {e}")
continue
return documents
return documents

View File

@@ -0,0 +1,79 @@
import re
from math import ceil
from typing import List
import tiktoken
from application.parser.schema.base import Document
def separate_header_and_body(text):
header_pattern = r"^(.*?\n){3}"
match = re.match(header_pattern, text)
header = match.group(0)
body = text[len(header):]
return header, body
def group_documents(documents: List[Document], min_tokens: int, max_tokens: int) -> List[Document]:
docs = []
current_group = None
for doc in documents:
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
# Check if current group is empty or if the document can be added based on token count and matching metadata
if (current_group is None or
(len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and
doc_len < min_tokens and
current_group.extra_info == doc.extra_info)):
if current_group is None:
current_group = doc # Use the document directly to retain its metadata
else:
current_group.text += " " + doc.text # Append text to the current group
else:
docs.append(current_group)
current_group = doc # Start a new group with the current document
if current_group is not None:
docs.append(current_group)
return docs
def split_documents(documents: List[Document], max_tokens: int) -> List[Document]:
docs = []
for doc in documents:
token_length = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
if token_length <= max_tokens:
docs.append(doc)
else:
header, body = separate_header_and_body(doc.text)
if len(tiktoken.get_encoding("cl100k_base").encode(header)) > max_tokens:
body = doc.text
header = ""
num_body_parts = ceil(token_length / max_tokens)
part_length = ceil(len(body) / num_body_parts)
body_parts = [body[i:i + part_length] for i in range(0, len(body), part_length)]
for i, body_part in enumerate(body_parts):
new_doc = Document(text=header + body_part.strip(),
doc_id=f"{doc.doc_id}-{i}",
embedding=doc.embedding,
extra_info=doc.extra_info)
docs.append(new_doc)
return docs
def group_split(documents: List[Document], max_tokens: int = 2000, min_tokens: int = 150, token_check: bool = True):
if not token_check:
return documents
print("Grouping small documents")
try:
documents = group_documents(documents=documents, min_tokens=min_tokens, max_tokens=max_tokens)
except Exception:
print("Grouping failed, try running without token_check")
print("Separating large documents")
try:
documents = split_documents(documents=documents, max_tokens=max_tokens)
except Exception:
print("Grouping failed, try running without token_check")
return documents

View File

@@ -1,27 +1,25 @@
anthropic==0.40.0
boto3==1.35.97
anthropic==0.34.2
boto3==1.34.153
beautifulsoup4==4.12.3
celery==5.4.0
celery==5.3.6
dataclasses-json==0.6.7
docx2txt==0.8
duckduckgo-search==6.3.0
ebooklib==0.18
elastic-transport==8.17.0
elasticsearch==8.17.0
elastic-transport==8.15.0
elasticsearch==8.15.1
escodegen==1.0.11
esprima==4.0.1
esutils==1.0.1
Flask==3.1.0
faiss-cpu==1.9.0.post1
Flask==3.0.3
faiss-cpu==1.8.0.post1
flask-restx==1.3.0
google-genai==0.5.0
google-generativeai==0.8.3
gTTS==2.5.4
gTTS==2.3.2
gunicorn==23.0.0
html2text==2024.2.26
javalang==0.13.0
jinja2==3.1.5
jiter==0.8.2
jinja2==3.1.4
jiter==0.5.0
jmespath==1.0.1
joblib==1.4.2
jsonpatch==1.33
@@ -30,66 +28,62 @@ jsonschema==4.23.0
jsonschema-spec==0.2.4
jsonschema-specifications==2023.7.1
kombu==5.4.2
langchain==0.3.14
langchain-community==0.3.14
langchain-core==0.3.29
langchain-openai==0.3.0
langchain-text-splitters==0.3.5
langsmith==0.2.10
langchain==0.3.0
langchain-community==0.3.0
langchain-core==0.3.2
langchain-openai==0.2.0
langchain-text-splitters==0.3.0
langsmith==0.1.125
lazy-object-proxy==1.10.0
lxml==5.3.0
markupsafe==3.0.2
marshmallow==3.24.1
markupsafe==2.1.5
marshmallow==3.22.0
mpmath==1.3.0
multidict==6.1.0
mypy-extensions==1.0.0
networkx==3.4.2
numpy==2.2.1
openai==1.59.5
networkx==3.3
numpy==1.26.4
openai==1.46.1
openapi-schema-validator==0.6.2
openapi-spec-validator==0.6.0
openapi3-parser==1.1.19
orjson==3.10.14
openapi3-parser==1.1.18
orjson==3.10.7
packaging==24.1
pandas==2.2.3
openpyxl==3.1.5
pathable==0.4.4
pillow==11.1.0
pathable==0.4.3
pillow==10.4.0
portalocker==2.10.1
prance==23.6.21.0
primp==0.10.0
prompt-toolkit==3.0.48
protobuf==5.29.3
psycopg2-binary==2.9.10
primp==0.6.3
prompt-toolkit==3.0.47
protobuf==5.28.2
py==1.11.0
pydantic==2.10.4
pydantic-core==2.27.2
pydantic-settings==2.7.1
pymongo==4.10.1
pydantic==2.9.2
pydantic-core==2.23.4
pydantic-settings==2.4.0
pymongo==4.8.0
pypdf2==3.0.1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-pptx==1.0.2
qdrant-client==1.12.2
redis==5.2.1
qdrant-client==1.11.0
redis==5.0.1
referencing==0.30.2
regex==2024.11.6
regex==2024.9.11
requests==2.32.3
retry==0.9.2
sentence-transformers==3.3.1
tiktoken==0.8.0
tokenizers==0.21.0
torch==2.5.1
tqdm==4.67.1
transformers==4.48.0
sentence-transformers==3.0.1
tiktoken==0.7.0
tokenizers==0.19.1
torch==2.4.1
tqdm==4.66.5
transformers==4.44.2
typing-extensions==4.12.2
typing-inspect==0.9.0
tzdata==2024.2
urllib3==2.3.0
urllib3==2.2.3
vine==5.1.0
wcwidth==0.2.13
werkzeug==3.1.3
yarl==1.18.3
markdownify==0.14.1
tldextract==5.1.3
websockets==14.1
werkzeug==3.0.4
yarl==1.11.1

View File

@@ -2,6 +2,7 @@ import json
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import num_tokens_from_string
from langchain_community.tools import BraveSearch
@@ -71,13 +72,22 @@ class BraveRetSearch(BaseRetriever):
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 0:
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
for i in self.chat_history:
if "prompt" in i and "response" in i:
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append(
{"role": "assistant", "content": i["response"]}
tokens_batch = num_tokens_from_string(i["prompt"]) + num_tokens_from_string(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm(

View File

@@ -1,8 +1,9 @@
from application.core.settings import settings
from application.retriever.base import BaseRetriever
from application.tools.agent import Agent
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.utils import num_tokens_from_string
class ClassicRAG(BaseRetriever):
@@ -19,7 +20,7 @@ class ClassicRAG(BaseRetriever):
user_api_key=None,
):
self.question = question
self.vectorstore = source["active_docs"] if "active_docs" in source else None
self.vectorstore = source['active_docs'] if 'active_docs' in source else None
self.chat_history = chat_history
self.prompt = prompt
self.chunks = chunks
@@ -71,31 +72,34 @@ class ClassicRAG(BaseRetriever):
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 0:
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
for i in self.chat_history:
if "prompt" in i and "response" in i:
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append(
{"role": "assistant", "content": i["response"]}
tokens_batch = num_tokens_from_string(i["prompt"]) + num_tokens_from_string(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
# llm = LLMCreator.create_llm(
# settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
# )
# completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
agent = Agent(
llm_name=settings.LLM_NAME,
gpt_model=self.gpt_model,
api_key=settings.API_KEY,
user_api_key=self.user_api_key,
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
)
completion = agent.gen(messages_combine)
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
for line in completion:
yield {"answer": str(line)}
def search(self):
return self._get_data()
def get_params(self):
return {
"question": self.question,
@@ -105,5 +109,5 @@ class ClassicRAG(BaseRetriever):
"chunks": self.chunks,
"token_limit": self.token_limit,
"gpt_model": self.gpt_model,
"user_api_key": self.user_api_key,
"user_api_key": self.user_api_key
}

View File

@@ -1,6 +1,7 @@
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import num_tokens_from_string
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
@@ -88,12 +89,21 @@ class DuckDuckSearch(BaseRetriever):
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 0:
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
for i in self.chat_history:
if "prompt" in i and "response" in i:
messages_combine.append({"role": "user", "content": i["prompt"]})
if "prompt" in i and "response" in i:
tokens_batch = num_tokens_from_string(i["prompt"]) + num_tokens_from_string(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "assistant", "content": i["response"]}
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})

View File

@@ -1,160 +0,0 @@
from application.core.mongo_db import MongoDB
from application.llm.llm_creator import LLMCreator
from application.tools.llm_handler import get_llm_handler
from application.tools.tool_action_parser import ToolActionParser
from application.tools.tool_manager import ToolManager
class Agent:
def __init__(self, llm_name, gpt_model, api_key, user_api_key=None):
# Initialize the LLM with the provided parameters
self.llm = LLMCreator.create_llm(
llm_name, api_key=api_key, user_api_key=user_api_key
)
self.llm_handler = get_llm_handler(llm_name)
self.gpt_model = gpt_model
# Static tool configuration (to be replaced later)
self.tools = []
self.tool_config = {}
def _get_user_tools(self, user="local"):
mongo = MongoDB.get_client()
db = mongo["docsgpt"]
user_tools_collection = db["user_tools"]
user_tools = user_tools_collection.find({"user": user, "status": True})
user_tools = list(user_tools)
tools_by_id = {str(tool["_id"]): tool for tool in user_tools}
return tools_by_id
def _build_tool_parameters(self, action):
params = {"type": "object", "properties": {}, "required": []}
for param_type in ["query_params", "headers", "body", "parameters"]:
if param_type in action and action[param_type].get("properties"):
for k, v in action[param_type]["properties"].items():
if v.get("filled_by_llm", True):
params["properties"][k] = {
key: value
for key, value in v.items()
if key != "filled_by_llm" and key != "value"
}
params["required"].append(k)
return params
def _prepare_tools(self, tools_dict):
self.tools = [
{
"type": "function",
"function": {
"name": f"{action['name']}_{tool_id}",
"description": action["description"],
"parameters": self._build_tool_parameters(action),
},
}
for tool_id, tool in tools_dict.items()
for action in (
tool["config"]["actions"].values()
if tool["name"] == "api_tool"
else tool["actions"]
)
if action.get("active", True)
]
def _execute_tool_action(self, tools_dict, call):
parser = ToolActionParser(self.llm.__class__.__name__)
tool_id, action_name, call_args = parser.parse_args(call)
tool_data = tools_dict[tool_id]
action_data = (
tool_data["config"]["actions"][action_name]
if tool_data["name"] == "api_tool"
else next(
action
for action in tool_data["actions"]
if action["name"] == action_name
)
)
query_params, headers, body, parameters = {}, {}, {}, {}
param_types = {
"query_params": query_params,
"headers": headers,
"body": body,
"parameters": parameters,
}
for param_type, target_dict in param_types.items():
if param_type in action_data and action_data[param_type].get("properties"):
for param, details in action_data[param_type]["properties"].items():
if param not in call_args and "value" in details:
target_dict[param] = details["value"]
for param, value in call_args.items():
for param_type, target_dict in param_types.items():
if param_type in action_data and param in action_data[param_type].get(
"properties", {}
):
target_dict[param] = value
tm = ToolManager(config={})
tool = tm.load_tool(
tool_data["name"],
tool_config=(
{
"url": tool_data["config"]["actions"][action_name]["url"],
"method": tool_data["config"]["actions"][action_name]["method"],
"headers": headers,
"query_params": query_params,
}
if tool_data["name"] == "api_tool"
else tool_data["config"]
),
)
if tool_data["name"] == "api_tool":
print(
f"Executing api: {action_name} with query_params: {query_params}, headers: {headers}, body: {body}"
)
result = tool.execute_action(action_name, **body)
else:
print(f"Executing tool: {action_name} with args: {call_args}")
result = tool.execute_action(action_name, **parameters)
call_id = getattr(call, "id", None)
return result, call_id
def _simple_tool_agent(self, messages):
tools_dict = self._get_user_tools()
self._prepare_tools(tools_dict)
resp = self.llm.gen(model=self.gpt_model, messages=messages, tools=self.tools)
if isinstance(resp, str):
yield resp
return
if hasattr(resp, "message") and hasattr(resp.message, "content"):
yield resp.message.content
return
resp = self.llm_handler.handle_response(self, resp, tools_dict, messages)
if isinstance(resp, str):
yield resp
elif hasattr(resp, "message") and hasattr(resp.message, "content"):
yield resp.message.content
else:
completion = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=self.tools
)
for line in completion:
yield line
return
def gen(self, messages):
if self.llm.supports_tools():
resp = self._simple_tool_agent(messages)
for line in resp:
yield line
else:
resp = self.llm.gen_stream(model=self.gpt_model, messages=messages)
for line in resp:
yield line

View File

@@ -1,21 +0,0 @@
from abc import ABC, abstractmethod
class Tool(ABC):
@abstractmethod
def execute_action(self, action_name: str, **kwargs):
pass
@abstractmethod
def get_actions_metadata(self):
"""
Returns a list of JSON objects describing the actions supported by the tool.
"""
pass
@abstractmethod
def get_config_requirements(self):
"""
Returns a dictionary describing the configuration requirements for the tool.
"""
pass

View File

@@ -1,54 +0,0 @@
import json
import requests
from application.tools.base import Tool
class APITool(Tool):
"""
API Tool
A flexible tool for performing various API actions (e.g., sending messages, retrieving data) via custom user-specified APIs
"""
def __init__(self, config):
self.config = config
self.url = config.get("url", "")
self.method = config.get("method", "GET")
self.headers = config.get("headers", {"Content-Type": "application/json"})
self.query_params = config.get("query_params", {})
def execute_action(self, action_name, **kwargs):
return self._make_api_call(
self.url, self.method, self.headers, self.query_params, kwargs
)
def _make_api_call(self, url, method, headers, query_params, body):
if query_params:
url = f"{url}?{requests.compat.urlencode(query_params)}"
if isinstance(body, dict):
body = json.dumps(body)
try:
print(f"Making API call: {method} {url} with body: {body}")
response = requests.request(method, url, headers=headers, data=body)
response.raise_for_status()
try:
data = response.json()
except ValueError:
data = None
return {
"status_code": response.status_code,
"data": data,
"message": "API call successful.",
}
except requests.exceptions.RequestException as e:
return {
"status_code": response.status_code if response else None,
"message": f"API call failed: {str(e)}",
}
def get_actions_metadata(self):
return []
def get_config_requirements(self):
return {}

View File

@@ -1,77 +0,0 @@
import requests
from application.tools.base import Tool
class CryptoPriceTool(Tool):
"""
CryptoPrice
A tool for retrieving cryptocurrency prices using the CryptoCompare public API
"""
def __init__(self, config):
self.config = config
def execute_action(self, action_name, **kwargs):
actions = {"cryptoprice_get": self._get_price}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _get_price(self, symbol, currency):
"""
Fetches the current price of a given cryptocurrency symbol in the specified currency.
Example:
symbol = "BTC"
currency = "USD"
returns price in USD.
"""
url = f"https://min-api.cryptocompare.com/data/price?fsym={symbol.upper()}&tsyms={currency.upper()}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
# data will be like {"USD": <price>} if the call is successful
if currency.upper() in data:
return {
"status_code": response.status_code,
"price": data[currency.upper()],
"message": f"Price of {symbol.upper()} in {currency.upper()} retrieved successfully.",
}
else:
return {
"status_code": response.status_code,
"message": f"Couldn't find price for {symbol.upper()} in {currency.upper()}.",
}
else:
return {
"status_code": response.status_code,
"message": "Failed to retrieve price.",
}
def get_actions_metadata(self):
return [
{
"name": "cryptoprice_get",
"description": "Retrieve the price of a specified cryptocurrency in a given currency",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "The cryptocurrency symbol (e.g. BTC)",
},
"currency": {
"type": "string",
"description": "The currency in which you want the price (e.g. USD)",
},
},
"required": ["symbol", "currency"],
"additionalProperties": False,
},
}
]
def get_config_requirements(self):
# No specific configuration needed for this tool as it just queries a public endpoint
return {}

View File

@@ -1,163 +0,0 @@
import psycopg2
from application.tools.base import Tool
class PostgresTool(Tool):
"""
PostgreSQL Database Tool
A tool for connecting to a PostgreSQL database using a connection string,
executing SQL queries, and retrieving schema information.
"""
def __init__(self, config):
self.config = config
self.connection_string = config.get("token", "")
def execute_action(self, action_name, **kwargs):
actions = {
"postgres_execute_sql": self._execute_sql,
"postgres_get_schema": self._get_schema,
}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _execute_sql(self, sql_query):
"""
Executes an SQL query against the PostgreSQL database using a connection string.
"""
conn = None # Initialize conn to None for error handling
try:
conn = psycopg2.connect(self.connection_string)
cur = conn.cursor()
cur.execute(sql_query)
conn.commit()
if sql_query.strip().lower().startswith("select"):
column_names = [desc[0] for desc in cur.description] if cur.description else []
results = []
rows = cur.fetchall()
for row in rows:
results.append(dict(zip(column_names, row)))
response_data = {"data": results, "column_names": column_names}
else:
row_count = cur.rowcount
response_data = {"message": f"Query executed successfully, {row_count} rows affected."}
cur.close()
return {
"status_code": 200,
"message": "SQL query executed successfully.",
"response_data": response_data,
}
except psycopg2.Error as e:
error_message = f"Database error: {e}"
print(f"Database error: {e}")
return {
"status_code": 500,
"message": "Failed to execute SQL query.",
"error": error_message,
}
finally:
if conn: # Ensure connection is closed even if errors occur
conn.close()
def _get_schema(self, db_name):
"""
Retrieves the schema of the PostgreSQL database using a connection string.
"""
conn = None # Initialize conn to None for error handling
try:
conn = psycopg2.connect(self.connection_string)
cur = conn.cursor()
cur.execute("""
SELECT
table_name,
column_name,
data_type,
column_default,
is_nullable
FROM
information_schema.columns
WHERE
table_schema = 'public'
ORDER BY
table_name,
ordinal_position;
""")
schema_data = {}
for row in cur.fetchall():
table_name, column_name, data_type, column_default, is_nullable = row
if table_name not in schema_data:
schema_data[table_name] = []
schema_data[table_name].append({
"column_name": column_name,
"data_type": data_type,
"column_default": column_default,
"is_nullable": is_nullable
})
cur.close()
return {
"status_code": 200,
"message": "Database schema retrieved successfully.",
"schema": schema_data,
}
except psycopg2.Error as e:
error_message = f"Database error: {e}"
print(f"Database error: {e}")
return {
"status_code": 500,
"message": "Failed to retrieve database schema.",
"error": error_message,
}
finally:
if conn: # Ensure connection is closed even if errors occur
conn.close()
def get_actions_metadata(self):
return [
{
"name": "postgres_execute_sql",
"description": "Execute an SQL query against the PostgreSQL database and return the results. Use this tool to interact with the database, e.g., retrieve specific data or perform updates. Only SELECT queries will return data, other queries will return execution status.",
"parameters": {
"type": "object",
"properties": {
"sql_query": {
"type": "string",
"description": "The SQL query to execute.",
},
},
"required": ["sql_query"],
"additionalProperties": False,
},
},
{
"name": "postgres_get_schema",
"description": "Retrieve the schema of the PostgreSQL database, including tables and their columns. Use this to understand the database structure before executing queries. db_name is 'default' if not provided.",
"parameters": {
"type": "object",
"properties": {
"db_name": {
"type": "string",
"description": "The name of the database to retrieve the schema for.",
},
},
"required": ["db_name"],
"additionalProperties": False,
},
},
]
def get_config_requirements(self):
return {
"token": {
"type": "string",
"description": "PostgreSQL database connection string (e.g., 'postgresql://user:password@host:port/dbname')",
},
}

View File

@@ -1,86 +0,0 @@
import requests
from application.tools.base import Tool
class TelegramTool(Tool):
"""
Telegram Bot
A flexible Telegram tool for performing various actions (e.g., sending messages, images).
Requires a bot token and chat ID for configuration
"""
def __init__(self, config):
self.config = config
self.token = config.get("token", "")
def execute_action(self, action_name, **kwargs):
actions = {
"telegram_send_message": self._send_message,
"telegram_send_image": self._send_image,
}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _send_message(self, text, chat_id):
print(f"Sending message: {text}")
url = f"https://api.telegram.org/bot{self.token}/sendMessage"
payload = {"chat_id": chat_id, "text": text}
response = requests.post(url, data=payload)
return {"status_code": response.status_code, "message": "Message sent"}
def _send_image(self, image_url, chat_id):
print(f"Sending image: {image_url}")
url = f"https://api.telegram.org/bot{self.token}/sendPhoto"
payload = {"chat_id": chat_id, "photo": image_url}
response = requests.post(url, data=payload)
return {"status_code": response.status_code, "message": "Image sent"}
def get_actions_metadata(self):
return [
{
"name": "telegram_send_message",
"description": "Send a notification to Telegram chat",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "Text to send in the notification",
},
"chat_id": {
"type": "string",
"description": "Chat ID to send the notification to",
},
},
"required": ["text"],
"additionalProperties": False,
},
},
{
"name": "telegram_send_image",
"description": "Send an image to the Telegram chat",
"parameters": {
"type": "object",
"properties": {
"image_url": {
"type": "string",
"description": "URL of the image to send",
},
"chat_id": {
"type": "string",
"description": "Chat ID to send the image to",
},
},
"required": ["image_url"],
"additionalProperties": False,
},
},
]
def get_config_requirements(self):
return {
"token": {"type": "string", "description": "Bot token for authentication"},
}

View File

@@ -1,97 +0,0 @@
import json
from abc import ABC, abstractmethod
class LLMHandler(ABC):
@abstractmethod
def handle_response(self, agent, resp, tools_dict, messages, **kwargs):
pass
class OpenAILLMHandler(LLMHandler):
def handle_response(self, agent, resp, tools_dict, messages):
while resp.finish_reason == "tool_calls":
message = json.loads(resp.model_dump_json())["message"]
keys_to_remove = {"audio", "function_call", "refusal"}
filtered_data = {
k: v for k, v in message.items() if k not in keys_to_remove
}
messages.append(filtered_data)
tool_calls = resp.message.tool_calls
for call in tool_calls:
try:
tool_response, call_id = agent._execute_tool_action(
tools_dict, call
)
messages.append(
{
"role": "tool",
"content": str(tool_response),
"tool_call_id": call_id,
}
)
except Exception as e:
messages.append(
{
"role": "tool",
"content": f"Error executing tool: {str(e)}",
"tool_call_id": call_id,
}
)
resp = agent.llm.gen(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
return resp
class GoogleLLMHandler(LLMHandler):
def handle_response(self, agent, resp, tools_dict, messages):
from google.genai import types
while True:
response = agent.llm.gen(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
if response.candidates and response.candidates[0].content.parts:
tool_call_found = False
for part in response.candidates[0].content.parts:
if part.function_call:
tool_call_found = True
tool_response, call_id = agent._execute_tool_action(
tools_dict, part.function_call
)
function_response_part = types.Part.from_function_response(
name=part.function_call.name,
response={"result": tool_response},
)
messages.append(
{"role": "model", "content": [part.to_json_dict()]}
)
messages.append(
{
"role": "tool",
"content": [function_response_part.to_json_dict()],
}
)
if (
not tool_call_found
and response.candidates[0].content.parts
and response.candidates[0].content.parts[0].text
):
return response.candidates[0].content.parts[0].text
elif not tool_call_found:
return response.candidates[0].content.parts
else:
return response
def get_llm_handler(llm_type):
handlers = {
"openai": OpenAILLMHandler(),
"google": GoogleLLMHandler(),
}
return handlers.get(llm_type, OpenAILLMHandler())

View File

@@ -1,26 +0,0 @@
import json
class ToolActionParser:
def __init__(self, llm_type):
self.llm_type = llm_type
self.parsers = {
"OpenAILLM": self._parse_openai_llm,
"GoogleLLM": self._parse_google_llm,
}
def parse_args(self, call):
parser = self.parsers.get(self.llm_type, self._parse_openai_llm)
return parser(call)
def _parse_openai_llm(self, call):
call_args = json.loads(call.function.arguments)
tool_id = call.function.name.split("_")[-1]
action_name = call.function.name.rsplit("_", 1)[0]
return tool_id, action_name, call_args
def _parse_google_llm(self, call):
call_args = call.args
tool_id = call.name.split("_")[-1]
action_name = call.name.rsplit("_", 1)[0]
return tool_id, action_name, call_args

View File

@@ -1,46 +0,0 @@
import importlib
import inspect
import os
import pkgutil
from application.tools.base import Tool
class ToolManager:
def __init__(self, config):
self.config = config
self.tools = {}
self.load_tools()
def load_tools(self):
tools_dir = os.path.join(os.path.dirname(__file__), "implementations")
for finder, name, ispkg in pkgutil.iter_modules([tools_dir]):
if name == "base" or name.startswith("__"):
continue
module = importlib.import_module(
f"application.tools.implementations.{name}"
)
for member_name, obj in inspect.getmembers(module, inspect.isclass):
if issubclass(obj, Tool) and obj is not Tool:
tool_config = self.config.get(name, {})
self.tools[name] = obj(tool_config)
def load_tool(self, tool_name, tool_config):
self.config[tool_name] = tool_config
module = importlib.import_module(
f"application.tools.implementations.{tool_name}"
)
for member_name, obj in inspect.getmembers(module, inspect.isclass):
if issubclass(obj, Tool) and obj is not Tool:
return obj(tool_config)
def execute_action(self, tool_name, action_name, **kwargs):
if tool_name not in self.tools:
raise ValueError(f"Tool '{tool_name}' not loaded")
return self.tools[tool_name].execute_action(action_name, **kwargs)
def get_all_actions_metadata(self):
metadata = []
for tool in self.tools.values():
metadata.extend(tool.get_actions_metadata())
return metadata

View File

@@ -1,84 +1,29 @@
import asyncio
import websockets
import json
import base64
from io import BytesIO
import base64
from application.tts.base import BaseTTS
class ElevenlabsTTS(BaseTTS):
def __init__(self):
self.api_key = 'ELEVENLABS_API_KEY'# here you should put your api key
self.model = "eleven_flash_v2_5"
self.voice = "VOICE_ID" # this is the hash code for the voice not the name!
self.write_audio = 1
def __init__(self):
from elevenlabs.client import ElevenLabs
self.client = ElevenLabs(
api_key="ELEVENLABS_API_KEY",
)
def text_to_speech(self, text):
asyncio.run(self._text_to_speech_websocket(text))
lang = "en"
audio = self.client.generate(
text=text,
model="eleven_multilingual_v2",
voice="Brian",
)
audio_data = BytesIO()
for chunk in audio:
audio_data.write(chunk)
audio_bytes = audio_data.getvalue()
async def _text_to_speech_websocket(self, text):
uri = f"wss://api.elevenlabs.io/v1/text-to-speech/{self.voice}/stream-input?model_id={self.model}"
websocket = await websockets.connect(uri)
payload = {
"text": " ",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.8,
},
"xi_api_key": self.api_key,
}
await websocket.send(json.dumps(payload))
async def listen():
while 1:
try:
msg = await websocket.recv()
data = json.loads(msg)
if data.get("audio"):
print("audio received")
yield base64.b64decode(data["audio"])
elif data.get("isFinal"):
break
except websockets.exceptions.ConnectionClosed:
print("websocket closed")
break
listen_task = asyncio.create_task(self.stream(listen()))
await websocket.send(json.dumps({"text": text}))
# this is to signal the end of the text, either use this or flush
await websocket.send(json.dumps({"text": ""}))
await listen_task
async def stream(self, audio_stream):
if self.write_audio:
audio_bytes = BytesIO()
async for chunk in audio_stream:
if chunk:
audio_bytes.write(chunk)
with open("output_audio.mp3", "wb") as f:
f.write(audio_bytes.getvalue())
else:
async for chunk in audio_stream:
pass # depends on the streamer!
def test_elevenlabs_websocket():
"""
Tests the ElevenlabsTTS text_to_speech method with a sample prompt.
Prints out the base64-encoded result and writes it to 'output_audio.mp3'.
"""
# Instantiate your TTS class
tts = ElevenlabsTTS()
# Call the method with some sample text
tts.text_to_speech("Hello from ElevenLabs WebSocket!")
print("Saved audio to output_audio.mp3.")
if __name__ == "__main__":
test_elevenlabs_websocket()
# Encode to base64
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")
return audio_base64, lang

View File

@@ -1,7 +1,7 @@
import sys
from datetime import datetime
from application.core.mongo_db import MongoDB
from application.utils import num_tokens_from_string, num_tokens_from_object_or_list
from application.utils import num_tokens_from_string
mongo = MongoDB.get_client()
db = mongo["docsgpt"]
@@ -21,16 +21,11 @@ def update_token_usage(user_api_key, token_usage):
def gen_token_usage(func):
def wrapper(self, model, messages, stream, tools, **kwargs):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
if message["content"]:
self.token_usage["prompt_tokens"] += num_tokens_from_string(message["content"])
result = func(self, model, messages, stream, tools, **kwargs)
# check if result is a string
if isinstance(result, str):
self.token_usage["generated_tokens"] += num_tokens_from_string(result)
else:
self.token_usage["generated_tokens"] += num_tokens_from_object_or_list(result)
self.token_usage["prompt_tokens"] += num_tokens_from_string(message["content"])
result = func(self, model, messages, stream, **kwargs)
self.token_usage["generated_tokens"] += num_tokens_from_string(result)
update_token_usage(self.user_api_key, self.token_usage)
return result
@@ -38,11 +33,11 @@ def gen_token_usage(func):
def stream_token_usage(func):
def wrapper(self, model, messages, stream, tools, **kwargs):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
self.token_usage["prompt_tokens"] += num_tokens_from_string(message["content"])
batch = []
result = func(self, model, messages, stream, tools, **kwargs)
result = func(self, model, messages, stream, **kwargs)
for r in result:
batch.append(r)
yield r

View File

@@ -15,21 +15,9 @@ def get_encoding():
def num_tokens_from_string(string: str) -> int:
encoding = get_encoding()
if isinstance(string, str):
num_tokens = len(encoding.encode(string))
return num_tokens
else:
return 0
num_tokens = len(encoding.encode(string))
return num_tokens
def num_tokens_from_object_or_list(thing):
if isinstance(thing, list):
return sum([num_tokens_from_object_or_list(x) for x in thing])
elif isinstance(thing, dict):
return sum([num_tokens_from_object_or_list(x) for x in thing.values()])
elif isinstance(thing, str):
return num_tokens_from_string(thing)
else:
return 0
def count_tokens_docs(docs):
docs_content = ""
@@ -58,40 +46,3 @@ def check_required_fields(data, required_fields):
def get_hash(data):
return hashlib.md5(data.encode()).hexdigest()
def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
"""
Limits chat history based on token count.
Returns a list of messages that fit within the token limit.
"""
from application.core.settings import settings
max_token_limit = (
max_token_limit
if max_token_limit and
max_token_limit < settings.MODEL_TOKEN_LIMITS.get(
gpt_model, settings.DEFAULT_MAX_HISTORY
)
else settings.MODEL_TOKEN_LIMITS.get(
gpt_model, settings.DEFAULT_MAX_HISTORY
)
)
if not history:
return []
tokens_current_history = 0
trimmed_history = []
for message in reversed(history):
if "prompt" in message and "response" in message:
tokens_batch = num_tokens_from_string(message["prompt"]) + num_tokens_from_string(
message["response"]
)
if tokens_current_history + tokens_batch < max_token_limit:
tokens_current_history += tokens_batch
trimmed_history.insert(0, message)
else:
break
return trimmed_history

View File

@@ -12,10 +12,10 @@ from bson.objectid import ObjectId
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.parser.file.bulk import SimpleDirectoryReader
from application.parser.embedding_pipeline import embed_and_store_documents
from application.parser.open_ai_func import call_openai_api
from application.parser.remote.remote_creator import RemoteCreator
from application.parser.schema.base import Document
from application.parser.chunking import Chunker
from application.parser.token_func import group_split
from application.utils import count_tokens_docs
mongo = MongoDB.get_client()
@@ -126,6 +126,7 @@ def ingest_worker(
limit = None
exclude = True
sample = False
token_check = True
full_path = os.path.join(directory, user, name_job)
logging.info(f"Ingest file: {full_path}", extra={"user": user, "job": name_job})
@@ -152,19 +153,17 @@ def ingest_worker(
exclude_hidden=exclude,
file_metadata=metadata_from_filename,
).load_data()
chunker = Chunker(
chunking_strategy="classic_chunk",
max_tokens=MAX_TOKENS,
raw_docs = group_split(
documents=raw_docs,
min_tokens=MIN_TOKENS,
duplicate_headers=False
max_tokens=MAX_TOKENS,
token_check=token_check,
)
raw_docs = chunker.chunk(documents=raw_docs)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
id = ObjectId()
embed_and_store_documents(docs, full_path, id, self)
call_openai_api(docs, full_path, id, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
@@ -203,61 +202,52 @@ def remote_worker(
sync_frequency="never",
operation_mode="upload",
doc_id=None,
):
):
token_check = True
full_path = os.path.join(directory, user, name_job)
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state="PROGRESS", meta={"current": 1})
try:
logging.info("Initializing remote loader with type: %s", loader)
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
logging.info(
f"Remote job: {full_path}",
extra={"user": user, "job": name_job, "source_data": source_data},
)
chunker = Chunker(
chunking_strategy="classic_chunk",
max_tokens=MAX_TOKENS,
min_tokens=MIN_TOKENS,
duplicate_headers=False
)
docs = chunker.chunk(documents=raw_docs)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
tokens = count_tokens_docs(docs)
logging.info("Total tokens calculated: %d", tokens)
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
if operation_mode == "upload":
id = ObjectId()
embed_and_store_documents(docs, full_path, id, self)
elif operation_mode == "sync":
if not doc_id or not ObjectId.is_valid(doc_id):
logging.error("Invalid doc_id provided for sync operation: %s", doc_id)
raise ValueError("doc_id must be provided for sync operation.")
id = ObjectId(doc_id)
embed_and_store_documents(docs, full_path, id, self)
docs = group_split(
documents=raw_docs,
min_tokens=MIN_TOKENS,
max_tokens=MAX_TOKENS,
token_check=token_check,
)
tokens = count_tokens_docs(docs)
if operation_mode == "upload":
id = ObjectId()
call_openai_api(docs, full_path, id, self)
elif operation_mode == "sync":
if not doc_id or not ObjectId.is_valid(doc_id):
raise ValueError("doc_id must be provided for sync operation.")
id = ObjectId(doc_id)
call_openai_api(docs, full_path, id, self)
self.update_state(state="PROGRESS", meta={"current": 100})
self.update_state(state="PROGRESS", meta={"current": 100})
file_data = {
"name": name_job,
"user": user,
"tokens": tokens,
"retriever": retriever,
"id": str(id),
"type": loader,
"remote_data": source_data,
"sync_frequency": sync_frequency,
}
upload_index(full_path, file_data)
file_data = {
"name": name_job,
"user": user,
"tokens": tokens,
"retriever": retriever,
"id": str(id),
"type": loader,
"remote_data": source_data,
"sync_frequency": sync_frequency,
}
upload_index(full_path, file_data)
shutil.rmtree(full_path)
except Exception as e:
logging.error("Error in remote_worker task: %s", str(e), exc_info=True)
raise
finally:
if os.path.exists(full_path):
shutil.rmtree(full_path)
logging.info("remote_worker task completed successfully")
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
def sync(

750
docs/package-lock.json generated
View File

@@ -7,8 +7,8 @@
"license": "MIT",
"dependencies": {
"@vercel/analytics": "^1.1.1",
"docsgpt-react": "^0.4.9",
"next": "^14.2.22",
"docsgpt": "^0.4.7",
"next": "^14.2.12",
"nextra": "^2.13.2",
"nextra-theme-docs": "^2.13.2",
"react": "^18.2.0",
@@ -931,14 +931,14 @@
}
},
"node_modules/@next/env": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/env/-/env-14.2.22.tgz",
"integrity": "sha512-EQ6y1QeNQglNmNIXvwP/Bb+lf7n9WtgcWvtoFsHquVLCJUuxRs+6SfZ5EK0/EqkkLex4RrDySvKgKNN7PXip7Q=="
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/env/-/env-14.2.12.tgz",
"integrity": "sha512-3fP29GIetdwVIfIRyLKM7KrvJaqepv+6pVodEbx0P5CaMLYBtx+7eEg8JYO5L9sveJO87z9eCReceZLi0hxO1Q=="
},
"node_modules/@next/swc-darwin-arm64": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-darwin-arm64/-/swc-darwin-arm64-14.2.22.tgz",
"integrity": "sha512-HUaLiehovgnqY4TMBZJ3pDaOsTE1spIXeR10pWgdQVPYqDGQmHJBj3h3V6yC0uuo/RoY2GC0YBFRkOX3dI9WVQ==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-darwin-arm64/-/swc-darwin-arm64-14.2.12.tgz",
"integrity": "sha512-crHJ9UoinXeFbHYNok6VZqjKnd8rTd7K3Z2zpyzF1ch7vVNKmhjv/V7EHxep3ILoN8JB9AdRn/EtVVyG9AkCXw==",
"cpu": [
"arm64"
],
@@ -951,9 +951,9 @@
}
},
"node_modules/@next/swc-darwin-x64": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-darwin-x64/-/swc-darwin-x64-14.2.22.tgz",
"integrity": "sha512-ApVDANousaAGrosWvxoGdLT0uvLBUC+srqOcpXuyfglA40cP2LBFaGmBjhgpxYk5z4xmunzqQvcIgXawTzo2uQ==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-darwin-x64/-/swc-darwin-x64-14.2.12.tgz",
"integrity": "sha512-JbEaGbWq18BuNBO+lCtKfxl563Uw9oy2TodnN2ioX00u7V1uzrsSUcg3Ep9ce+P0Z9es+JmsvL2/rLphz+Frcw==",
"cpu": [
"x64"
],
@@ -966,9 +966,9 @@
}
},
"node_modules/@next/swc-linux-arm64-gnu": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-linux-arm64-gnu/-/swc-linux-arm64-gnu-14.2.22.tgz",
"integrity": "sha512-3O2J99Bk9aM+d4CGn9eEayJXHuH9QLx0BctvWyuUGtJ3/mH6lkfAPRI4FidmHMBQBB4UcvLMfNf8vF0NZT7iKw==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-linux-arm64-gnu/-/swc-linux-arm64-gnu-14.2.12.tgz",
"integrity": "sha512-qBy7OiXOqZrdp88QEl2H4fWalMGnSCrr1agT/AVDndlyw2YJQA89f3ttR/AkEIP9EkBXXeGl6cC72/EZT5r6rw==",
"cpu": [
"arm64"
],
@@ -981,9 +981,9 @@
}
},
"node_modules/@next/swc-linux-arm64-musl": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-linux-arm64-musl/-/swc-linux-arm64-musl-14.2.22.tgz",
"integrity": "sha512-H/hqfRz75yy60y5Eg7DxYfbmHMjv60Dsa6IWHzpJSz4MRkZNy5eDnEW9wyts9bkxwbOVZNPHeb3NkqanP+nGPg==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-linux-arm64-musl/-/swc-linux-arm64-musl-14.2.12.tgz",
"integrity": "sha512-EfD9L7o9biaQxjwP1uWXnk3vYZi64NVcKUN83hpVkKocB7ogJfyH2r7o1pPnMtir6gHZiGCeHKagJ0yrNSLNHw==",
"cpu": [
"arm64"
],
@@ -996,9 +996,9 @@
}
},
"node_modules/@next/swc-linux-x64-gnu": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-linux-x64-gnu/-/swc-linux-x64-gnu-14.2.22.tgz",
"integrity": "sha512-LckLwlCLcGR1hlI5eiJymR8zSHPsuruuwaZ3H2uudr25+Dpzo6cRFjp/3OR5UYJt8LSwlXv9mmY4oI2QynwpqQ==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-linux-x64-gnu/-/swc-linux-x64-gnu-14.2.12.tgz",
"integrity": "sha512-iQ+n2pxklJew9IpE47hE/VgjmljlHqtcD5UhZVeHICTPbLyrgPehaKf2wLRNjYH75udroBNCgrSSVSVpAbNoYw==",
"cpu": [
"x64"
],
@@ -1011,9 +1011,9 @@
}
},
"node_modules/@next/swc-linux-x64-musl": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-linux-x64-musl/-/swc-linux-x64-musl-14.2.22.tgz",
"integrity": "sha512-qGUutzmh0PoFU0fCSu0XYpOfT7ydBZgDfcETIeft46abPqP+dmePhwRGLhFKwZWxNWQCPprH26TjaTxM0Nv8mw==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-linux-x64-musl/-/swc-linux-x64-musl-14.2.12.tgz",
"integrity": "sha512-rFkUkNwcQ0ODn7cxvcVdpHlcOpYxMeyMfkJuzaT74xjAa5v4fxP4xDk5OoYmPi8QNLDs3UgZPMSBmpBuv9zKWA==",
"cpu": [
"x64"
],
@@ -1026,9 +1026,9 @@
}
},
"node_modules/@next/swc-win32-arm64-msvc": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-win32-arm64-msvc/-/swc-win32-arm64-msvc-14.2.22.tgz",
"integrity": "sha512-K6MwucMWmIvMb9GlvT0haYsfIPxfQD8yXqxwFy4uLFMeXIb2TcVYQimxkaFZv86I7sn1NOZnpOaVk5eaxThGIw==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-win32-arm64-msvc/-/swc-win32-arm64-msvc-14.2.12.tgz",
"integrity": "sha512-PQFYUvwtHs/u0K85SG4sAdDXYIPXpETf9mcEjWc0R4JmjgMKSDwIU/qfZdavtP6MPNiMjuKGXHCtyhR/M5zo8g==",
"cpu": [
"arm64"
],
@@ -1041,9 +1041,9 @@
}
},
"node_modules/@next/swc-win32-ia32-msvc": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-win32-ia32-msvc/-/swc-win32-ia32-msvc-14.2.22.tgz",
"integrity": "sha512-5IhDDTPEbzPR31ZzqHe90LnNe7BlJUZvC4sA1thPJV6oN5WmtWjZ0bOYfNsyZx00FJt7gggNs6SrsX0UEIcIpA==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-win32-ia32-msvc/-/swc-win32-ia32-msvc-14.2.12.tgz",
"integrity": "sha512-FAj2hMlcbeCV546eU2tEv41dcJb4NeqFlSXU/xL/0ehXywHnNpaYajOUvn3P8wru5WyQe6cTZ8fvckj/2XN4Vw==",
"cpu": [
"ia32"
],
@@ -1056,9 +1056,9 @@
}
},
"node_modules/@next/swc-win32-x64-msvc": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/@next/swc-win32-x64-msvc/-/swc-win32-x64-msvc-14.2.22.tgz",
"integrity": "sha512-nvRaB1PyG4scn9/qNzlkwEwLzuoPH3Gjp7Q/pLuwUgOTt1oPMlnCI3A3rgkt+eZnU71emOiEv/mR201HoURPGg==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/@next/swc-win32-x64-msvc/-/swc-win32-x64-msvc-14.2.12.tgz",
"integrity": "sha512-yu8QvV53sBzoIVRHsxCHqeuS8jYq6Lrmdh0briivuh+Brsp6xjg80MAozUsBTAV9KNmY08KlX0KYTWz1lbPzEg==",
"cpu": [
"x64"
],
@@ -1170,407 +1170,6 @@
"node": ">=8"
}
},
"node_modules/@parcel/core": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/core/-/core-2.13.2.tgz",
"integrity": "sha512-1zC5Au4z9or5XyP6ipfvJqHktuB0jD7WuxMcV1CWAZGARHKylLe+0ccl+Wx7HN5O+xAvfCDtTlKrATY8qyrIyw==",
"peer": true,
"dependencies": {
"@mischnic/json-sourcemap": "^0.1.0",
"@parcel/cache": "2.13.2",
"@parcel/diagnostic": "2.13.2",
"@parcel/events": "2.13.2",
"@parcel/feature-flags": "2.13.2",
"@parcel/fs": "2.13.2",
"@parcel/graph": "3.3.2",
"@parcel/logger": "2.13.2",
"@parcel/package-manager": "2.13.2",
"@parcel/plugin": "2.13.2",
"@parcel/profiler": "2.13.2",
"@parcel/rust": "2.13.2",
"@parcel/source-map": "^2.1.1",
"@parcel/types": "2.13.2",
"@parcel/utils": "2.13.2",
"@parcel/workers": "2.13.2",
"base-x": "^3.0.8",
"browserslist": "^4.6.6",
"clone": "^2.1.1",
"dotenv": "^16.4.5",
"dotenv-expand": "^11.0.6",
"json5": "^2.2.0",
"msgpackr": "^1.9.9",
"nullthrows": "^1.1.1",
"semver": "^7.5.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/cache": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/cache/-/cache-2.13.2.tgz",
"integrity": "sha512-Y0nWlCMWDSp1lxiPI5zCWTGD0InnVZ+IfqeyLWmROAqValYyd0QZCvnSljKJ144jWTr0jXxDveir+DVF8sAYaA==",
"peer": true,
"dependencies": {
"@parcel/fs": "2.13.2",
"@parcel/logger": "2.13.2",
"@parcel/utils": "2.13.2",
"lmdb": "2.8.5"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
},
"peerDependencies": {
"@parcel/core": "^2.13.2"
}
},
"node_modules/@parcel/core/node_modules/@parcel/codeframe": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/codeframe/-/codeframe-2.13.2.tgz",
"integrity": "sha512-qFMiS14orb6QSQj5/J/QN+gJElUfedVAKBTNkp9QB4i8ObdLHDqHRUzFb55ZQJI3G4vsxOOWAOUXGirtLwrxGQ==",
"peer": true,
"dependencies": {
"chalk": "^4.1.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/diagnostic": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/diagnostic/-/diagnostic-2.13.2.tgz",
"integrity": "sha512-6Au0JEJ5SY2gYrY0/m0i0sTuqTvK0k2E9azhBJR+zzCREbUxLiDdLZ+vXAfLW7t/kPAcWtdNU0Bj7pnZcMiMXg==",
"peer": true,
"dependencies": {
"@mischnic/json-sourcemap": "^0.1.0",
"nullthrows": "^1.1.1"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/events": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/events/-/events-2.13.2.tgz",
"integrity": "sha512-BVB9hW1RGh/tMaDHfpa+uIgz5PMULorCnjmWr/KvrlhdUSUQoaPYfRcTDYrKhoKuNIKsWSnTGvXrxE53L5qo0w==",
"peer": true,
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/fs": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/fs/-/fs-2.13.2.tgz",
"integrity": "sha512-bdeIMuAXhMnROvqV55JWRUmjD438/T7h3r3NsFnkq+Mp4z2nuAn0STxbqDNxIgTMJHNunSDzncqRNMT7xJCe8A==",
"peer": true,
"dependencies": {
"@parcel/feature-flags": "2.13.2",
"@parcel/rust": "2.13.2",
"@parcel/types-internal": "2.13.2",
"@parcel/utils": "2.13.2",
"@parcel/watcher": "^2.0.7",
"@parcel/workers": "2.13.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
},
"peerDependencies": {
"@parcel/core": "^2.13.2"
}
},
"node_modules/@parcel/core/node_modules/@parcel/logger": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/logger/-/logger-2.13.2.tgz",
"integrity": "sha512-SFVABAMqaT9jIDn4maPgaQQauPDz8fpoKUGEuLF44Q0aQFbBUy7vX7KYs/EvYSWZo4VyJcUDHvIInBlepA0/ZQ==",
"peer": true,
"dependencies": {
"@parcel/diagnostic": "2.13.2",
"@parcel/events": "2.13.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/markdown-ansi": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/markdown-ansi/-/markdown-ansi-2.13.2.tgz",
"integrity": "sha512-MIEoetfT/snk1GqWzBI3AhifV257i2xke9dvyQl14PPiMl+TlVhwnbQyA09WJBvDor+MuxZypHL7xoFdW8ff3A==",
"peer": true,
"dependencies": {
"chalk": "^4.1.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/node-resolver-core": {
"version": "3.4.2",
"resolved": "https://registry.npmjs.org/@parcel/node-resolver-core/-/node-resolver-core-3.4.2.tgz",
"integrity": "sha512-SwnKLcZRG1VdB5JeM/Ax5VMWWh2QfXufmMQCKKx0/Kk41nUpie+aIZKj3LH6Z/fJsnKig/vXpeWoxGhmG523qg==",
"peer": true,
"dependencies": {
"@mischnic/json-sourcemap": "^0.1.0",
"@parcel/diagnostic": "2.13.2",
"@parcel/fs": "2.13.2",
"@parcel/rust": "2.13.2",
"@parcel/utils": "2.13.2",
"nullthrows": "^1.1.1",
"semver": "^7.5.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/package-manager": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/package-manager/-/package-manager-2.13.2.tgz",
"integrity": "sha512-6HjfbdJUjHyNKzYB7GSYnOCtLwqCGW7yT95GlnnTKyFffvXYsqvBSyepMuPRlbX0mFUm4S9l2DH3OVZrk108AA==",
"peer": true,
"dependencies": {
"@parcel/diagnostic": "2.13.2",
"@parcel/fs": "2.13.2",
"@parcel/logger": "2.13.2",
"@parcel/node-resolver-core": "3.4.2",
"@parcel/types": "2.13.2",
"@parcel/utils": "2.13.2",
"@parcel/workers": "2.13.2",
"@swc/core": "^1.7.26",
"semver": "^7.5.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
},
"peerDependencies": {
"@parcel/core": "^2.13.2"
}
},
"node_modules/@parcel/core/node_modules/@parcel/plugin": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/plugin/-/plugin-2.13.2.tgz",
"integrity": "sha512-Q+RIENS1B185yLPhrGdzBK1oJrZmh/RXrYMnzJs78Tog8SpihjeNBNR6z4PT85o2F+Gy2y1S9A26fpiGq161qQ==",
"peer": true,
"dependencies": {
"@parcel/types": "2.13.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/profiler": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/profiler/-/profiler-2.13.2.tgz",
"integrity": "sha512-fur6Oq2HkX6AiM8rtqmDvldH5JWz0sqXA1ylz8cE3XOiDZIuvCulZmQ+hH+4odaNH6QocI1MwfV+GDh3HlQoCA==",
"peer": true,
"dependencies": {
"@parcel/diagnostic": "2.13.2",
"@parcel/events": "2.13.2",
"@parcel/types-internal": "2.13.2",
"chrome-trace-event": "^1.0.2"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/rust": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/rust/-/rust-2.13.2.tgz",
"integrity": "sha512-XFIewSwxkrDYOnnSP/XZ1LDLdXTs7L9CjQUWtl46Vir5Pq/rinemwLJeKGIwKLHy7fhUZQjYxquH6fBL+AY8DA==",
"peer": true,
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/types": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/types/-/types-2.13.2.tgz",
"integrity": "sha512-6ixqjk2pjKELn4sQ/jdvpbCVTeH6xXQTdotkN8Wzk68F2K2MtSPIRAEocumlexScfffbRQplr2MdIf1JJWLogA==",
"peer": true,
"dependencies": {
"@parcel/types-internal": "2.13.2",
"@parcel/workers": "2.13.2"
}
},
"node_modules/@parcel/core/node_modules/@parcel/utils": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/utils/-/utils-2.13.2.tgz",
"integrity": "sha512-BkFtRo5xenmonwnBy+X4sVbHIRrx+ZHMPpS/6hFqyTvoUUFq2yTFQnfRGVVOOvscVUxpGom+kewnrTG3HHbZoA==",
"peer": true,
"dependencies": {
"@parcel/codeframe": "2.13.2",
"@parcel/diagnostic": "2.13.2",
"@parcel/logger": "2.13.2",
"@parcel/markdown-ansi": "2.13.2",
"@parcel/rust": "2.13.2",
"@parcel/source-map": "^2.1.1",
"chalk": "^4.1.2",
"nullthrows": "^1.1.1"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/core/node_modules/@parcel/workers": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/workers/-/workers-2.13.2.tgz",
"integrity": "sha512-P78BpH0yTT9KK09wgK4eabtlb5OlcWAmZebOToN5UYuwWEylKt0gWZx1+d+LPQupvK84/iZ+AutDScsATjgUMw==",
"peer": true,
"dependencies": {
"@parcel/diagnostic": "2.13.2",
"@parcel/logger": "2.13.2",
"@parcel/profiler": "2.13.2",
"@parcel/types-internal": "2.13.2",
"@parcel/utils": "2.13.2",
"nullthrows": "^1.1.1"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
},
"peerDependencies": {
"@parcel/core": "^2.13.2"
}
},
"node_modules/@parcel/core/node_modules/ansi-styles": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
"peer": true,
"dependencies": {
"color-convert": "^2.0.1"
},
"engines": {
"node": ">=8"
},
"funding": {
"url": "https://github.com/chalk/ansi-styles?sponsor=1"
}
},
"node_modules/@parcel/core/node_modules/chalk": {
"version": "4.1.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
"peer": true,
"dependencies": {
"ansi-styles": "^4.1.0",
"supports-color": "^7.1.0"
},
"engines": {
"node": ">=10"
},
"funding": {
"url": "https://github.com/chalk/chalk?sponsor=1"
}
},
"node_modules/@parcel/core/node_modules/color-convert": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"peer": true,
"dependencies": {
"color-name": "~1.1.4"
},
"engines": {
"node": ">=7.0.0"
}
},
"node_modules/@parcel/core/node_modules/color-name": {
"version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"peer": true
},
"node_modules/@parcel/core/node_modules/has-flag": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"peer": true,
"engines": {
"node": ">=8"
}
},
"node_modules/@parcel/core/node_modules/semver": {
"version": "7.6.3",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz",
"integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==",
"peer": true,
"bin": {
"semver": "bin/semver.js"
},
"engines": {
"node": ">=10"
}
},
"node_modules/@parcel/core/node_modules/supports-color": {
"version": "7.2.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"peer": true,
"dependencies": {
"has-flag": "^4.0.0"
},
"engines": {
"node": ">=8"
}
},
"node_modules/@parcel/diagnostic": {
"version": "2.12.0",
"resolved": "https://registry.npmjs.org/@parcel/diagnostic/-/diagnostic-2.12.0.tgz",
@@ -1599,19 +1198,6 @@
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/feature-flags": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/feature-flags/-/feature-flags-2.13.2.tgz",
"integrity": "sha512-cCwDAKD4Er24EkuQ+loVZXSURpM0gAGRsLJVoBtFiCSbB3nmIJJ6FLRwSBI/5OsOUExiUXDvSpfUCA5ldGTzbw==",
"peer": true,
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/fs": {
"version": "2.12.0",
"resolved": "https://registry.npmjs.org/@parcel/fs/-/fs-2.12.0.tgz",
@@ -1634,23 +1220,6 @@
"@parcel/core": "^2.12.0"
}
},
"node_modules/@parcel/graph": {
"version": "3.3.2",
"resolved": "https://registry.npmjs.org/@parcel/graph/-/graph-3.3.2.tgz",
"integrity": "sha512-aAysQLRr8SOonSHWqdKHMJzfcrDFXKK8IYZEurlOzosiSgZXrAK7q8b8JcaJ4r84/jlvQYNYneNZeFQxKjHXkA==",
"peer": true,
"dependencies": {
"@parcel/feature-flags": "2.13.2",
"nullthrows": "^1.1.1"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/logger": {
"version": "2.12.0",
"resolved": "https://registry.npmjs.org/@parcel/logger/-/logger-2.12.0.tgz",
@@ -2000,35 +1569,6 @@
"utility-types": "^3.10.0"
}
},
"node_modules/@parcel/types-internal": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/types-internal/-/types-internal-2.13.2.tgz",
"integrity": "sha512-j0zb3WNM8O/+d8CArll7/4w4AyBED3Jbo32/unz89EPVN0VklmgBrRCAI5QXDKuJAGdAZSL5/a8bNYbwl7/Wxw==",
"peer": true,
"dependencies": {
"@parcel/diagnostic": "2.13.2",
"@parcel/feature-flags": "2.13.2",
"@parcel/source-map": "^2.1.1",
"utility-types": "^3.10.0"
}
},
"node_modules/@parcel/types-internal/node_modules/@parcel/diagnostic": {
"version": "2.13.2",
"resolved": "https://registry.npmjs.org/@parcel/diagnostic/-/diagnostic-2.13.2.tgz",
"integrity": "sha512-6Au0JEJ5SY2gYrY0/m0i0sTuqTvK0k2E9azhBJR+zzCREbUxLiDdLZ+vXAfLW7t/kPAcWtdNU0Bj7pnZcMiMXg==",
"peer": true,
"dependencies": {
"@mischnic/json-sourcemap": "^0.1.0",
"nullthrows": "^1.1.1"
},
"engines": {
"node": ">= 16.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/parcel"
}
},
"node_modules/@parcel/utils": {
"version": "2.12.0",
"resolved": "https://registry.npmjs.org/@parcel/utils/-/utils-2.12.0.tgz",
@@ -2739,13 +2279,13 @@
}
},
"node_modules/@swc/core": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core/-/core-1.10.1.tgz",
"integrity": "sha512-rQ4dS6GAdmtzKiCRt3LFVxl37FaY1cgL9kSUTnhQ2xc3fmHOd7jdJK/V4pSZMG1ruGTd0bsi34O2R0Olg9Zo/w==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core/-/core-1.4.5.tgz",
"integrity": "sha512-4/JGkG4b1Z/QwCGgx+Ub46MlzrsZvBk5JSkxm9PcZ4bSX81c+4Y94Xm3iLp5Ka8NxzS5rD4mJSpcYuN3Tw0ceg==",
"hasInstallScript": true,
"dependencies": {
"@swc/counter": "^0.1.3",
"@swc/types": "^0.1.17"
"@swc/counter": "^0.1.2",
"@swc/types": "^0.1.5"
},
"engines": {
"node": ">=10"
@@ -2755,19 +2295,19 @@
"url": "https://opencollective.com/swc"
},
"optionalDependencies": {
"@swc/core-darwin-arm64": "1.10.1",
"@swc/core-darwin-x64": "1.10.1",
"@swc/core-linux-arm-gnueabihf": "1.10.1",
"@swc/core-linux-arm64-gnu": "1.10.1",
"@swc/core-linux-arm64-musl": "1.10.1",
"@swc/core-linux-x64-gnu": "1.10.1",
"@swc/core-linux-x64-musl": "1.10.1",
"@swc/core-win32-arm64-msvc": "1.10.1",
"@swc/core-win32-ia32-msvc": "1.10.1",
"@swc/core-win32-x64-msvc": "1.10.1"
"@swc/core-darwin-arm64": "1.4.5",
"@swc/core-darwin-x64": "1.4.5",
"@swc/core-linux-arm-gnueabihf": "1.4.5",
"@swc/core-linux-arm64-gnu": "1.4.5",
"@swc/core-linux-arm64-musl": "1.4.5",
"@swc/core-linux-x64-gnu": "1.4.5",
"@swc/core-linux-x64-musl": "1.4.5",
"@swc/core-win32-arm64-msvc": "1.4.5",
"@swc/core-win32-ia32-msvc": "1.4.5",
"@swc/core-win32-x64-msvc": "1.4.5"
},
"peerDependencies": {
"@swc/helpers": "*"
"@swc/helpers": "^0.5.0"
},
"peerDependenciesMeta": {
"@swc/helpers": {
@@ -2776,9 +2316,9 @@
}
},
"node_modules/@swc/core-darwin-arm64": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-darwin-arm64/-/core-darwin-arm64-1.10.1.tgz",
"integrity": "sha512-NyELPp8EsVZtxH/mEqvzSyWpfPJ1lugpTQcSlMduZLj1EASLO4sC8wt8hmL1aizRlsbjCX+r0PyL+l0xQ64/6Q==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-darwin-arm64/-/core-darwin-arm64-1.4.5.tgz",
"integrity": "sha512-toMSkbByHNfGXESyY1aiq5L3KutgijrNWB/THgdHIA1aIbwtrgMdFQfxpSE+INuuvWYi/Fxarv86EnU7ewbI0Q==",
"cpu": [
"arm64"
],
@@ -2791,9 +2331,9 @@
}
},
"node_modules/@swc/core-darwin-x64": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-darwin-x64/-/core-darwin-x64-1.10.1.tgz",
"integrity": "sha512-L4BNt1fdQ5ZZhAk5qoDfUnXRabDOXKnXBxMDJ+PWLSxOGBbWE6aJTnu4zbGjJvtot0KM46m2LPAPY8ttknqaZA==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-darwin-x64/-/core-darwin-x64-1.4.5.tgz",
"integrity": "sha512-LN8cbnmb4Gav8UcbBc+L/DEthmzCWZz22rQr6fIEHMN+f0d71fuKnV0ca0hoKbpZn33dlzUmXQE53HRjlRUQbw==",
"cpu": [
"x64"
],
@@ -2806,9 +2346,9 @@
}
},
"node_modules/@swc/core-linux-arm-gnueabihf": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-linux-arm-gnueabihf/-/core-linux-arm-gnueabihf-1.10.1.tgz",
"integrity": "sha512-Y1u9OqCHgvVp2tYQAJ7hcU9qO5brDMIrA5R31rwWQIAKDkJKtv3IlTHF0hrbWk1wPR0ZdngkQSJZple7G+Grvw==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-linux-arm-gnueabihf/-/core-linux-arm-gnueabihf-1.4.5.tgz",
"integrity": "sha512-suRFkhBWmOQxlM4frpos1uqjmHfaEI8FuJ0LL5+yRE7IunNDeQJBKujGZt6taeuxo1KqC0N0Ajr8IluN2wrKpA==",
"cpu": [
"arm"
],
@@ -2821,9 +2361,9 @@
}
},
"node_modules/@swc/core-linux-arm64-gnu": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-linux-arm64-gnu/-/core-linux-arm64-gnu-1.10.1.tgz",
"integrity": "sha512-tNQHO/UKdtnqjc7o04iRXng1wTUXPgVd8Y6LI4qIbHVoVPwksZydISjMcilKNLKIwOoUQAkxyJ16SlOAeADzhQ==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-linux-arm64-gnu/-/core-linux-arm64-gnu-1.4.5.tgz",
"integrity": "sha512-mLKxasQArDGmR6k9c0tkPVUdoo8VfUecocMG1Mx9NYvpidJNaZ3xq9nYM77v7uq1fQqrs/59DM1fJTNRWvv/UQ==",
"cpu": [
"arm64"
],
@@ -2836,9 +2376,9 @@
}
},
"node_modules/@swc/core-linux-arm64-musl": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-linux-arm64-musl/-/core-linux-arm64-musl-1.10.1.tgz",
"integrity": "sha512-x0L2Pd9weQ6n8dI1z1Isq00VHFvpBClwQJvrt3NHzmR+1wCT/gcYl1tp9P5xHh3ldM8Cn4UjWCw+7PaUgg8FcQ==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-linux-arm64-musl/-/core-linux-arm64-musl-1.4.5.tgz",
"integrity": "sha512-pgKuyRP7S29U/HMDTx+x8dFcklWxwB9cHFNCNWSE6bS4vHR93jc4quwPX9OEQX5CVHxm+c8+xof043I4OGkAXw==",
"cpu": [
"arm64"
],
@@ -2851,9 +2391,9 @@
}
},
"node_modules/@swc/core-linux-x64-gnu": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-linux-x64-gnu/-/core-linux-x64-gnu-1.10.1.tgz",
"integrity": "sha512-yyYEwQcObV3AUsC79rSzN9z6kiWxKAVJ6Ntwq2N9YoZqSPYph+4/Am5fM1xEQYf/kb99csj0FgOelomJSobxQA==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-linux-x64-gnu/-/core-linux-x64-gnu-1.4.5.tgz",
"integrity": "sha512-srR+YN86Oerzoghd0DPCzTbTp08feeJPSr9kkNdmtQWENOa4l/9cJV3+XY6vviw0sEjezPmYnc3SwRxJRaxvEw==",
"cpu": [
"x64"
],
@@ -2866,9 +2406,9 @@
}
},
"node_modules/@swc/core-linux-x64-musl": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-linux-x64-musl/-/core-linux-x64-musl-1.10.1.tgz",
"integrity": "sha512-tcaS43Ydd7Fk7sW5ROpaf2Kq1zR+sI5K0RM+0qYLYYurvsJruj3GhBCaiN3gkzd8m/8wkqNqtVklWaQYSDsyqA==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-linux-x64-musl/-/core-linux-x64-musl-1.4.5.tgz",
"integrity": "sha512-aSf41LZtDeG5VXI4RCnzcu0UInPyNm3ip8Kw+sCK+sSqW9o7DgBkyqqbip3RZq84fNUHBQQQQdKXetltsyRRqw==",
"cpu": [
"x64"
],
@@ -2881,9 +2421,9 @@
}
},
"node_modules/@swc/core-win32-arm64-msvc": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-win32-arm64-msvc/-/core-win32-arm64-msvc-1.10.1.tgz",
"integrity": "sha512-D3Qo1voA7AkbOzQ2UGuKNHfYGKL6eejN8VWOoQYtGHHQi1p5KK/Q7V1ku55oxXBsj79Ny5FRMqiRJpVGad7bjQ==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-win32-arm64-msvc/-/core-win32-arm64-msvc-1.4.5.tgz",
"integrity": "sha512-vU3k8JwRUlTkJMfJQY9E4VvLrsIFOpfhnvbuXB84Amo1cJsz+bYQcC6RSvY7qpaDzDKFdUGbJco4uZTRoRf7Mg==",
"cpu": [
"arm64"
],
@@ -2896,9 +2436,9 @@
}
},
"node_modules/@swc/core-win32-ia32-msvc": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-win32-ia32-msvc/-/core-win32-ia32-msvc-1.10.1.tgz",
"integrity": "sha512-WalYdFoU3454Og+sDKHM1MrjvxUGwA2oralknXkXL8S0I/8RkWZOB++p3pLaGbTvOO++T+6znFbQdR8KRaa7DA==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-win32-ia32-msvc/-/core-win32-ia32-msvc-1.4.5.tgz",
"integrity": "sha512-856YRh3frRK2XbrSjDOFBgoAqWJLNRkaEtfGzXfeEoyJlOz0BFsSJHxKlHAFkxRfHe2li9DJRUQFTEhXn4OUWw==",
"cpu": [
"ia32"
],
@@ -2911,9 +2451,9 @@
}
},
"node_modules/@swc/core-win32-x64-msvc": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@swc/core-win32-x64-msvc/-/core-win32-x64-msvc-1.10.1.tgz",
"integrity": "sha512-JWobfQDbTnoqaIwPKQ3DVSywihVXlQMbDuwik/dDWlj33A8oEHcjPOGs4OqcA3RHv24i+lfCQpM3Mn4FAMfacA==",
"version": "1.4.5",
"resolved": "https://registry.npmjs.org/@swc/core-win32-x64-msvc/-/core-win32-x64-msvc-1.4.5.tgz",
"integrity": "sha512-j1+kV7jmWY1+NbXAvxAEW165781yLXVZKLcoXIZKmw18EatqMF6w8acg1gDG8C+Iw5aWLkRZVS4pijSh7+DtCQ==",
"cpu": [
"x64"
],
@@ -2940,12 +2480,9 @@
}
},
"node_modules/@swc/types": {
"version": "0.1.17",
"resolved": "https://registry.npmjs.org/@swc/types/-/types-0.1.17.tgz",
"integrity": "sha512-V5gRru+aD8YVyCOMAjMpWR1Ui577DD5KSJsHP8RAxopAH22jFz6GZd/qxqjO6MJHQhcsjvjOFXyDhyLQUnMveQ==",
"dependencies": {
"@swc/counter": "^0.1.3"
}
"version": "0.1.5",
"resolved": "https://registry.npmjs.org/@swc/types/-/types-0.1.5.tgz",
"integrity": "sha512-myfUej5naTBWnqOCc/MdVOLVjXUXtIA+NpDrDBKJtLLg2shUjBu3cZmB/85RyitKc55+lUUyl7oRfLOvkr2hsw=="
},
"node_modules/@theguild/remark-mermaid": {
"version": "0.0.5",
@@ -3186,15 +2723,6 @@
"url": "https://github.com/sponsors/wooorm"
}
},
"node_modules/base-x": {
"version": "3.0.10",
"resolved": "https://registry.npmjs.org/base-x/-/base-x-3.0.10.tgz",
"integrity": "sha512-7d0s06rR9rYaIWHkpfLIFICM/tkSVdoPC9qYAQRpxn9DdKNWNsKC0uk++akckyLq16Tx2WIinnZ6WRriAt6njQ==",
"peer": true,
"dependencies": {
"safe-buffer": "^5.0.1"
}
},
"node_modules/boolbase": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/boolbase/-/boolbase-1.0.0.tgz",
@@ -3409,15 +2937,6 @@
"node": ">=4"
}
},
"node_modules/clone": {
"version": "2.1.2",
"resolved": "https://registry.npmjs.org/clone/-/clone-2.1.2.tgz",
"integrity": "sha512-3Pe/CF1Nn94hyhIYpjtiLhdCoEoz0DqQ+988E9gmeEdQZlojxnOb74wctFyuwWQHzqyf9X7C7MG8juUpqBJT8w==",
"peer": true,
"engines": {
"node": ">=0.8"
}
},
"node_modules/clsx": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/clsx/-/clsx-2.1.0.tgz",
@@ -4056,10 +3575,11 @@
"node": ">=0.3.1"
}
},
"node_modules/docsgpt-react": {
"version": "0.4.9",
"resolved": "https://registry.npmjs.org/docsgpt-react/-/docsgpt-react-0.4.9.tgz",
"integrity": "sha512-mGGbd4IGVHrQVVdgoej991Vpl/hYkTuKz5Ax95hvqSbWDZELZnEx2/AZajAII5AayUZKWYaEFRluewUiGJVSbA==",
"node_modules/docsgpt": {
"version": "0.4.7",
"resolved": "https://registry.npmjs.org/docsgpt/-/docsgpt-0.4.7.tgz",
"integrity": "sha512-4YZzLZo6ybudFrJVUQflDFeWzFiTATRWB9myrGSpLigyuMMzax1ZAY2xFallZLuEG9VVm0mOgkx3ssWHLrXWkQ==",
"license": "Apache-2.0",
"dependencies": {
"@babel/plugin-transform-flow-strip-types": "^7.23.3",
"@parcel/resolver-glob": "^2.12.0",
@@ -4145,33 +3665,6 @@
"url": "https://github.com/fb55/domutils?sponsor=1"
}
},
"node_modules/dotenv": {
"version": "16.4.7",
"resolved": "https://registry.npmjs.org/dotenv/-/dotenv-16.4.7.tgz",
"integrity": "sha512-47qPchRCykZC03FhkYAhrvwU4xDBFIj1QPqaarj6mdM/hgUzfPHcpkHJOn3mJAufFeeAxAzeGsr5X0M4k6fLZQ==",
"peer": true,
"engines": {
"node": ">=12"
},
"funding": {
"url": "https://dotenvx.com"
}
},
"node_modules/dotenv-expand": {
"version": "11.0.7",
"resolved": "https://registry.npmjs.org/dotenv-expand/-/dotenv-expand-11.0.7.tgz",
"integrity": "sha512-zIHwmZPRshsCdpMDyVsqGmgyP0yT8GAgXUnkdAoJisxvf33k7yO6OuoKmcTGuXPWSsm8Oh88nZicRLA9Y0rUeA==",
"peer": true,
"dependencies": {
"dotenv": "^16.4.5"
},
"engines": {
"node": ">=12"
},
"funding": {
"url": "https://dotenvx.com"
}
},
"node_modules/electron-to-chromium": {
"version": "1.4.693",
"resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.4.693.tgz",
@@ -5185,9 +4678,9 @@
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w=="
},
"node_modules/katex": {
"version": "0.16.21",
"resolved": "https://registry.npmjs.org/katex/-/katex-0.16.21.tgz",
"integrity": "sha512-XvqR7FgOHtWupfMiigNzmh+MgUVmDGU2kXZm899ZkPfcuoPuFxyHmXsgATDpFZDAXCI8tvinaVcDo8PIIJSo4A==",
"version": "0.16.10",
"resolved": "https://registry.npmjs.org/katex/-/katex-0.16.10.tgz",
"integrity": "sha512-ZiqaC04tp2O5utMsl2TEZTXxa6WSC4yo0fv5ML++D3QZv/vx2Mct0mTlRx3O+uUkjfuAgOkzsCmq5MiUEsDDdA==",
"funding": [
"https://opencollective.com/katex",
"https://github.com/sponsors/katex"
@@ -6741,9 +6234,9 @@
}
},
"node_modules/nanoid": {
"version": "3.3.8",
"resolved": "https://registry.npmjs.org/nanoid/-/nanoid-3.3.8.tgz",
"integrity": "sha512-WNLf5Sd8oZxOm+TzppcYk8gVOgP+l58xNy58D0nbUnOxOWRWvlcCV4kUF7ltmI6PsrLl/BgKEyS4mqsGChFN0w==",
"version": "3.3.7",
"resolved": "https://registry.npmjs.org/nanoid/-/nanoid-3.3.7.tgz",
"integrity": "sha512-eSRppjcPIatRIMC1U6UngP8XFcz8MQWGQdt1MTBQ7NaAmvXDfvNxbvWV3x2y6CdEUciCSsDHDQZbhYaB8QEo2g==",
"funding": [
{
"type": "github",
@@ -6758,11 +6251,11 @@
}
},
"node_modules/next": {
"version": "14.2.22",
"resolved": "https://registry.npmjs.org/next/-/next-14.2.22.tgz",
"integrity": "sha512-Ps2caobQ9hlEhscLPiPm3J3SYhfwfpMqzsoCMZGWxt9jBRK9hoBZj2A37i8joKhsyth2EuVKDVJCTF5/H4iEDw==",
"version": "14.2.12",
"resolved": "https://registry.npmjs.org/next/-/next-14.2.12.tgz",
"integrity": "sha512-cDOtUSIeoOvt1skKNihdExWMTybx3exnvbFbb9ecZDIxlvIbREQzt9A5Km3Zn3PfU+IFjyYGsHS+lN9VInAGKA==",
"dependencies": {
"@next/env": "14.2.22",
"@next/env": "14.2.12",
"@swc/helpers": "0.5.5",
"busboy": "1.6.0",
"caniuse-lite": "^1.0.30001579",
@@ -6777,15 +6270,15 @@
"node": ">=18.17.0"
},
"optionalDependencies": {
"@next/swc-darwin-arm64": "14.2.22",
"@next/swc-darwin-x64": "14.2.22",
"@next/swc-linux-arm64-gnu": "14.2.22",
"@next/swc-linux-arm64-musl": "14.2.22",
"@next/swc-linux-x64-gnu": "14.2.22",
"@next/swc-linux-x64-musl": "14.2.22",
"@next/swc-win32-arm64-msvc": "14.2.22",
"@next/swc-win32-ia32-msvc": "14.2.22",
"@next/swc-win32-x64-msvc": "14.2.22"
"@next/swc-darwin-arm64": "14.2.12",
"@next/swc-darwin-x64": "14.2.12",
"@next/swc-linux-arm64-gnu": "14.2.12",
"@next/swc-linux-arm64-musl": "14.2.12",
"@next/swc-linux-x64-gnu": "14.2.12",
"@next/swc-linux-x64-musl": "14.2.12",
"@next/swc-win32-arm64-msvc": "14.2.12",
"@next/swc-win32-ia32-msvc": "14.2.12",
"@next/swc-win32-x64-msvc": "14.2.12"
},
"peerDependencies": {
"@opentelemetry/api": "^1.1.0",
@@ -10105,26 +9598,6 @@
"node": ">=6"
}
},
"node_modules/safe-buffer": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.2.1.tgz",
"integrity": "sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
],
"peer": true
},
"node_modules/safer-buffer": {
"version": "2.1.2",
"resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz",
@@ -10469,19 +9942,6 @@
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/typescript": {
"version": "5.7.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.7.2.tgz",
"integrity": "sha512-i5t66RHxDvVN40HfDd1PsEThGNnlMCMT3jMUuoh9/0TaqWevNontacunWyN02LA9/fIbEWlcHZcgTKb9QoaLfg==",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/uc.micro": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/uc.micro/-/uc.micro-2.1.0.tgz",

View File

@@ -7,8 +7,8 @@
"license": "MIT",
"dependencies": {
"@vercel/analytics": "^1.1.1",
"docsgpt-react": "^0.4.9",
"next": "^14.2.22",
"docsgpt": "^0.4.7",
"next": "^14.2.12",
"nextra": "^2.13.2",
"nextra-theme-docs": "^2.13.2",
"react": "^18.2.0",

View File

@@ -1,78 +0,0 @@
## Development Environments
### Spin up Mongo and Redis
For development, only two containers are used from [docker-compose.yaml](https://github.com/arc53/DocsGPT/blob/main/docker-compose.yaml) (by deleting all services except for Redis and Mongo).
See file [docker-compose-dev.yaml](https://github.com/arc53/DocsGPT/blob/main/docker-compose-dev.yaml).
Run
```
docker compose -f docker-compose-dev.yaml build
docker compose -f docker-compose-dev.yaml up -d
```
### Run the Backend
> [!Note]
> Make sure you have Python 3.12 installed.
1. Export required environment variables or prepare a `.env` file in the project folder:
- Copy [.env-template](https://github.com/arc53/DocsGPT/blob/main/application/.env-template) and create `.env`.
(check out [`application/core/settings.py`](application/core/settings.py) if you want to see more config options.)
2. (optional) Create a Python virtual environment:
You can follow the [Python official documentation](https://docs.python.org/3/tutorial/venv.html) for virtual environments.
a) On Mac OS and Linux
```commandline
python -m venv venv
. venv/bin/activate
```
b) On Windows
```commandline
python -m venv venv
venv/Scripts/activate
```
3. Download embedding model and save it in the `model/` folder:
You can use the script below, or download it manually from [here](https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip), unzip it and save it in the `model/` folder.
```commandline
wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip
unzip mpnet-base-v2.zip -d model
rm mpnet-base-v2.zip
```
4. Install dependencies for the backend:
```commandline
pip install -r application/requirements.txt
```
5. Run the app using `flask --app application/app.py run --host=0.0.0.0 --port=7091`.
6. Start worker with `celery -A application.app.celery worker -l INFO`.
> [!Note]
> You can also launch the in a debugger mode in vscode by accessing SHIFT + CMD + D or SHIFT + Windows + D on windows and selecting Flask or Celery.
### Start Frontend
> [!Note]
> Make sure you have Node version 16 or higher.
1. Navigate to the [/frontend](https://github.com/arc53/DocsGPT/tree/main/frontend) folder.
2. Install the required packages `husky` and `vite` (ignore if already installed).
```commandline
npm install husky -g
npm install vite -g
```
3. Install dependencies by running `npm install --include=dev`.
4. Run the app using `npm run dev`.

View File

@@ -15,21 +15,11 @@ If you prefer to follow manual steps, refer to this guide:
1. Open and download this repository with
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
```
2. Create a `.env` file in your root directory and set the env variables.
It should look like this inside:
```
LLM_NAME=[docsgpt or openai or others]
API_KEY=[if LLM_NAME is openai]
```
See optional environment variables in the [/application/.env_sample](https://github.com/arc53/DocsGPT/blob/main/application/.env_sample) file.
2. Create a `.env` file in your root directory and set your `API_KEY` with your [OpenAI API key](https://platform.openai.com/account/api-keys). (optional in case you want to use OpenAI)
3. Run the following commands:
```bash
docker compose up
docker-compose build && docker-compose up
```
4. Navigate to http://localhost:5173/.
@@ -37,28 +27,43 @@ To stop, simply press **Ctrl + C**.
**For WINDOWS:**
1. Open and download this repository with
To run the setup on Windows, you have two options: using the Windows Subsystem for Linux (WSL) or using Git Bash or Command Prompt.
**Option 1: Using Windows Subsystem for Linux (WSL):**
1. Install WSL if you haven't already. You can follow the official Microsoft documentation for installation: (https://learn.microsoft.com/en-us/windows/wsl/install).
2. After setting up WSL, open the WSL terminal.
3. Clone the repository and create the `.env` file:
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
echo "API_KEY=Yourkey" > .env
echo "VITE_API_STREAMING=true" >> .env
```
2. Create a `.env` file in your root directory and set the env variables.
It should look like this inside:
```
LLM_NAME=[docsgpt or openai or others]
API_KEY=[if LLM_NAME is openai]
```
See optional environment variables in the [/application/.env_sample](https://github.com/arc53/DocsGPT/blob/main/application/.env_sample) file.
3. Run the following command:
4. Run the following command to start the setup with Docker Compose:
```bash
docker-compose up
./run-with-docker-compose.sh
```
4. Navigate to http://localhost:5173/.
5. To stop the setup, just press **Ctrl + C** in the WSL terminal
6. Open your web browser and navigate to http://localhost:5173/.
7. To stop the setup, just press **Ctrl + C** in the WSL terminal
**Option 2: Using Git Bash or Command Prompt (CMD):**
1. Install Git for Windows if you haven't already. Download it from the official website: (https://gitforwindows.org/).
2. Open Git Bash or Command Prompt.
3. Clone the repository and create the `.env` file:
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
echo "API_KEY=Yourkey" > .env
echo "VITE_API_STREAMING=true" >> .env
```
4. Run the following command to start the setup with Docker Compose:
```bash
./run-with-docker-compose.sh
```
5. Open your web browser and navigate to http://localhost:5173/.
6. To stop the setup, just press **Ctrl + C** in the Git Bash or Command Prompt terminal.
These steps should help you set up and run the project on Windows using either WSL or Git Bash/Command Prompt.
**Important:** Ensure that Docker is installed and properly configured on your Windows system for these steps to work.

View File

@@ -7,10 +7,6 @@
"title": "⚡Quickstart",
"href": "/Deploying/Quickstart"
},
"Development-Environment": {
"title": "🛠Development Environment",
"href": "/Deploying/Development-Environment"
},
"Railway-Deploying": {
"title": "🚂Deploying on Railway",
"href": "/Deploying/Railway-Deploying"

View File

@@ -29,30 +29,18 @@ Now, you can use the widget in your component like this :
buttonBg = "#222327"
/>
```
### Props Table for DocsGPT Widget
| **Prop** | **Type** | **Default Value** | **Description** |
|--------------------|------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| **`apiHost`** | `string` | `"https://gptcloud.arc53.com"` | The URL of your DocsGPT API for vector search and chatbot queries. |
| **`apiKey`** | `string` | `""` | Your API key for authentication. Can be left empty if authentication is not required. |
| **`avatar`** | `string` | `"https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png"` | Specifies the URL of the avatar or image representing the chatbot. |
| **`title`** | `string` | `"Get AI assistance"` | Sets the title text displayed in the chatbot interface. |
| **`description`** | `string` | `"DocsGPT's AI Chatbot is here to help"` | Provides a brief description of the chatbot's purpose or functionality. |
| **`heroTitle`** | `string` | `"Welcome to DocsGPT !"` | Displays a welcome title when users interact with the chatbot. |
| **`heroDescription`** | `string` | `"This chatbot is built with DocsGPT and utilises GenAI, please review important information using sources."` | Provides additional introductory text or information about the chatbot's capabilities. |
| **`theme`** | `"dark" \| "light"` | `"dark"` | Allows you to select the theme for the chatbot interface. Accepts `"dark"` or `"light"`. |
| **`buttonIcon`** | `string` | `"https://your-icon"` | Specifies the URL of the icon image for the widget's launch button. |
| **`buttonBg`** | `string` | `"#222327"` | Sets the background color of the widget's launch button. |
| **`size`** | `"small" \| "medium"` | `"medium"` | Sets the size of the widget. Options are `"small"` or `"medium"`. |
---
### Notes
- **Customizing Props:** All properties can be overridden when embedding the widget. For example, you can provide a unique avatar, title, or color scheme to better align with your brand.
- **Default Theme:** The widget defaults to the dark theme unless explicitly set to `"light"`.
- **API Key:** If the `apiKey` is not required for your application, leave it empty.
This table provides a clear overview of the customization options available for tailoring the DocsGPT widget to fit your application.
To tailor the widget to your needs, you can configure the following props in your component:
1. `apiHost` — The URL of your DocsGPT API.
2. `theme` — Allows to select your specific theme (dark or light).
3. `apiKey` — Usually, it's empty.
4. `avatar`: Specifies the URL of the avatar or image representing the chatbot.
5. `title`: Sets the title text displayed in the chatbot interface.
6. `description`: Provides a brief description of the chatbot's purpose or functionality.
7. `heroTitle`: Displays a welcome title when users interact with the chatbot.
8. `heroDescription`: Provide additional introductory text or information about the chatbot's capabilities.
9. `buttonIcon`: Specifies the url of the icon image for the widget.
10. `buttonBg`: Allows to specify the Background color of the widget.
11. `size`: Sets the size of the widget ( small, medium).
### How to use DocsGPTWidget with [Nextra](https://nextra.site/) (Next.js + MDX)
@@ -133,80 +121,5 @@ To link the widget to your api and your documents you can pass parameters to the
</html>
```
# SearchBar
The `SearchBar` component is an interactive search bar designed to provide search results based on **vector similarity search**. It also includes the capability to open the AI Chatbot, enabling users to query.
---
### Importing the Component
```tsx
import { SearchBar } from "docsgpt-react";
```
---
### Usage Example
```tsx
<SearchBar
apiKey="your-api-key"
apiHost="https://gptcloud.arc53.com"
theme="light"
placeholder="Search or Ask AI..."
width="300px"
/>
```
---
## HTML embedding for Search bar
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>SearchBar Embedding</title>
<script src="https://unpkg.com/docsgpt/dist/modern/main.js"></script> <!-- The bundled JavaScript file -->
</head>
<body>
<!-- Element where the SearchBar will render -->
<div id="search-bar-container"></div>
<script>
// Render the SearchBar into the specified element
renderSearchBar('search-bar-container', {
apiKey: 'your-api-key-here',
apiHost: 'https://your-api-host.com',
theme: 'light',
placeholder: 'Search here...',
width: '300px'
});
</script>
</body>
</html>
```
### Props
| **Prop** | **Type** | **Default Value** | **Description** |
|-----------------|-----------|-------------------------------------|--------------------------------------------------------------------------------------------------|
| **`apiKey`** | `string` | `"74039c6d-bff7-44ce-ae55-2973cbf13837"` | Your API key generated from the app. Used for authenticating requests. |
| **`apiHost`** | `string` | `"https://gptcloud.arc53.com"` | The base URL of the server hosting the vector similarity search and chatbot services. |
| **`theme`** | `"dark" \| "light"` | `"dark"` | The theme of the search bar. Accepts `"dark"` or `"light"`. |
| **`placeholder`** | `string` | `"Search or Ask AI..."` | Placeholder text displayed in the search input field. |
| **`width`** | `string` | `"256px"` | Width of the search bar. Accepts any valid CSS width value (e.g., `"300px"`, `"100%"`, `"20rem"`). |
Feel free to reach out if you need help customizing or extending the `SearchBar`!
## Our github
[DocsGPT](https://github.com/arc53/DocsGPT)
You can find the source code in the extensions/react-widget folder.
For more information about React, refer to this [link here](https://react.dev/learn)

View File

@@ -1,4 +1,4 @@
import { DocsGPTWidget } from "docsgpt-react";
import { DocsGPTWidget } from "docsgpt";
export default function MyApp({ Component, pageProps }) {
return (

View File

@@ -25,10 +25,7 @@ DocsGPT 🦖 is an innovative open-source tool designed to simplify the retrieva
<video controls width={1920} height={1080} muted autoPlay loop playsInline>
<source src="https://d3dg1063dc54p9.cloudfront.net/videos/demov4.mp4" type="video/mp4" />
Your browser does not support the video tag.
</video>
<Image src="/homevideo.gif" alt="homedemo" width={800} height={500}/>
Try it yourself: [https://www.docsgpt.cloud/](https://www.docsgpt.cloud/)

View File

@@ -13,7 +13,7 @@ npm install docsgpt
### React
```javascript
import { DocsGPTWidget } from "docsgpt-react";
import { DocsGPTWidget } from "docsgpt";
const App = () => {
return <DocsGPTWidget />;
@@ -23,11 +23,11 @@ npm install docsgpt
To link the widget to your api and your documents you can pass parameters to the <DocsGPTWidget /> component.
```javascript
import { DocsGPTWidget } from "docsgpt-react";
import { DocsGPTWidget } from "docsgpt";
const App = () => {
return <DocsGPTWidget
apiHost="https://gptcloud.arc53.com"
apiHost="https://your-docsgpt-api.com"
apiKey=""
avatar = "https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png"
title = "Get AI assistance"
@@ -101,75 +101,6 @@ To link the widget to your api and your documents you can pass parameters to the
</html>
```
# SearchBar
The `SearchBar` component is an interactive search bar designed to provide search results based on **vector similarity search**. It also includes the capability to open the AI Chatbot, enabling users to query.
---
### Importing the Component
```tsx
import { SearchBar } from "docsgpt-react";
```
---
### Usage Example
```tsx
<SearchBar
apiKey="your-api-key"
apiHost="https://gptcloud.arc53.com"
theme="light"
placeholder="Search or Ask AI..."
width="300px"
/>
```
---
## HTML embedding for Search bar
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>SearchBar Embedding</title>
<script src="https://unpkg.com/docsgpt/dist/modern/main.js"></script> <!-- The bundled JavaScript file -->
</head>
<body>
<!-- Element where the SearchBar will render -->
<div id="search-bar-container"></div>
<script>
// Render the SearchBar into the specified element
renderSearchBar('search-bar-container', {
apiKey: 'your-api-key-here',
apiHost: 'https://your-api-host.com',
theme: 'light',
placeholder: 'Search here...',
width: '300px'
});
</script>
</body>
</html>
```
### Props
| **Prop** | **Type** | **Default Value** | **Description** |
|-----------------|-----------|-------------------------------------|--------------------------------------------------------------------------------------------------|
| **`apiKey`** | `string` | `"74039c6d-bff7-44ce-ae55-2973cbf13837"` | Your API key generated from the app. Used for authenticating requests. |
| **`apiHost`** | `string` | `"https://gptcloud.arc53.com"` | The base URL of the server hosting the vector similarity search and chatbot services. |
| **`theme`** | `"dark" \| "light"` | `"dark"` | The theme of the search bar. Accepts `"dark"` or `"light"`. |
| **`placeholder`** | `string` | `"Search or Ask AI..."` | Placeholder text displayed in the search input field. |
| **`width`** | `string` | `"256px"` | Width of the search bar. Accepts any valid CSS width value (e.g., `"300px"`, `"100%"`, `"20rem"`). |
Feel free to reach out if you need help customizing or extending the `SearchBar`!
## Our github
[DocsGPT](https://github.com/arc53/DocsGPT)

View File

@@ -1,12 +1,12 @@
{
"name": "docsgpt",
"version": "0.4.9",
"version": "0.4.7",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "docsgpt",
"version": "0.4.9",
"version": "0.4.7",
"license": "Apache-2.0",
"dependencies": {
"@babel/plugin-transform-flow-strip-types": "^7.23.3",
@@ -1885,17 +1885,6 @@
"node": ">=6.0.0"
}
},
"node_modules/@jridgewell/source-map": {
"version": "0.3.6",
"resolved": "https://registry.npmjs.org/@jridgewell/source-map/-/source-map-0.3.6.tgz",
"integrity": "sha512-1ZJTZebgqllO79ue2bm3rIGud/bOe0pP5BjSRCRxxYkEZS8STV7zN84UBbiYu7jy+eCKSnVIUgoWWE/tt+shMQ==",
"dev": true,
"peer": true,
"dependencies": {
"@jridgewell/gen-mapping": "^0.3.5",
"@jridgewell/trace-mapping": "^0.3.25"
}
},
"node_modules/@jridgewell/sourcemap-codec": {
"version": "1.4.15",
"resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.4.15.tgz",
@@ -2269,6 +2258,7 @@
"version": "2.12.0",
"resolved": "https://registry.npmjs.org/@parcel/core/-/core-2.12.0.tgz",
"integrity": "sha512-s+6pwEj+GfKf7vqGUzN9iSEPueUssCCQrCBUlcAfKrJe0a22hTUCjewpB0I7lNrCIULt8dkndD+sMdOrXsRl6Q==",
"dev": true,
"dependencies": {
"@mischnic/json-sourcemap": "^0.1.0",
"@parcel/cache": "2.12.0",
@@ -2308,6 +2298,7 @@
"version": "7.6.2",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.6.2.tgz",
"integrity": "sha512-FNAIBWCx9qcRhoHcgcJ0gvU7SN1lYU2ZXuSfl04bSC5OpvDHFyJCjdNHomPXxjQlCBU67YW64PzY7/VIEH7F2w==",
"dev": true,
"bin": {
"semver": "bin/semver.js"
},
@@ -2369,6 +2360,7 @@
"version": "3.2.0",
"resolved": "https://registry.npmjs.org/@parcel/graph/-/graph-3.2.0.tgz",
"integrity": "sha512-xlrmCPqy58D4Fg5umV7bpwDx5Vyt7MlnQPxW68vae5+BA4GSWetfZt+Cs5dtotMG2oCHzZxhIPt7YZ7NRyQzLA==",
"dev": true,
"dependencies": {
"nullthrows": "^1.1.1"
},
@@ -4568,7 +4560,7 @@
"version": "0.5.11",
"resolved": "https://registry.npmjs.org/@swc/helpers/-/helpers-0.5.11.tgz",
"integrity": "sha512-YNlnKRWF2sVojTpIyzwou9XoTNbzbzONwRhOoniEioF1AtaitTvVZblaQRrAzChWQ1bLYyYSWzM18y4WwgzJ+A==",
"devOptional": true,
"dev": true,
"dependencies": {
"tslib": "^2.4.0"
}
@@ -4598,35 +4590,6 @@
"@types/trusted-types": "*"
}
},
"node_modules/@types/eslint": {
"version": "9.6.1",
"resolved": "https://registry.npmjs.org/@types/eslint/-/eslint-9.6.1.tgz",
"integrity": "sha512-FXx2pKgId/WyYo2jXw63kk7/+TY7u7AziEJxJAnSFzHlqTAS3Ync6SvgYAN/k4/PQpnnVuzoMuVnByKK2qp0ag==",
"dev": true,
"peer": true,
"dependencies": {
"@types/estree": "*",
"@types/json-schema": "*"
}
},
"node_modules/@types/eslint-scope": {
"version": "3.7.7",
"resolved": "https://registry.npmjs.org/@types/eslint-scope/-/eslint-scope-3.7.7.tgz",
"integrity": "sha512-MzMFlSLBqNF2gcHWO0G1vP/YQyfvrxZ0bF+u7mzUdZ1/xK4A4sru+nraZz5i3iEIk1l1uyicaDVTB4QbbEkAYg==",
"dev": true,
"peer": true,
"dependencies": {
"@types/eslint": "*",
"@types/estree": "*"
}
},
"node_modules/@types/estree": {
"version": "1.0.6",
"resolved": "https://registry.npmjs.org/@types/estree/-/estree-1.0.6.tgz",
"integrity": "sha512-AYnb1nQyY49te+VRAVgmzfcgjYS91mY5P0TKUDCLEM+gNnA+3T6rWITXRLYCpahpqSQbN5cE+gHpnPyXjHWxcw==",
"dev": true,
"peer": true
},
"node_modules/@types/json-schema": {
"version": "7.0.15",
"resolved": "https://registry.npmjs.org/@types/json-schema/-/json-schema-7.0.15.tgz",
@@ -4658,16 +4621,6 @@
"dev": true,
"license": "MIT"
},
"node_modules/@types/node": {
"version": "22.10.1",
"resolved": "https://registry.npmjs.org/@types/node/-/node-22.10.1.tgz",
"integrity": "sha512-qKgsUwfHZV2WCWLAnVP1JqnpE6Im6h3Y0+fYgMTasNQ7V++CBX5OT1as0g0f+OyubbFqhf6XVNIsmN4IIhEgGQ==",
"dev": true,
"peer": true,
"dependencies": {
"undici-types": "~6.20.0"
}
},
"node_modules/@types/parse-json": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/@types/parse-json/-/parse-json-4.0.2.tgz",
@@ -4709,198 +4662,11 @@
"integrity": "sha512-ScaPdn1dQczgbl0QFTeTOmVHFULt394XJgOQNoyVhZ6r2vLnMLJfBPd53SB52T/3G36VI1/g2MZaX0cwDuXsfw==",
"dev": true
},
"node_modules/@webassemblyjs/ast": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/ast/-/ast-1.14.1.tgz",
"integrity": "sha512-nuBEDgQfm1ccRp/8bCQrx1frohyufl4JlbMMZ4P1wpeOfDhF6FQkxZJ1b/e+PLwr6X1Nhw6OLme5usuBWYBvuQ==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/helper-numbers": "1.13.2",
"@webassemblyjs/helper-wasm-bytecode": "1.13.2"
}
},
"node_modules/@webassemblyjs/floating-point-hex-parser": {
"version": "1.13.2",
"resolved": "https://registry.npmjs.org/@webassemblyjs/floating-point-hex-parser/-/floating-point-hex-parser-1.13.2.tgz",
"integrity": "sha512-6oXyTOzbKxGH4steLbLNOu71Oj+C8Lg34n6CqRvqfS2O71BxY6ByfMDRhBytzknj9yGUPVJ1qIKhRlAwO1AovA==",
"dev": true,
"peer": true
},
"node_modules/@webassemblyjs/helper-api-error": {
"version": "1.13.2",
"resolved": "https://registry.npmjs.org/@webassemblyjs/helper-api-error/-/helper-api-error-1.13.2.tgz",
"integrity": "sha512-U56GMYxy4ZQCbDZd6JuvvNV/WFildOjsaWD3Tzzvmw/mas3cXzRJPMjP83JqEsgSbyrmaGjBfDtV7KDXV9UzFQ==",
"dev": true,
"peer": true
},
"node_modules/@webassemblyjs/helper-buffer": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/helper-buffer/-/helper-buffer-1.14.1.tgz",
"integrity": "sha512-jyH7wtcHiKssDtFPRB+iQdxlDf96m0E39yb0k5uJVhFGleZFoNw1c4aeIcVUPPbXUVJ94wwnMOAqUHyzoEPVMA==",
"dev": true,
"peer": true
},
"node_modules/@webassemblyjs/helper-numbers": {
"version": "1.13.2",
"resolved": "https://registry.npmjs.org/@webassemblyjs/helper-numbers/-/helper-numbers-1.13.2.tgz",
"integrity": "sha512-FE8aCmS5Q6eQYcV3gI35O4J789wlQA+7JrqTTpJqn5emA4U2hvwJmvFRC0HODS+3Ye6WioDklgd6scJ3+PLnEA==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/floating-point-hex-parser": "1.13.2",
"@webassemblyjs/helper-api-error": "1.13.2",
"@xtuc/long": "4.2.2"
}
},
"node_modules/@webassemblyjs/helper-wasm-bytecode": {
"version": "1.13.2",
"resolved": "https://registry.npmjs.org/@webassemblyjs/helper-wasm-bytecode/-/helper-wasm-bytecode-1.13.2.tgz",
"integrity": "sha512-3QbLKy93F0EAIXLh0ogEVR6rOubA9AoZ+WRYhNbFyuB70j3dRdwH9g+qXhLAO0kiYGlg3TxDV+I4rQTr/YNXkA==",
"dev": true,
"peer": true
},
"node_modules/@webassemblyjs/helper-wasm-section": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/helper-wasm-section/-/helper-wasm-section-1.14.1.tgz",
"integrity": "sha512-ds5mXEqTJ6oxRoqjhWDU83OgzAYjwsCV8Lo/N+oRsNDmx/ZDpqalmrtgOMkHwxsG0iI//3BwWAErYRHtgn0dZw==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/ast": "1.14.1",
"@webassemblyjs/helper-buffer": "1.14.1",
"@webassemblyjs/helper-wasm-bytecode": "1.13.2",
"@webassemblyjs/wasm-gen": "1.14.1"
}
},
"node_modules/@webassemblyjs/ieee754": {
"version": "1.13.2",
"resolved": "https://registry.npmjs.org/@webassemblyjs/ieee754/-/ieee754-1.13.2.tgz",
"integrity": "sha512-4LtOzh58S/5lX4ITKxnAK2USuNEvpdVV9AlgGQb8rJDHaLeHciwG4zlGr0j/SNWlr7x3vO1lDEsuePvtcDNCkw==",
"dev": true,
"peer": true,
"dependencies": {
"@xtuc/ieee754": "^1.2.0"
}
},
"node_modules/@webassemblyjs/leb128": {
"version": "1.13.2",
"resolved": "https://registry.npmjs.org/@webassemblyjs/leb128/-/leb128-1.13.2.tgz",
"integrity": "sha512-Lde1oNoIdzVzdkNEAWZ1dZ5orIbff80YPdHx20mrHwHrVNNTjNr8E3xz9BdpcGqRQbAEa+fkrCb+fRFTl/6sQw==",
"dev": true,
"peer": true,
"dependencies": {
"@xtuc/long": "4.2.2"
}
},
"node_modules/@webassemblyjs/utf8": {
"version": "1.13.2",
"resolved": "https://registry.npmjs.org/@webassemblyjs/utf8/-/utf8-1.13.2.tgz",
"integrity": "sha512-3NQWGjKTASY1xV5m7Hr0iPeXD9+RDobLll3T9d2AO+g3my8xy5peVyjSag4I50mR1bBSN/Ct12lo+R9tJk0NZQ==",
"dev": true,
"peer": true
},
"node_modules/@webassemblyjs/wasm-edit": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/wasm-edit/-/wasm-edit-1.14.1.tgz",
"integrity": "sha512-RNJUIQH/J8iA/1NzlE4N7KtyZNHi3w7at7hDjvRNm5rcUXa00z1vRz3glZoULfJ5mpvYhLybmVcwcjGrC1pRrQ==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/ast": "1.14.1",
"@webassemblyjs/helper-buffer": "1.14.1",
"@webassemblyjs/helper-wasm-bytecode": "1.13.2",
"@webassemblyjs/helper-wasm-section": "1.14.1",
"@webassemblyjs/wasm-gen": "1.14.1",
"@webassemblyjs/wasm-opt": "1.14.1",
"@webassemblyjs/wasm-parser": "1.14.1",
"@webassemblyjs/wast-printer": "1.14.1"
}
},
"node_modules/@webassemblyjs/wasm-gen": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/wasm-gen/-/wasm-gen-1.14.1.tgz",
"integrity": "sha512-AmomSIjP8ZbfGQhumkNvgC33AY7qtMCXnN6bL2u2Js4gVCg8fp735aEiMSBbDR7UQIj90n4wKAFUSEd0QN2Ukg==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/ast": "1.14.1",
"@webassemblyjs/helper-wasm-bytecode": "1.13.2",
"@webassemblyjs/ieee754": "1.13.2",
"@webassemblyjs/leb128": "1.13.2",
"@webassemblyjs/utf8": "1.13.2"
}
},
"node_modules/@webassemblyjs/wasm-opt": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/wasm-opt/-/wasm-opt-1.14.1.tgz",
"integrity": "sha512-PTcKLUNvBqnY2U6E5bdOQcSM+oVP/PmrDY9NzowJjislEjwP/C4an2303MCVS2Mg9d3AJpIGdUFIQQWbPds0Sw==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/ast": "1.14.1",
"@webassemblyjs/helper-buffer": "1.14.1",
"@webassemblyjs/wasm-gen": "1.14.1",
"@webassemblyjs/wasm-parser": "1.14.1"
}
},
"node_modules/@webassemblyjs/wasm-parser": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/wasm-parser/-/wasm-parser-1.14.1.tgz",
"integrity": "sha512-JLBl+KZ0R5qB7mCnud/yyX08jWFw5MsoalJ1pQ4EdFlgj9VdXKGuENGsiCIjegI1W7p91rUlcB/LB5yRJKNTcQ==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/ast": "1.14.1",
"@webassemblyjs/helper-api-error": "1.13.2",
"@webassemblyjs/helper-wasm-bytecode": "1.13.2",
"@webassemblyjs/ieee754": "1.13.2",
"@webassemblyjs/leb128": "1.13.2",
"@webassemblyjs/utf8": "1.13.2"
}
},
"node_modules/@webassemblyjs/wast-printer": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/@webassemblyjs/wast-printer/-/wast-printer-1.14.1.tgz",
"integrity": "sha512-kPSSXE6De1XOR820C90RIo2ogvZG+c3KiHzqUoO/F34Y2shGzesfqv7o57xrxovZJH/MetF5UjroJ/R/3isoiw==",
"dev": true,
"peer": true,
"dependencies": {
"@webassemblyjs/ast": "1.14.1",
"@xtuc/long": "4.2.2"
}
},
"node_modules/@xtuc/ieee754": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/@xtuc/ieee754/-/ieee754-1.2.0.tgz",
"integrity": "sha512-DX8nKgqcGwsc0eJSqYt5lwP4DH5FlHnmuWWBRy7X0NcaGR0ZtuyeESgMwTYVEtxmsNGY+qit4QYT/MIYTOTPeA==",
"dev": true,
"peer": true
},
"node_modules/@xtuc/long": {
"version": "4.2.2",
"resolved": "https://registry.npmjs.org/@xtuc/long/-/long-4.2.2.tgz",
"integrity": "sha512-NuHqBY1PB/D8xU6s/thBgOAiAP7HOYDQ32+BFZILJ8ivkUkAHQnWfn6WhL79Owj1qmUnoN/YPhktdIoucipkAQ==",
"dev": true,
"peer": true
},
"node_modules/abortcontroller-polyfill": {
"version": "1.7.5",
"resolved": "https://registry.npmjs.org/abortcontroller-polyfill/-/abortcontroller-polyfill-1.7.5.tgz",
"integrity": "sha512-JMJ5soJWP18htbbxJjG7bG6yuI6pRhgJ0scHHTfkUjf6wjP912xZWvM+A4sJK3gqd9E8fcPbDnOefbA9Th/FIQ=="
},
"node_modules/acorn": {
"version": "8.14.0",
"resolved": "https://registry.npmjs.org/acorn/-/acorn-8.14.0.tgz",
"integrity": "sha512-cl669nCJTZBsL97OF4kUQm5g5hC2uihk0NxY3WENAC0TYdILVkAyHymAntgxGkl7K+t0cXIrH5siy5S4XkFycA==",
"dev": true,
"peer": true,
"bin": {
"acorn": "bin/acorn"
},
"engines": {
"node": ">=0.4.0"
}
"integrity": "sha512-JMJ5soJWP18htbbxJjG7bG6yuI6pRhgJ0scHHTfkUjf6wjP912xZWvM+A4sJK3gqd9E8fcPbDnOefbA9Th/FIQ==",
"dev": true
},
"node_modules/ajv": {
"version": "6.12.6",
@@ -5005,6 +4771,7 @@
"version": "3.0.9",
"resolved": "https://registry.npmjs.org/base-x/-/base-x-3.0.9.tgz",
"integrity": "sha512-H7JU6iBHTal1gp56aKoaa//YUxEaAOUiydvrV/pILqIHXTtqxSkATOnDA2u+jZ/61sD+L/412+7kzXRtWukhpQ==",
"dev": true,
"dependencies": {
"safe-buffer": "^5.0.1"
}
@@ -5035,9 +4802,9 @@
}
},
"node_modules/browserslist": {
"version": "4.24.2",
"resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.24.2.tgz",
"integrity": "sha512-ZIc+Q62revdMcqC6aChtW4jz3My3klmCO1fEmINZY/8J3EpBg5/A/D0AKmBveUh6pgoeycoMkVMko84tuYS+Gg==",
"version": "4.23.0",
"resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.23.0.tgz",
"integrity": "sha512-QW8HiM1shhT2GuzkvklfjcKDiWFXHOeFCIA/huJPwHsslwcydgk7X+z2zXpEijP98UCY7HbubZt5J2Zgvf0CaQ==",
"funding": [
{
"type": "opencollective",
@@ -5053,10 +4820,10 @@
}
],
"dependencies": {
"caniuse-lite": "^1.0.30001669",
"electron-to-chromium": "^1.5.41",
"node-releases": "^2.0.18",
"update-browserslist-db": "^1.1.1"
"caniuse-lite": "^1.0.30001587",
"electron-to-chromium": "^1.4.668",
"node-releases": "^2.0.14",
"update-browserslist-db": "^1.0.13"
},
"bin": {
"browserslist": "cli.js"
@@ -5065,13 +4832,6 @@
"node": "^6 || ^7 || ^8 || ^9 || ^10 || ^11 || ^12 || >=13.7"
}
},
"node_modules/buffer-from": {
"version": "1.1.2",
"resolved": "https://registry.npmjs.org/buffer-from/-/buffer-from-1.1.2.tgz",
"integrity": "sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==",
"dev": true,
"peer": true
},
"node_modules/callsites": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz",
@@ -5100,9 +4860,9 @@
}
},
"node_modules/caniuse-lite": {
"version": "1.0.30001680",
"resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001680.tgz",
"integrity": "sha512-rPQy70G6AGUMnbwS1z6Xg+RkHYPAi18ihs47GH0jcxIG7wArmPgY3XbS2sRdBbxJljp3thdT8BIqv9ccCypiPA==",
"version": "1.0.30001625",
"resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001625.tgz",
"integrity": "sha512-4KE9N2gcRH+HQhpeiRZXd+1niLB/XNLAhSy4z7fI8EzcbcPoAqjNInxVHTiTwWfTIV4w096XG8OtCOCQQKPv3w==",
"funding": [
{
"type": "opencollective",
@@ -5116,8 +4876,7 @@
"type": "github",
"url": "https://github.com/sponsors/ai"
}
],
"license": "CC-BY-4.0"
]
},
"node_modules/chalk": {
"version": "2.4.2",
@@ -5163,6 +4922,7 @@
"version": "2.1.2",
"resolved": "https://registry.npmjs.org/clone/-/clone-2.1.2.tgz",
"integrity": "sha512-3Pe/CF1Nn94hyhIYpjtiLhdCoEoz0DqQ+988E9gmeEdQZlojxnOb74wctFyuwWQHzqyf9X7C7MG8juUpqBJT8w==",
"dev": true,
"engines": {
"node": ">=0.8"
}
@@ -5372,6 +5132,7 @@
"version": "7.0.0",
"resolved": "https://registry.npmjs.org/dotenv/-/dotenv-7.0.0.tgz",
"integrity": "sha512-M3NhsLbV1i6HuGzBUH8vXrtxOk+tWmzWKDMbAVSUp3Zsjm7ywFeuwrUXhmhQyRK1q5B5GGy7hcXPbj3bnfZg2g==",
"dev": true,
"engines": {
"node": ">=6"
}
@@ -5379,12 +5140,13 @@
"node_modules/dotenv-expand": {
"version": "5.1.0",
"resolved": "https://registry.npmjs.org/dotenv-expand/-/dotenv-expand-5.1.0.tgz",
"integrity": "sha512-YXQl1DSa4/PQyRfgrv6aoNjhasp/p4qs9FjJ4q4cQk+8m4r6k4ZSiEyytKG8f8W9gi8WsQtIObNmKd+tMzNTmA=="
"integrity": "sha512-YXQl1DSa4/PQyRfgrv6aoNjhasp/p4qs9FjJ4q4cQk+8m4r6k4ZSiEyytKG8f8W9gi8WsQtIObNmKd+tMzNTmA==",
"dev": true
},
"node_modules/electron-to-chromium": {
"version": "1.5.72",
"resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.5.72.tgz",
"integrity": "sha512-ZpSAUOZ2Izby7qnZluSrAlGgGQzucmFbN0n64dYzocYxnxV5ufurpj3VgEe4cUp7ir9LmeLxNYo8bVnlM8bQHw=="
"version": "1.4.788",
"resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.4.788.tgz",
"integrity": "sha512-ubp5+Ev/VV8KuRoWnfP2QF2Bg+O2ZFdb49DiiNbz2VmgkIqrnyYaqIOqj8A6K/3p1xV0QcU5hBQ1+BmB6ot1OA=="
},
"node_modules/emojis-list": {
"version": "3.0.0",
@@ -5395,20 +5157,6 @@
"node": ">= 4"
}
},
"node_modules/enhanced-resolve": {
"version": "5.17.1",
"resolved": "https://registry.npmjs.org/enhanced-resolve/-/enhanced-resolve-5.17.1.tgz",
"integrity": "sha512-LMHl3dXhTcfv8gM4kEzIUeTQ+7fpdA0l2tUf34BddXPkz2A5xJ5L/Pchd5BL6rdccM9QGvu0sWZzK1Z1t4wwyg==",
"dev": true,
"peer": true,
"dependencies": {
"graceful-fs": "^4.2.4",
"tapable": "^2.2.0"
},
"engines": {
"node": ">=10.13.0"
}
},
"node_modules/entities": {
"version": "4.5.0",
"resolved": "https://registry.npmjs.org/entities/-/entities-4.5.0.tgz",
@@ -5437,17 +5185,10 @@
"is-arrayish": "^0.2.1"
}
},
"node_modules/es-module-lexer": {
"version": "1.5.4",
"resolved": "https://registry.npmjs.org/es-module-lexer/-/es-module-lexer-1.5.4.tgz",
"integrity": "sha512-MVNK56NiMrOwitFB7cqDwq0CQutbw+0BvLshJSse0MUNU+y1FC3bUS/AQg7oUng+/wKrrki7JfmwtVHkVfPLlw==",
"dev": true,
"peer": true
},
"node_modules/escalade": {
"version": "3.2.0",
"resolved": "https://registry.npmjs.org/escalade/-/escalade-3.2.0.tgz",
"integrity": "sha512-WUj2qlxaQtO4g6Pq5c29GTcWGDyd8itL8zTlipgECz3JesAiiOKotd8JU6otB3PACgG6xkJUyVhboMS+bje/jA==",
"version": "3.1.2",
"resolved": "https://registry.npmjs.org/escalade/-/escalade-3.1.2.tgz",
"integrity": "sha512-ErCHMCae19vR8vQGe50xIsVomy19rg6gFu3+r3jkEO46suLMWBksvVyoGgQV+jOfl84ZSOSlmv6Gxa89PmTGmA==",
"engines": {
"node": ">=6"
}
@@ -5460,53 +5201,6 @@
"node": ">=0.8.0"
}
},
"node_modules/eslint-scope": {
"version": "5.1.1",
"resolved": "https://registry.npmjs.org/eslint-scope/-/eslint-scope-5.1.1.tgz",
"integrity": "sha512-2NxwbF/hZ0KpepYN0cNbo+FN6XoK7GaHlQhgx/hIZl6Va0bF45RQOOwhLIy8lQDbuCiadSLCBnH2CFYquit5bw==",
"dev": true,
"peer": true,
"dependencies": {
"esrecurse": "^4.3.0",
"estraverse": "^4.1.1"
},
"engines": {
"node": ">=8.0.0"
}
},
"node_modules/esrecurse": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/esrecurse/-/esrecurse-4.3.0.tgz",
"integrity": "sha512-KmfKL3b6G+RXvP8N1vr3Tq1kL/oCFgn2NYXEtqP8/L3pKapUA4G8cFVaoF3SU323CD4XypR/ffioHmkti6/Tag==",
"dev": true,
"peer": true,
"dependencies": {
"estraverse": "^5.2.0"
},
"engines": {
"node": ">=4.0"
}
},
"node_modules/esrecurse/node_modules/estraverse": {
"version": "5.3.0",
"resolved": "https://registry.npmjs.org/estraverse/-/estraverse-5.3.0.tgz",
"integrity": "sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA==",
"dev": true,
"peer": true,
"engines": {
"node": ">=4.0"
}
},
"node_modules/estraverse": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/estraverse/-/estraverse-4.3.0.tgz",
"integrity": "sha512-39nnKffWz8xN1BU/2c79n9nB9HDzo0niYUqx6xyqUnyoAnQyyWpOTdZEeiCch8BBu515t4wp9ZmgVfVhn9EBpw==",
"dev": true,
"peer": true,
"engines": {
"node": ">=4.0"
}
},
"node_modules/esutils": {
"version": "2.0.3",
"resolved": "https://registry.npmjs.org/esutils/-/esutils-2.0.3.tgz",
@@ -5516,16 +5210,6 @@
"node": ">=0.10.0"
}
},
"node_modules/events": {
"version": "3.3.0",
"resolved": "https://registry.npmjs.org/events/-/events-3.3.0.tgz",
"integrity": "sha512-mQw+2fkQbALzQ7V0MY0IqdnXNOeTtP4r0lN9z7AAawCXgqea7bDii20AYrIBrFd/Hx0M2Ocz6S111CaFkUcb0Q==",
"dev": true,
"peer": true,
"engines": {
"node": ">=0.8.x"
}
},
"node_modules/fast-deep-equal": {
"version": "3.1.3",
"resolved": "https://registry.npmjs.org/fast-deep-equal/-/fast-deep-equal-3.1.3.tgz",
@@ -5616,13 +5300,6 @@
"node": ">=6"
}
},
"node_modules/glob-to-regexp": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/glob-to-regexp/-/glob-to-regexp-0.4.1.tgz",
"integrity": "sha512-lkX1HJXwyMcprw/5YUZc2s7DrpAiHB21/V+E1rHUrVNokkvB6bqMzT0VfV6/86ZNabt1k14YOIaT7nDvOX3Iiw==",
"dev": true,
"peer": true
},
"node_modules/globals": {
"version": "11.12.0",
"resolved": "https://registry.npmjs.org/globals/-/globals-11.12.0.tgz",
@@ -5631,13 +5308,6 @@
"node": ">=4"
}
},
"node_modules/graceful-fs": {
"version": "4.2.11",
"resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz",
"integrity": "sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ==",
"dev": true,
"peer": true
},
"node_modules/has-flag": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
@@ -5843,47 +5513,6 @@
"node": ">=0.12.0"
}
},
"node_modules/jest-worker": {
"version": "27.5.1",
"resolved": "https://registry.npmjs.org/jest-worker/-/jest-worker-27.5.1.tgz",
"integrity": "sha512-7vuh85V5cdDofPyxn58nrPjBktZo0u9x1g8WtjQol+jZDaE+fhN+cIvTj11GndBnMnyfrUOG1sZQxCdjKh+DKg==",
"dev": true,
"peer": true,
"dependencies": {
"@types/node": "*",
"merge-stream": "^2.0.0",
"supports-color": "^8.0.0"
},
"engines": {
"node": ">= 10.13.0"
}
},
"node_modules/jest-worker/node_modules/has-flag": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"dev": true,
"peer": true,
"engines": {
"node": ">=8"
}
},
"node_modules/jest-worker/node_modules/supports-color": {
"version": "8.1.1",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-8.1.1.tgz",
"integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==",
"dev": true,
"peer": true,
"dependencies": {
"has-flag": "^4.0.0"
},
"engines": {
"node": ">=10"
},
"funding": {
"url": "https://github.com/chalk/supports-color?sponsor=1"
}
},
"node_modules/js-tokens": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz",
@@ -6184,16 +5813,6 @@
"resolved": "https://registry.npmjs.org/node-addon-api/-/node-addon-api-6.1.0.tgz",
"integrity": "sha512-+eawOlIgy680F0kBzPUNFhMZGtJ1YmqM6l4+Crf4IkImjYrO/mqPwRMh352g23uIaQKFItcQ64I7KMaJxHgAVA=="
},
"node_modules/loader-runner": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/loader-runner/-/loader-runner-4.3.0.tgz",
"integrity": "sha512-3R/1M+yS3j5ou80Me59j7F9IMs4PXs3VqRrm0TU3AbKPxlmpoY1TNscJV/oGJXo8qCatFGTfDbY6W6ipGOYXfg==",
"dev": true,
"peer": true,
"engines": {
"node": ">=6.11.5"
}
},
"node_modules/loader-utils": {
"version": "2.0.4",
"resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.4.tgz",
@@ -6283,13 +5902,6 @@
"integrity": "sha512-Lf+9+2r+Tdp5wXDXC4PcIBjTDtq4UKjCPMQhKIuzpJNW0b96kVqSwW0bT7FhRSfmAiFYgP+SCRvdrDozfh0U5w==",
"license": "MIT"
},
"node_modules/merge-stream": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/merge-stream/-/merge-stream-2.0.0.tgz",
"integrity": "sha512-abv/qOcuPfk3URPfDzmZU1LKmuw8kT+0nIHvKrKgFrwifol/doWcdA4ZqsWQ8ENrFKkd67Mfpo/LovbIUsbt3w==",
"dev": true,
"peer": true
},
"node_modules/micromatch": {
"version": "4.0.8",
"resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.8.tgz",
@@ -6302,29 +5914,6 @@
"node": ">=8.6"
}
},
"node_modules/mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true,
"peer": true,
"engines": {
"node": ">= 0.6"
}
},
"node_modules/mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"peer": true,
"dependencies": {
"mime-db": "1.52.0"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/ms": {
"version": "2.1.2",
"resolved": "https://registry.npmjs.org/ms/-/ms-2.1.2.tgz",
@@ -6371,9 +5960,9 @@
}
},
"node_modules/nanoid": {
"version": "3.3.8",
"resolved": "https://registry.npmjs.org/nanoid/-/nanoid-3.3.8.tgz",
"integrity": "sha512-WNLf5Sd8oZxOm+TzppcYk8gVOgP+l58xNy58D0nbUnOxOWRWvlcCV4kUF7ltmI6PsrLl/BgKEyS4mqsGChFN0w==",
"version": "3.3.7",
"resolved": "https://registry.npmjs.org/nanoid/-/nanoid-3.3.7.tgz",
"integrity": "sha512-eSRppjcPIatRIMC1U6UngP8XFcz8MQWGQdt1MTBQ7NaAmvXDfvNxbvWV3x2y6CdEUciCSsDHDQZbhYaB8QEo2g==",
"funding": [
{
"type": "github",
@@ -6387,13 +5976,6 @@
"node": "^10 || ^12 || ^13.7 || ^14 || >=15.0.1"
}
},
"node_modules/neo-async": {
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/neo-async/-/neo-async-2.6.2.tgz",
"integrity": "sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw==",
"dev": true,
"peer": true
},
"node_modules/node-addon-api": {
"version": "7.1.0",
"resolved": "https://registry.npmjs.org/node-addon-api/-/node-addon-api-7.1.0.tgz",
@@ -6424,9 +6006,9 @@
}
},
"node_modules/node-releases": {
"version": "2.0.19",
"resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.19.tgz",
"integrity": "sha512-xxOWJsBKtzAq7DY0J+DTzuz58K8e7sJbdgwkbMWQe8UYB6ekmsQ45q0M/tJDsGaZmbC+l7n57UV8Hl5tHxO9uw=="
"version": "2.0.14",
"resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.14.tgz",
"integrity": "sha512-y10wOWt8yZpqXmOgRo77WaHEmhYQYGNA6y421PKsKYWEK8aW+cqAphborZDhqfyKrbZEN92CN1X2KbafY2s7Yw=="
},
"node_modules/npm": {
"version": "10.8.1",
@@ -9033,9 +8615,9 @@
}
},
"node_modules/picocolors": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/picocolors/-/picocolors-1.1.1.tgz",
"integrity": "sha512-xceH2snhtb5M9liqDsmEw56le376mTZkEX/jEb/RxNFyegNul7eNslCXP9FDj/Lcu0X8KEyMceP2ntpaHrDEVA=="
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/picocolors/-/picocolors-1.0.1.tgz",
"integrity": "sha512-anP1Z8qwhkbmu7MFP5iTt+wQKXgwzf7zTyGlcdzabySa9vd0Xt392U0rVmz9poOaBj0uHJKyyo9/upk0HrEQew=="
},
"node_modules/picomatch": {
"version": "2.3.1",
@@ -9168,16 +8750,6 @@
"node": ">=6"
}
},
"node_modules/randombytes": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/randombytes/-/randombytes-2.1.0.tgz",
"integrity": "sha512-vYl3iOX+4CKUWuxGi9Ukhie6fsqXqS9FE2Zaic4tNFD2N2QQaXOMFbuKK4QmDHC0JO6B1Zp41J0LpT0oR68amQ==",
"dev": true,
"peer": true,
"dependencies": {
"safe-buffer": "^5.1.0"
}
},
"node_modules/react": {
"version": "18.3.1",
"resolved": "https://registry.npmjs.org/react/-/react-18.3.1.tgz",
@@ -9316,6 +8888,7 @@
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.2.1.tgz",
"integrity": "sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ==",
"dev": true,
"funding": [
{
"type": "github",
@@ -9365,16 +8938,6 @@
"semver": "bin/semver.js"
}
},
"node_modules/serialize-javascript": {
"version": "6.0.2",
"resolved": "https://registry.npmjs.org/serialize-javascript/-/serialize-javascript-6.0.2.tgz",
"integrity": "sha512-Saa1xPByTTq2gdeFZYLLo+RFE35NHZkAbqZeWNd3BpzppeVisAqpDjcp8dyf6uIvEqJRd46jemmyA4iFIeVk8g==",
"dev": true,
"peer": true,
"dependencies": {
"randombytes": "^2.1.0"
}
},
"node_modules/shallowequal": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/shallowequal/-/shallowequal-1.1.0.tgz",
@@ -9396,17 +8959,6 @@
"node": ">=0.10.0"
}
},
"node_modules/source-map-support": {
"version": "0.5.21",
"resolved": "https://registry.npmjs.org/source-map-support/-/source-map-support-0.5.21.tgz",
"integrity": "sha512-uBHU3L3czsIyYXKX88fdrGovxdSCoTGDRZ6SYXtSRxLZUzHg5P/66Ht6uoUlHu9EZod+inXhKo3qQgwXUT/y1w==",
"dev": true,
"peer": true,
"dependencies": {
"buffer-from": "^1.0.0",
"source-map": "^0.6.0"
}
},
"node_modules/stable": {
"version": "0.1.8",
"resolved": "https://registry.npmjs.org/stable/-/stable-0.1.8.tgz",
@@ -9473,16 +9025,6 @@
"resolved": "https://registry.npmjs.org/svg-parser/-/svg-parser-2.0.4.tgz",
"integrity": "sha512-e4hG1hRwoOdRb37cIMSgzNsxyzKfayW6VOflrwvR+/bzrkyxY/31WkbgnQpgtrNp1SdpJvpUAGTa/ZoiPNDuRQ=="
},
"node_modules/tapable": {
"version": "2.2.1",
"resolved": "https://registry.npmjs.org/tapable/-/tapable-2.2.1.tgz",
"integrity": "sha512-GNzQvQTOIP6RyTfE2Qxb8ZVlNmw0n88vp1szwWRimP02mnTsx3Wtn5qRdqY9w2XduFNUgvOwhNnQsjwCp+kqaQ==",
"dev": true,
"peer": true,
"engines": {
"node": ">=6"
}
},
"node_modules/term-size": {
"version": "2.2.1",
"resolved": "https://registry.npmjs.org/term-size/-/term-size-2.2.1.tgz",
@@ -9495,86 +9037,6 @@
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/terser": {
"version": "5.37.0",
"resolved": "https://registry.npmjs.org/terser/-/terser-5.37.0.tgz",
"integrity": "sha512-B8wRRkmre4ERucLM/uXx4MOV5cbnOlVAqUst+1+iLKPI0dOgFO28f84ptoQt9HEI537PMzfYa/d+GEPKTRXmYA==",
"dev": true,
"peer": true,
"dependencies": {
"@jridgewell/source-map": "^0.3.3",
"acorn": "^8.8.2",
"commander": "^2.20.0",
"source-map-support": "~0.5.20"
},
"bin": {
"terser": "bin/terser"
},
"engines": {
"node": ">=10"
}
},
"node_modules/terser-webpack-plugin": {
"version": "5.3.10",
"resolved": "https://registry.npmjs.org/terser-webpack-plugin/-/terser-webpack-plugin-5.3.10.tgz",
"integrity": "sha512-BKFPWlPDndPs+NGGCr1U59t0XScL5317Y0UReNrHaw9/FwhPENlq6bfgs+4yPfyP51vqC1bQ4rp1EfXW5ZSH9w==",
"dev": true,
"peer": true,
"dependencies": {
"@jridgewell/trace-mapping": "^0.3.20",
"jest-worker": "^27.4.5",
"schema-utils": "^3.1.1",
"serialize-javascript": "^6.0.1",
"terser": "^5.26.0"
},
"engines": {
"node": ">= 10.13.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/webpack"
},
"peerDependencies": {
"webpack": "^5.1.0"
},
"peerDependenciesMeta": {
"@swc/core": {
"optional": true
},
"esbuild": {
"optional": true
},
"uglify-js": {
"optional": true
}
}
},
"node_modules/terser-webpack-plugin/node_modules/schema-utils": {
"version": "3.3.0",
"resolved": "https://registry.npmjs.org/schema-utils/-/schema-utils-3.3.0.tgz",
"integrity": "sha512-pN/yOAvcC+5rQ5nERGuwrjLlYvLTbCibnZ1I7B1LaiAz9BRBlE9GMgE/eqV30P7aJQUf7Ddimy/RsbYO/GrVGg==",
"dev": true,
"peer": true,
"dependencies": {
"@types/json-schema": "^7.0.8",
"ajv": "^6.12.5",
"ajv-keywords": "^3.5.2"
},
"engines": {
"node": ">= 10.13.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/webpack"
}
},
"node_modules/terser/node_modules/commander": {
"version": "2.20.3",
"resolved": "https://registry.npmjs.org/commander/-/commander-2.20.3.tgz",
"integrity": "sha512-GpVkmM8vF2vQUkj2LvZmD35JxeJOLCwJ9cUkugyk2nuhbv3+mJvpLYYt+0+USMxE+oj+ey/lJEnhZw75x/OMcQ==",
"dev": true,
"peer": true
},
"node_modules/timsort": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/timsort/-/timsort-0.3.0.tgz",
@@ -9621,6 +9083,7 @@
"version": "5.4.5",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.4.5.tgz",
"integrity": "sha512-vcI4UpRgg81oIRUFwR0WSIHKt11nJ7SAVlYNIu+QpqeyXP+gpQJy/Z4+F0aGxSE4MqwjyXvW/TzgkLAx2AGHwQ==",
"dev": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
@@ -9635,13 +9098,6 @@
"integrity": "sha512-ARDJmphmdvUk6Glw7y9DQ2bFkKBHwQHLi2lsaH6PPmz/Ka9sFOBsBluozhDltWmnv9u/cF6Rt87znRTPV+yp/A==",
"license": "MIT"
},
"node_modules/undici-types": {
"version": "6.20.0",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-6.20.0.tgz",
"integrity": "sha512-Ny6QZ2Nju20vw1SRHe3d9jVu6gJ+4e3+MMpqu7pqE5HT6WsTSlce++GQmK5UXS8mzV8DSYHrQH+Xrf2jVcuKNg==",
"dev": true,
"peer": true
},
"node_modules/unicode-canonical-property-names-ecmascript": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/unicode-canonical-property-names-ecmascript/-/unicode-canonical-property-names-ecmascript-2.0.0.tgz",
@@ -9683,9 +9139,9 @@
}
},
"node_modules/update-browserslist-db": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/update-browserslist-db/-/update-browserslist-db-1.1.1.tgz",
"integrity": "sha512-R8UzCaa9Az+38REPiJ1tXlImTJXlVfgHZsglwBD/k6nj76ctsH1E3q4doGrukiLQd3sGQYu56r5+lo5r94l29A==",
"version": "1.0.16",
"resolved": "https://registry.npmjs.org/update-browserslist-db/-/update-browserslist-db-1.0.16.tgz",
"integrity": "sha512-KVbTxlBYlckhF5wgfyZXTWnMn7MMZjMu9XG8bPlliUOP9ThaF4QnhP8qrjrH7DRzHfSk0oQv1wToW+iA5GajEQ==",
"funding": [
{
"type": "opencollective",
@@ -9701,8 +9157,8 @@
}
],
"dependencies": {
"escalade": "^3.2.0",
"picocolors": "^1.1.0"
"escalade": "^3.1.2",
"picocolors": "^1.0.1"
},
"bin": {
"update-browserslist-db": "cli.js"
@@ -9728,101 +9184,11 @@
"node": ">= 4"
}
},
"node_modules/watchpack": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/watchpack/-/watchpack-2.4.2.tgz",
"integrity": "sha512-TnbFSbcOCcDgjZ4piURLCbJ3nJhznVh9kw6F6iokjiFPl8ONxe9A6nMDVXDiNbrSfLILs6vB07F7wLBrwPYzJw==",
"dev": true,
"peer": true,
"dependencies": {
"glob-to-regexp": "^0.4.1",
"graceful-fs": "^4.1.2"
},
"engines": {
"node": ">=10.13.0"
}
},
"node_modules/weak-lru-cache": {
"version": "1.2.2",
"resolved": "https://registry.npmjs.org/weak-lru-cache/-/weak-lru-cache-1.2.2.tgz",
"integrity": "sha512-DEAoo25RfSYMuTGc9vPJzZcZullwIqRDSI9LOy+fkCJPi6hykCnfKaXTuPBDuXAUcqHXyOgFtHNp/kB2FjYHbw=="
},
"node_modules/webpack": {
"version": "5.97.1",
"resolved": "https://registry.npmjs.org/webpack/-/webpack-5.97.1.tgz",
"integrity": "sha512-EksG6gFY3L1eFMROS/7Wzgrii5mBAFe4rIr3r2BTfo7bcc+DWwFZ4OJ/miOuHJO/A85HwyI4eQ0F6IKXesO7Fg==",
"dev": true,
"peer": true,
"dependencies": {
"@types/eslint-scope": "^3.7.7",
"@types/estree": "^1.0.6",
"@webassemblyjs/ast": "^1.14.1",
"@webassemblyjs/wasm-edit": "^1.14.1",
"@webassemblyjs/wasm-parser": "^1.14.1",
"acorn": "^8.14.0",
"browserslist": "^4.24.0",
"chrome-trace-event": "^1.0.2",
"enhanced-resolve": "^5.17.1",
"es-module-lexer": "^1.2.1",
"eslint-scope": "5.1.1",
"events": "^3.2.0",
"glob-to-regexp": "^0.4.1",
"graceful-fs": "^4.2.11",
"json-parse-even-better-errors": "^2.3.1",
"loader-runner": "^4.2.0",
"mime-types": "^2.1.27",
"neo-async": "^2.6.2",
"schema-utils": "^3.2.0",
"tapable": "^2.1.1",
"terser-webpack-plugin": "^5.3.10",
"watchpack": "^2.4.1",
"webpack-sources": "^3.2.3"
},
"bin": {
"webpack": "bin/webpack.js"
},
"engines": {
"node": ">=10.13.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/webpack"
},
"peerDependenciesMeta": {
"webpack-cli": {
"optional": true
}
}
},
"node_modules/webpack-sources": {
"version": "3.2.3",
"resolved": "https://registry.npmjs.org/webpack-sources/-/webpack-sources-3.2.3.tgz",
"integrity": "sha512-/DyMEOrDgLKKIG0fmvtz+4dUX/3Ghozwgm6iPp8KRhvn+eQf9+Q7GWxVNMk3+uCPWfdXYC4ExGBckIXdFEfH1w==",
"dev": true,
"peer": true,
"engines": {
"node": ">=10.13.0"
}
},
"node_modules/webpack/node_modules/schema-utils": {
"version": "3.3.0",
"resolved": "https://registry.npmjs.org/schema-utils/-/schema-utils-3.3.0.tgz",
"integrity": "sha512-pN/yOAvcC+5rQ5nERGuwrjLlYvLTbCibnZ1I7B1LaiAz9BRBlE9GMgE/eqV30P7aJQUf7Ddimy/RsbYO/GrVGg==",
"dev": true,
"peer": true,
"dependencies": {
"@types/json-schema": "^7.0.8",
"ajv": "^6.12.5",
"ajv-keywords": "^3.5.2"
},
"engines": {
"node": ">= 10.13.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/webpack"
}
},
"node_modules/yallist": {
"version": "3.1.1",
"resolved": "https://registry.npmjs.org/yallist/-/yallist-3.1.1.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "docsgpt",
"version": "0.4.9",
"version": "0.4.7",
"private": false,
"description": "DocsGPT 🦖 is an innovative open-source tool designed to simplify the retrieval of information from project documentation using advanced GPT models 🤖.",
"source": "./src/index.html",
@@ -30,10 +30,9 @@
"styled-components": "^5"
},
"scripts": {
"build": "parcel build src/browser.tsx --public-url ./",
"build": "parcel build src/main.tsx --public-url ./",
"build:react": "parcel build src/index.ts",
"serve": "parcel serve -p 3000",
"dev": "parcel -p 3000",
"dev": "parcel src/index.html -p 3000",
"test": "jest",
"lint": "eslint",
"check": "tsc --noEmit",

View File

@@ -1,85 +1,43 @@
#!/bin/bash
## chmod +x publish.sh - to upgrade ownership
set -e
# Create backup of original files
cp package.json package_original.json
cp package-lock.json package-lock_original.json
# Store the latest version after publishing
LATEST_VERSION=""
cat package.json >> package_copy.json
cat package-lock.json >> package-lock_copy.json
publish_package() {
PACKAGE_NAME=$1
BUILD_COMMAND=$2
IS_REACT=$3
PACKAGE_NAME=$1
BUILD_COMMAND=$2
# Update package name in package.json
jq --arg name "$PACKAGE_NAME" '.name=$name' package.json > temp.json && mv temp.json package.json
echo "Preparing to publish ${PACKAGE_NAME}..."
# Restore original package.json state before each publish
cp package_original.json package.json
cp package-lock_original.json package-lock.json
# Remove 'target' key if the package name is 'docsgpt-react'
if [ "$PACKAGE_NAME" = "docsgpt-react" ]; then
jq 'del(.targets)' package.json > temp.json && mv temp.json package.json
fi
# Update package name in package.json
jq --arg name "$PACKAGE_NAME" '.name=$name' package.json > temp.json && mv temp.json package.json
if [ -d "dist" ]; then
echo "Deleting existing dist directory..."
rm -rf dist
fi
# Handle targets based on package type
if [ "$IS_REACT" = "true" ]; then
echo "Removing targets for React library build..."
jq 'del(.targets)' package.json > temp.json && mv temp.json package.json
fi
npm version patch
# Clean dist directory
if [ -d "dist" ]; then
echo "Cleaning dist directory..."
rm -rf dist
fi
npm run "$BUILD_COMMAND"
# update version and store it
LATEST_VERSION=$(npm version patch)
echo "New version: ${LATEST_VERSION}"
# Build package
npm run "$BUILD_COMMAND"
# Replace npm publish with npm pack for testing
npm publish
echo "Successfully packaged ${PACKAGE_NAME}"
# Log the bundle size
TARBALL="${PACKAGE_NAME}-${LATEST_VERSION#v}.tgz"
if [ -f "$TARBALL" ]; then
BUNDLE_SIZE=$(du -h "$TARBALL" | cut -f1)
echo "Bundle size for ${PACKAGE_NAME}: ${BUNDLE_SIZE}"
else
echo "Error: ${TARBALL} not found."
exit 1
fi
# Publish to npm
npm publish
# Clean up
mv package_copy.json package.json
mv package-lock_copy.json package-lock.json
echo "Published ${PACKAGE_NAME}"
}
# First publish docsgpt (HTML bundle)
publish_package "docsgpt" "build" "false"
# Publish docsgpt package
publish_package "docsgpt" "build"
# Then publish docsgpt-react (React library)
publish_package "docsgpt-react" "build:react" "true"
# Publish docsgpt-react package
publish_package "docsgpt-react" "build:react"
# Restore original state but keep the updated version
cp package_original.json package.json
cp package-lock_original.json package-lock.json
# Update the version in the final package.json
jq --arg version "${LATEST_VERSION#v}" '.version=$version' package.json > temp.json && mv temp.json package.json
# Run npm install to update package-lock.json with the new version
npm install --package-lock-only
# Cleanup backup files
rm -f package_original.json
rm -f package-lock_original.json
rm -f temp.json
echo "---Process completed---"
echo "Final version in package.json: $(jq -r '.version' package.json)"
echo "Final version in package-lock.json: $(jq -r '.version' package-lock.json)"
echo "Generated test packages:"
ls *.tgz
rm -rf package_copy.json
rm -rf package-lock_copy.json
echo "---Process completed---"

View File

@@ -1,11 +1,11 @@
import React from "react"
import {DocsGPTWidget} from "./components/DocsGPTWidget"
import {SearchBar} from "./components/SearchBar"
export const App = () => {
const App = () => {
return (
<div>
<SearchBar/>
<DocsGPTWidget/>
</div>
)
}
}
export default App

View File

@@ -1,22 +0,0 @@
//exports browser ready methods
import { createRoot } from "react-dom/client";
import { DocsGPTWidget } from './components/DocsGPTWidget';
import { SearchBar } from './components/SearchBar';
import React from "react";
if (typeof window !== 'undefined') {
const renderWidget = (elementId: string, props = {}) => {
const root = createRoot(document.getElementById(elementId) as HTMLElement);
root.render(<DocsGPTWidget {...props} />);
};
const renderSearchBar = (elementId: string, props = {}) => {
const root = createRoot(document.getElementById(elementId) as HTMLElement);
root.render(<SearchBar {...props} />);
};
(window as any).renderDocsGPTWidget = renderWidget;
(window as any).renderSearchBar = renderSearchBar;
}
export { DocsGPTWidget, SearchBar };

View File

@@ -1,9 +1,9 @@
"use client";
import React, { useRef } from 'react'
import DOMPurify from 'dompurify';
import styled, { keyframes, css } from 'styled-components';
import styled, { keyframes, createGlobalStyle } from 'styled-components';
import { PaperPlaneIcon, RocketIcon, ExclamationTriangleIcon, Cross2Icon } from '@radix-ui/react-icons';
import { FEEDBACK, MESSAGE_TYPE, Query, Status, WidgetCoreProps, WidgetProps } from '../types/index';
import { FEEDBACK, MESSAGE_TYPE, Query, Status, WidgetProps } from '../types/index';
import { fetchAnswerStreaming, sendFeedback } from '../requests/streamingApi';
import { ThemeProvider } from 'styled-components';
import Like from "../assets/like.svg"
@@ -49,86 +49,7 @@ const sizesConfig = {
maxHeight: custom.maxHeight || '70vh',
}),
};
const createBox = keyframes`
0% {
transform: scale(0.6);
}
90% {
transform: scale(1.02);
}
100% {
transform: scale(1);
}
`
const closeBox = keyframes`
0% {
transform: scale(1);
}
10% {
transform: scale(1.02);
}
100% {
transform: scale(0.6);
}
`
const openContainer = keyframes`
0% {
width: 200px;
height: 100px;
}
100% {
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
border-radius: 12px;
}`
const closeContainer = keyframes`
0% {
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
border-radius: 12px;
}
100% {
width: 200px;
height: 100px;
}
`
const fadeIn = keyframes`
from {
opacity: 0;
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
transform: scale(0.9);
}
to {
opacity: 1;
transform: scale(1);
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
}
`
const fadeOut = keyframes`
from {
opacity: 1;
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
}
to {
opacity: 0;
transform: scale(0.9);
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
}
`
const scaleAnimation = keyframes`
from {
transform: scale(1.2);
}
to {
transform: scale(1);
}
`
const Overlay = styled.div`
position: fixed;
top: 0;
@@ -139,35 +60,53 @@ const Overlay = styled.div`
z-index: 999;
transition: opacity 0.5s;
`
const WidgetContainer = styled.div<{ modal?: boolean, isOpen?: boolean }>`
all: initial;
position: fixed;
right: ${props => props.modal ? '50%' : '10px'};
bottom: ${props => props.modal ? '50%' : '10px'};
z-index: 1001;
z-index: 1000;
display: none;
transform-origin:100% 100%;
display: block;
&.modal{
transform : translate(50%,50%);
}
&.open {
animation: css ${createBox} 250ms cubic-bezier(0.25, 0.1, 0.25, 1) forwards;
animation: createBox 250ms cubic-bezier(0.25, 0.1, 0.25, 1) forwards;
}
&.close {
animation: css ${closeBox} 250ms cubic-bezier(0.25, 0.1, 0.25, 1) forwards;
animation: closeBox 250ms cubic-bezier(0.25, 0.1, 0.25, 1) forwards;
}
${props => props.modal &&
"transform : translate(50%,50%);"
}
align-items: center;
text-align: left;
`;
@keyframes createBox {
0% {
transform: scale(0.6);
}
90% {
transform: scale(1.02);
}
100% {
transform: scale(1);
}
}
@keyframes closeBox {
0% {
transform: scale(1);
}
10% {
transform: scale(1.02);
}
100% {
transform: scale(0.6);
}
}
`;
const StyledContainer = styled.div<{ isOpen: boolean }>`
all: initial;
max-height: ${(props) => props.theme.dimensions.maxHeight};
max-width: ${(props) => props.theme.dimensions.maxWidth};
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height} ;
position: relative;
flex-direction: column;
justify-content: space-between;
@@ -180,20 +119,68 @@ const StyledContainer = styled.div<{ isOpen: boolean }>`
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05), 0 2px 4px rgba(0, 0, 0, 0.1);
padding: 26px 26px 0px 26px;
animation: ${({ isOpen, theme }) =>
theme.dimensions.size === 'large'
? isOpen
? css`${fadeIn} 150ms ease-in forwards`
: css` ${fadeOut} 150ms ease-in forwards`
: isOpen
? css`${openContainer} 150ms ease-in forwards`
: css`${closeContainer} 250ms ease-in forwards`};
theme.dimensions.size === 'large'
? isOpen
? 'fadeIn 150ms ease-in forwards'
: 'fadeOut 150ms ease-in forwards'
: isOpen
? 'openContainer 150ms ease-in forwards'
: 'closeContainer 250ms ease-in forwards'};
@keyframes openContainer {
0% {
width: 200px;
height: 100px;
}
100% {
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
border-radius: 12px;
}
}
@keyframes closeContainer {
0% {
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
border-radius: 12px;
}
100% {
width: 200px;
height: 100px;
}
}
@keyframes fadeIn {
from {
opacity: 0;
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
transform: scale(0.9);
}
to {
opacity: 1;
transform: scale(1);
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
}
}
@keyframes fadeOut {
from {
opacity: 1;
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
}
to {
opacity: 0;
transform: scale(0.9);
width: ${(props) => props.theme.dimensions.width};
height: ${(props) => props.theme.dimensions.height};
}
}
@media only screen and (max-width: 768px) {
max-height: 100vh;
max-width: 80vw;
overflow: auto;
}
`;
const FloatingButton = styled.div<{ bgcolor: string, hidden: boolean, isAnimatingButton: boolean }>`
position: fixed;
display: ${props => props.hidden ? "none" : "flex"};
@@ -211,7 +198,7 @@ const FloatingButton = styled.div<{ bgcolor: string, hidden: boolean, isAnimatin
background: ${props => props.bgcolor};
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
cursor: pointer;
animation: ${props => props.isAnimatingButton ? css`${scaleAnimation} 200ms forwards` : 'none'};
animation: ${props => props.isAnimatingButton ? 'scaleAnimation 200ms forwards' : 'none'};
&:hover {
transform: scale(1.1);
transition: transform 0.2s ease-in-out;
@@ -219,6 +206,15 @@ const FloatingButton = styled.div<{ bgcolor: string, hidden: boolean, isAnimatin
&:not(:hover) {
transition: transform 0.2s ease-in-out;
}
@keyframes scaleAnimation {
from {
transform: scale(1.2);
}
to {
transform: scale(1);
}
}
`;
const CancelButton = styled.button`
cursor: pointer;
@@ -482,47 +478,7 @@ const Hero = ({ title, description, theme }: { title: string, description: strin
</HeroContainer>
);
};
export const DocsGPTWidget = (props: WidgetProps) => {
const {
buttonIcon = 'https://d3dg1063dc54p9.cloudfront.net/widget/chat.svg',
buttonText = 'Ask a question',
buttonBg = 'linear-gradient(to bottom right, #5AF0EC, #E80D9D)',
defaultOpen = false,
...coreProps
} = props
const [open, setOpen] = React.useState<boolean>(defaultOpen);
const [isAnimatingButton, setIsAnimatingButton] = React.useState(false);
const [isFloatingButtonVisible, setIsFloatingButtonVisible] = React.useState(true);
React.useEffect(() => {
if (isFloatingButtonVisible)
setTimeout(() => setIsAnimatingButton(true), 250);
return () => {
setIsAnimatingButton(false)
}
}, [isFloatingButtonVisible])
const handleClose = () => {
setIsFloatingButtonVisible(true);
setOpen(false);
};
const handleOpen = () => {
setOpen(true);
setIsFloatingButtonVisible(false);
}
return (
<>
<FloatingButton bgcolor={buttonBg} onClick={handleOpen} hidden={!isFloatingButtonVisible} isAnimatingButton={isAnimatingButton}>
<img width={24} src={buttonIcon} />
<span>{buttonText}</span>
</FloatingButton>
<WidgetCore isOpen={open} handleClose={handleClose} {...coreProps} />
</>
)
}
export const WidgetCore = ({
export const DocsGPTWidget = ({
apiHost = 'https://gptcloud.arc53.com',
apiKey = '82962c9a-aa77-4152-94e5-a4f84fd44c6a',
avatar = 'https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png',
@@ -532,37 +488,25 @@ export const WidgetCore = ({
heroDescription = 'This chatbot is built with DocsGPT and utilises GenAI, please review important information using sources.',
size = 'small',
theme = 'dark',
buttonIcon = 'https://d3dg1063dc54p9.cloudfront.net/widget/chat.svg',
buttonText = 'Ask a question',
buttonBg = 'linear-gradient(to bottom right, #5AF0EC, #E80D9D)',
collectFeedback = true,
isOpen = false,
prefilledQuery = "",
handleClose
}: WidgetCoreProps) => {
const [prompt, setPrompt] = React.useState<string>("");
const [mounted, setMounted] = React.useState(false);
deafultOpen = false
}: WidgetProps) => {
const [prompt, setPrompt] = React.useState('');
const [status, setStatus] = React.useState<Status>('idle');
const [queries, setQueries] = React.useState<Query[]>([]);
const [conversationId, setConversationId] = React.useState<string | null>(null);
const [queries, setQueries] = React.useState<Query[]>([])
const [conversationId, setConversationId] = React.useState<string | null>(null)
const [open, setOpen] = React.useState<boolean>(deafultOpen)
const [eventInterrupt, setEventInterrupt] = React.useState<boolean>(false); //click or scroll by user while autoScrolling
const isBubbleHovered = useRef<boolean>(false);
const [isAnimatingButton, setIsAnimatingButton] = React.useState(false);
const [isFloatingButtonVisible, setIsFloatingButtonVisible] = React.useState(true);
const isBubbleHovered = useRef<boolean>(false)
const widgetRef = useRef<HTMLDivElement>(null)
const endMessageRef = React.useRef<HTMLDivElement | null>(null);
const md = new MarkdownIt();
React.useEffect(() => {
if (isOpen) {
setMounted(true); // Mount the component
appendQuery(prefilledQuery)
} else {
// Wait for animations before unmounting
const timeout = setTimeout(() => {
setMounted(false)
}, 250);
return () => clearTimeout(timeout);
}
}, [isOpen]);
const handleUserInterrupt = () => {
(status === 'loading') && setEventInterrupt(true);
}
@@ -662,138 +606,144 @@ export const WidgetCore = ({
}
// submit handler
const handleSubmit = async (e: React.FormEvent<HTMLFormElement>) => {
e.preventDefault();
await appendQuery(prompt)
}
const appendQuery = async (userQuery:string) => {
console.log(userQuery)
if(!userQuery)
return;
e.preventDefault()
setEventInterrupt(false);
queries.push({ prompt:userQuery});
setPrompt('');
await stream(userQuery);
queries.push({ prompt })
setPrompt('')
await stream(prompt)
}
const handleImageError = (event: React.SyntheticEvent<HTMLImageElement, Event>) => {
event.currentTarget.src = "https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png";
};
const handleClose = () => {
setOpen(false);
setTimeout(() => {
if (widgetRef.current) widgetRef.current.style.display = "none";
setIsFloatingButtonVisible(true);
setIsAnimatingButton(true);
setTimeout(() => setIsAnimatingButton(false), 200);
}, 250)
};
const handleOpen = () => {
setOpen(true);
setIsFloatingButtonVisible(false);
if (widgetRef.current)
widgetRef.current.style.display = 'block'
}
const dimensions =
typeof size === 'object' && 'custom' in size
? sizesConfig.getCustom(size.custom)
: sizesConfig[size];
if (!mounted) return null;
return (
<ThemeProvider theme={{ ...themes[theme], dimensions }}>
{isOpen && size === 'large' &&
{open && size === 'large' &&
<Overlay onClick={handleClose} />
}
{(
<WidgetContainer className={`${size !== 'large' ? (isOpen ? "open" : "close") : "modal"}`} modal={size === 'large'}>
<StyledContainer isOpen={isOpen}>
<div>
<CancelButton onClick={handleClose}>
<Cross2Icon width={24} height={24} color={theme === 'light' ? 'black' : 'white'} />
</CancelButton>
<Header>
<img style={{ transform: 'translateY(-5px)', maxWidth: "42px", maxHeight: "42px" }} onError={handleImageError} src={avatar} alt='docs-gpt' />
<ContentWrapper>
<Title>{title}</Title>
<Description>{description}</Description>
</ContentWrapper>
</Header>
</div>
<Conversation onWheel={handleUserInterrupt} onTouchMove={handleUserInterrupt}>
{
queries.length > 0 ? queries?.map((query, index) => {
return (
<React.Fragment key={index}>
{
query.prompt && <MessageBubble type='QUESTION'>
<Message
type='QUESTION'
ref={(!(query.response || query.error) && index === queries.length - 1) ? endMessageRef : null}>
{query.prompt}
</Message>
</MessageBubble>
}
{
query.response ? <MessageBubble onMouseOver={() => { isBubbleHovered.current = true }} type='ANSWER'>
<Message
type='ANSWER'
ref={(index === queries.length - 1) ? endMessageRef : null}
>
<Markdown
dangerouslySetInnerHTML={{ __html: DOMPurify.sanitize(md.render(query.response)) }}
/>
</Message>
<FloatingButton bgcolor={buttonBg} onClick={handleOpen} hidden={!isFloatingButtonVisible} isAnimatingButton={isAnimatingButton}>
<img width={24} src={buttonIcon} />
<span>{buttonText}</span>
</FloatingButton>
<WidgetContainer ref={widgetRef} className={`${size != "large" && (open ? "open" : "close")}`} modal={size == 'large'}>
{<StyledContainer isOpen={open}>
<div>
<CancelButton onClick={handleClose}>
<Cross2Icon width={24} height={24} color={theme === 'light' ? 'black' : 'white'} />
</CancelButton>
<Header>
<img style={{ transform: 'translateY(-5px)', maxWidth: "42px", maxHeight: "42px" }} onError={handleImageError} src={avatar} alt='docs-gpt' />
<ContentWrapper>
<Title>{title}</Title>
<Description>{description}</Description>
</ContentWrapper>
</Header>
</div>
<Conversation onWheel={handleUserInterrupt} onTouchMove={handleUserInterrupt}>
{
queries.length > 0 ? queries?.map((query, index) => {
return (
<React.Fragment key={index}>
{
query.prompt && <MessageBubble type='QUESTION'>
<Message
type='QUESTION'
ref={(!(query.response || query.error) && index === queries.length - 1) ? endMessageRef : null}>
{query.prompt}
</Message>
</MessageBubble>
}
{
query.response ? <MessageBubble onMouseOver={() => { isBubbleHovered.current = true }} type='ANSWER'>
<Message
type='ANSWER'
ref={(index === queries.length - 1) ? endMessageRef : null}
>
<Markdown
dangerouslySetInnerHTML={{ __html: DOMPurify.sanitize(md.render(query.response)) }}
/>
</Message>
{collectFeedback &&
<Feedback>
<Like
style={{
stroke: query.feedback == 'LIKE' ? '#8860DB' : '#c0c0c0',
visibility: query.feedback == 'LIKE' ? 'visible' : 'hidden'
}}
fill='none'
onClick={() => handleFeedback("LIKE", index)} />
<Dislike
style={{
stroke: query.feedback == 'DISLIKE' ? '#ed8085' : '#c0c0c0',
visibility: query.feedback == 'DISLIKE' ? 'visible' : 'hidden'
}}
fill='none'
onClick={() => handleFeedback("DISLIKE", index)} />
</Feedback>}
</MessageBubble>
: <div>
{
query.error ? <ErrorAlert>
{collectFeedback &&
<Feedback>
<Like
style={{
stroke: query.feedback == 'LIKE' ? '#8860DB' : '#c0c0c0',
visibility: query.feedback == 'LIKE' ? 'visible' : 'hidden'
}}
fill='none'
onClick={() => handleFeedback("LIKE", index)} />
<Dislike
style={{
stroke: query.feedback == 'DISLIKE' ? '#ed8085' : '#c0c0c0',
visibility: query.feedback == 'DISLIKE' ? 'visible' : 'hidden'
}}
fill='none'
onClick={() => handleFeedback("DISLIKE", index)} />
</Feedback>}
</MessageBubble>
: <div>
{
query.error ? <ErrorAlert>
<ExclamationTriangleIcon width={22} height={22} color='#b91c1c' />
<div>
<h5 style={{ margin: 2 }}>Network Error</h5>
<span style={{ margin: 2, fontSize: '13px' }}>{query.error}</span>
</div>
</ErrorAlert>
: <MessageBubble type='ANSWER'>
<Message type='ANSWER' style={{ fontWeight: 600 }}>
<DotAnimation>.</DotAnimation>
<Delay delay={200}>.</Delay>
<Delay delay={400}>.</Delay>
</Message>
</MessageBubble>
}
</div>
}
</React.Fragment>)
})
: <Hero title={heroTitle} description={heroDescription} theme={theme} />
}
</Conversation>
<div>
<PromptContainer
onSubmit={handleSubmit}>
<StyledInput
autoFocus
value={prompt} onChange={(event) => setPrompt(event.target.value)}
type='text' placeholder="Ask your question" />
<StyledButton
disabled={prompt.trim().length == 0 || status !== 'idle'}>
<PaperPlaneIcon width={18} height={18} color='white' />
</StyledButton>
</PromptContainer>
<Tagline>
Powered by&nbsp;
<Hyperlink target='_blank' href='https://www.docsgpt.cloud/'>DocsGPT</Hyperlink>
</Tagline>
</div>
</StyledContainer>
</WidgetContainer>
)
}
<ExclamationTriangleIcon width={22} height={22} color='#b91c1c' />
<div>
<h5 style={{ margin: 2 }}>Network Error</h5>
<span style={{ margin: 2, fontSize: '13px' }}>{query.error}</span>
</div>
</ErrorAlert>
: <MessageBubble type='ANSWER'>
<Message type='ANSWER' style={{ fontWeight: 600 }}>
<DotAnimation>.</DotAnimation>
<Delay delay={200}>.</Delay>
<Delay delay={400}>.</Delay>
</Message>
</MessageBubble>
}
</div>
}
</React.Fragment>)
})
: <Hero title={heroTitle} description={heroDescription} theme={theme} />
}
</Conversation>
<div>
<PromptContainer
onSubmit={handleSubmit}>
<StyledInput
value={prompt} onChange={(event) => setPrompt(event.target.value)}
type='text' placeholder="Ask your question" />
<StyledButton
disabled={prompt.trim().length == 0 || status !== 'idle'}>
<PaperPlaneIcon width={18} height={18} color='white' />
</StyledButton>
</PromptContainer>
<Tagline>
Powered by&nbsp;
<Hyperlink target='_blank' href='https://www.docsgpt.cloud/'>DocsGPT</Hyperlink>
</Tagline>
</div>
</StyledContainer>}
</WidgetContainer>
</ThemeProvider>
)
}

View File

@@ -1,572 +0,0 @@
import React from 'react';
import styled, { ThemeProvider, createGlobalStyle } from 'styled-components';
import { WidgetCore } from './DocsGPTWidget';
import { SearchBarProps } from '@/types';
import { getSearchResults } from '../requests/searchAPI';
import { Result } from '@/types';
import MarkdownIt from 'markdown-it';
import { getOS, processMarkdownString } from '../utils/helper';
import DOMPurify from 'dompurify';
import {
CodeIcon,
TextAlignLeftIcon,
HeadingIcon,
ReaderIcon,
ListBulletIcon,
QuoteIcon
} from '@radix-ui/react-icons';
const themes = {
dark: {
bg: '#202124',
text: '#EDEDED',
primary: {
text: "#FAFAFA",
bg: '#111111'
},
secondary: {
text: "#A1A1AA",
bg: "#38383b"
}
},
light: {
bg: '#EAEAEA',
text: '#171717',
primary: {
text: "#222327",
bg: "#fff"
},
secondary: {
text: "#A1A1AA",
bg: "#F6F6F6"
}
}
}
const GlobalStyle = createGlobalStyle`
.highlight {
color:#007EE6;
}
`;
const loadGeistFont = () => {
const link = document.createElement('link');
link.href = 'https://fonts.googleapis.com/css2?family=Geist:wght@100..900&display=swap';
link.rel = 'stylesheet';
document.head.appendChild(link);
};
const Main = styled.div`
all: initial;
font-family: 'Geist', sans-serif;
`
const SearchButton = styled.button<{ inputWidth: string }>`
padding: 6px 6px;
font-family: inherit;
width: ${({ inputWidth }) => inputWidth};
border-radius: 8px;
display: inline;
color: ${props => props.theme.secondary.text};
outline: none;
border: none;
background-color: ${props => props.theme.secondary.bg};
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
transition: background-color 128ms linear;
text-align: left;
cursor: pointer;
`
const Container = styled.div`
position: relative;
display: inline-block;
`
const SearchResults = styled.div`
position: fixed;
display: flex;
flex-direction: column;
background-color: ${props => props.theme.primary.bg};
border: 1px solid ${props => props.theme.bg};
border-radius: 15px;
padding: 8px 0px 8px 0px;
width: 792px;
max-width: 90vw;
height: 396px;
z-index: 100;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);
color: ${props => props.theme.primary.text};
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.1);
backdrop-filter: blur(16px);
box-sizing: border-box;
@media only screen and (max-width: 768px) {
height: 80vh;
width: 90vw;
}
`;
const SearchResultsScroll = styled.div`
flex: 1;
overflow-y: auto;
overflow-x: hidden;
scrollbar-gutter: stable;
scrollbar-width: thin;
scrollbar-color: #383838 transparent;
padding: 0 16px;
`;
const IconTitleWrapper = styled.div`
display: flex;
align-items: center;
gap: 8px;
.element-icon{
margin: 4px;
}
`;
const Title = styled.h3`
font-size: 15px;
font-weight: 400;
color: ${props => props.theme.primary.text};
margin: 0;
overflow-wrap: break-word;
white-space: normal;
overflow: hidden;
text-overflow: ellipsis;
`;
const ContentWrapper = styled.div`
display: flex;
flex-direction: column;
gap: 12px;
`;
const Content = styled.div`
display: flex;
margin-left: 8px;
flex-direction: column;
gap: 8px;
padding: 4px 0px 0px 12px;
font-size: 15px;
color: ${props => props.theme.primary.text};
line-height: 1.6;
border-left: 2px solid #585858;
overflow: hidden;
`
const ContentSegment = styled.div`
display: flex;
align-items: flex-start;
gap: 8px;
padding-right: 16px;
overflow-wrap: break-word;
white-space: normal;
overflow: hidden;
text-overflow: ellipsis;
`
const ResultWrapper = styled.div`
display: flex;
align-items: flex-start;
width: 100%;
box-sizing: border-box;
padding: 8px 16px;
cursor: pointer;
background-color: ${props => props.theme.primary.bg};
font-family: 'Geist', sans-serif;
transition: background-color 0.2s;
border-radius: 8px;
word-wrap: break-word;
overflow-wrap: break-word;
word-break: break-word;
white-space: normal;
overflow: hidden;
text-overflow: ellipsis;
&:hover {
background-color: ${props => props.theme.bg};
}
`
const Markdown = styled.div`
line-height:18px;
font-size: 11px;
white-space: pre-wrap;
pre {
padding: 8px;
width: 90%;
font-size: 11px;
border-radius: 6px;
overflow-x: auto;
background-color: #1B1C1F;
color: #fff ;
}
h1,h2 {
font-size: 14px;
font-weight: 600;
color: ${(props) => props.theme.text};
opacity: 0.8;
}
h3 {
font-size: 12px;
}
p {
margin: 0px;
line-height: 1.35rem;
font-size: 11px;
}
code:not(pre code) {
border-radius: 6px;
padding: 2px 2px;
margin: 2px;
font-size: 9px;
display: inline;
background-color: #646464;
color: #fff ;
}
img{
max-width: 50%;
}
code {
overflow-x: auto;
}
a{
color: #007ee6;
}
`
const Toolkit = styled.kbd`
position: absolute;
right: 4px;
top: 50%;
transform: translateY(-50%);
background-color: ${(props) => props.theme.primary.bg};
color: ${(props) => props.theme.secondary.text};
font-weight: 600;
font-size: 10px;
padding: 3px 6px;
border: 1px solid ${(props) => props.theme.secondary.text};
border-radius: 4px;
display: flex;
align-items: center;
justify-content: center;
z-index: 1;
pointer-events: none;
`
const Loader = styled.div`
margin: 2rem auto;
border: 4px solid ${props => props.theme.secondary.text};
border-top: 4px solid ${props => props.theme.primary.bg};
border-radius: 50%;
width: 12px;
height: 12px;
animation: spin 1s linear infinite;
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
`;
const NoResults = styled.div`
margin-top: 2rem;
text-align: center;
font-size: 14px;
color: #888;
`;
const AskAIButton = styled.button`
display: flex;
align-items: center;
justify-content: flex-start;
gap: 12px;
width: calc(100% - 32px);
margin: 0 16px 16px 16px;
box-sizing: border-box;
height: 50px;
padding: 8px 24px;
border: none;
border-radius: 6px;
background-color: ${props => props.theme.bg};
color: ${props => props.theme.text};
cursor: pointer;
transition: background-color 0.2s, box-shadow 0.2s;
font-size: 16px;
&:hover {
opacity: 0.8;
}
`
const SearchHeader = styled.div`
display: flex;
align-items: center;
gap: 8px;
margin-bottom: 12px;
padding-bottom: 12px;
border-bottom: 1px solid ${props => props.theme.bg};
`
const TextField = styled.input`
width: calc(100% - 32px);
margin: 0 16px;
padding: 12px 16px;
border: none;
background-color: transparent;
color: ${props => props.theme.text};
font-size: 20px;
font-weight: 400;
outline: none;
&:focus {
border-color: none;
}
`
const EscapeInstruction = styled.kbd`
display: flex;
align-items: center;
justify-content: center;
margin: 12px 16px 0;
padding: 4px 8px;
border-radius: 4px;
background-color: transparent;
border: 1px solid ${props => props.theme.secondary.text};
color: ${props => props.theme.text};
font-size: 12px;
font-family: 'Geist', sans-serif;
white-space: nowrap;
cursor: pointer;
width: fit-content;
&:hover {
background-color: rgba(255, 255, 255, 0.1);
}
`
export const SearchBar = ({
apiKey = "74039c6d-bff7-44ce-ae55-2973cbf13837",
apiHost = "https://gptcloud.arc53.com",
theme = "dark",
placeholder = "Search or Ask AI...",
width = "256px",
buttonText = "Search here"
}: SearchBarProps) => {
const [input, setInput] = React.useState<string>("");
const [loading, setLoading] = React.useState<boolean>(false);
const [isWidgetOpen, setIsWidgetOpen] = React.useState<boolean>(false);
const inputRef = React.useRef<HTMLInputElement>(null);
const containerRef = React.useRef<HTMLInputElement>(null);
const [isResultVisible, setIsResultVisible] = React.useState<boolean>(false);
const [results, setResults] = React.useState<Result[]>([]);
const debounceTimeout = React.useRef<ReturnType<typeof setTimeout> | null>(null);
const abortControllerRef = React.useRef<AbortController | null>(null);
const browserOS = getOS();
const isTouch = 'ontouchstart' in window;
const getKeyboardInstruction = () => {
if (isResultVisible) return "Enter";
return browserOS === 'mac' ? '⌘ + K' : 'Ctrl + K';
};
React.useEffect(() => {
loadGeistFont()
const handleClickOutside = (event: MouseEvent) => {
if (containerRef.current && !containerRef.current.contains(event.target as Node)) {
setIsResultVisible(false);
}
};
const handleKeyDown = (event: KeyboardEvent) => {
if (
((browserOS === 'win' || browserOS === 'linux') && event.ctrlKey && event.key === 'k') ||
(browserOS === 'mac' && event.metaKey && event.key === 'k')
) {
event.preventDefault();
inputRef.current?.focus();
setIsResultVisible(true);
} else if (event.key === 'Escape') {
setIsResultVisible(false);
}
};
document.addEventListener('mousedown', handleClickOutside);
document.addEventListener('keydown', handleKeyDown);
return () => {
document.removeEventListener('mousedown', handleClickOutside);
document.removeEventListener('keydown', handleKeyDown);
};
}, []);
React.useEffect(() => {
if (!input) {
setResults([]);
return;
}
setLoading(true);
if (debounceTimeout.current) {
clearTimeout(debounceTimeout.current);
}
if (abortControllerRef.current) {
abortControllerRef.current.abort();
}
const abortController = new AbortController();
abortControllerRef.current = abortController;
debounceTimeout.current = setTimeout(() => {
getSearchResults(input, apiKey, apiHost, abortController.signal)
.then((data) => setResults(data))
.catch((err) => !abortController.signal.aborted && console.log(err))
.finally(() => setLoading(false));
}, 500);
return () => {
abortController.abort();
clearTimeout(debounceTimeout.current ?? undefined);
};
}, [input])
const handleKeyDown = (event: React.KeyboardEvent<HTMLInputElement>) => {
if (event.key === 'Enter') {
event.preventDefault();
openWidget();
}
};
const openWidget = () => {
setIsWidgetOpen(true);
setIsResultVisible(false);
};
const handleClose = () => {
setIsWidgetOpen(false);
setIsResultVisible(true);
};
return (
<ThemeProvider theme={{ ...themes[theme] }}>
<Main>
<GlobalStyle />
<Container ref={containerRef}>
<SearchButton
onClick={() => setIsResultVisible(true)}
inputWidth={width}
>
{buttonText}
</SearchButton>
{
isResultVisible && (
<SearchResults>
<SearchHeader>
<TextField
ref={inputRef}
value={input}
onChange={(e) => setInput(e.target.value)}
onKeyDown={(e) => handleKeyDown(e)}
placeholder={placeholder}
autoFocus
/>
<EscapeInstruction onClick={() => setIsResultVisible(false)}>
Esc
</EscapeInstruction>
</SearchHeader>
<AskAIButton onClick={openWidget}>
<img
src="https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png"
alt="DocsGPT"
width={24}
height={24}
/>
<span>Ask the AI</span>
</AskAIButton>
<SearchResultsScroll>
{!loading ? (
results.length > 0 ? (
results.map((res, key) => {
const containsSource = res.source !== 'local';
const processedResults = processMarkdownString(res.text, input);
if (processedResults)
return (
<ResultWrapper
key={key}
onClick={() => {
if (!containsSource) return;
window.open(res.source, '_blank', 'noopener, noreferrer');
}}
>
<div style={{ flex: 1 }}>
<ContentWrapper>
<IconTitleWrapper>
<ReaderIcon className="title-icon" />
<Title>{res.title}</Title>
</IconTitleWrapper>
<Content>
{processedResults.map((element, index) => (
<ContentSegment key={index}>
<IconTitleWrapper>
{element.tag === 'code' && <CodeIcon className="element-icon" />}
{(element.tag === 'bulletList' || element.tag === 'numberedList') && <ListBulletIcon className="element-icon" />}
{element.tag === 'text' && <TextAlignLeftIcon className="element-icon" />}
{element.tag === 'heading' && <HeadingIcon className="element-icon" />}
{element.tag === 'blockquote' && <QuoteIcon className="element-icon" />}
</IconTitleWrapper>
<div
style={{ flex: 1 }}
dangerouslySetInnerHTML={{
__html: DOMPurify.sanitize(element.content),
}}
/>
</ContentSegment>
))}
</Content>
</ContentWrapper>
</div>
</ResultWrapper>
);
return null;
})
) : (
<NoResults>No results found</NoResults>
)
) : (
<Loader />
)}
</SearchResultsScroll>
</SearchResults>
)
}
{
isTouch ?
<Toolkit
onClick={() => {
setIsWidgetOpen(true)
}}
title={"Tap to Ask the AI"}>
Tap
</Toolkit>
:
<Toolkit
title={getKeyboardInstruction() === "Enter" ? "Press Enter to Ask AI" : ""}>
{getKeyboardInstruction()}
</Toolkit>
}
</Container>
<WidgetCore
theme={theme}
apiHost={apiHost}
apiKey={apiKey}
prefilledQuery={input}
isOpen={isWidgetOpen}
handleClose={handleClose} size={"large"}
/>
</Main>
</ThemeProvider>
)
}

View File

@@ -9,11 +9,11 @@
<body>
<div id="app"></div>
<script type="module" src="main.tsx"></script>
<!-- <script type="module">
<script type="module" src="../dist/main.js"></script>
<script type="module">
window.onload = function() {
renderDocsGPTWidget('app');
renderSearchBar('app')
}
</script> -->
</script>
</body>
</html>

View File

@@ -1,3 +1 @@
//exports methods for React
export {SearchBar} from "./components/SearchBar"
export { DocsGPTWidget } from "./components/DocsGPTWidget";
export { DocsGPTWidget } from "./components/DocsGPTWidget";

View File

@@ -1,7 +1,12 @@
//development
import { createRoot } from "react-dom/client";
import { App } from "./App";
import React from "react";
const container = document.getElementById("app") as HTMLElement;
const root = createRoot(container)
root.render(<App />);
import React from 'react';
import { createRoot } from 'react-dom/client';
import { DocsGPTWidget } from './components/DocsGPTWidget';
if (typeof window !== 'undefined') {
const renderWidget = (elementId: string, props = {}) => {
const root = createRoot(document.getElementById(elementId) as HTMLElement);
root.render(<DocsGPTWidget {...props} />);
};
(window as any).renderDocsGPTWidget = renderWidget;
}
export { DocsGPTWidget };

View File

@@ -1,37 +0,0 @@
import { Result } from "@/types";
async function getSearchResults(question: string, apiKey: string, apiHost: string, signal: AbortSignal): Promise<Result[]> {
const payload = {
question,
api_key: apiKey
};
try {
const response = await fetch(`${apiHost}/api/search`, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(payload),
signal: signal
});
if (!response.ok) {
throw new Error(`Error: ${response.status}`);
}
const data: Result[] = await response.json();
return data;
} catch (error) {
if (!(error instanceof DOMException && error.name == "AbortError")) {
console.error("Failed to fetch documents:", error);
}
throw error;
}
}
export {
getSearchResults
}

View File

@@ -32,26 +32,5 @@ export interface WidgetProps {
buttonText?:string;
buttonBg?:string;
collectFeedback?:boolean;
defaultOpen?: boolean;
}
export interface WidgetCoreProps extends WidgetProps {
widgetRef?:React.RefObject<HTMLDivElement> | null;
handleClose?:React.MouseEventHandler | undefined;
isOpen:boolean;
prefilledQuery?: string;
}
export interface SearchBarProps {
apiHost?: string;
apiKey?: string;
theme?: THEME;
placeholder?: string;
width?: string;
buttonText?: string;
}
export interface Result {
text:string;
title:string;
source:string;
}
deafultOpen?: boolean;
}

View File

@@ -1,151 +0,0 @@
export const getOS = () => {
const platform = window.navigator.platform;
const userAgent = window.navigator.userAgent || window.navigator.vendor;
if (/Mac/i.test(platform)) {
return 'mac';
}
if (/Win/i.test(platform)) {
return 'win';
}
if (/Linux/i.test(platform) && !/Android/i.test(userAgent)) {
return 'linux';
}
if (/Android/i.test(userAgent)) {
return 'android';
}
if (/iPhone|iPad|iPod/i.test(userAgent)) {
return 'ios';
}
return 'other';
};
interface ParsedElement {
content: string;
tag: string;
}
export const processMarkdownString = (markdown: string, keyword?: string): ParsedElement[] => {
const lines = markdown.trim().split('\n');
const keywordLower = keyword?.toLowerCase();
const escapeRegExp = (str: string) => str.replace(/[-\/\\^$*+?.()|[\]{}]/g, '\\$&');
const escapedKeyword = keyword ? escapeRegExp(keyword) : '';
const keywordRegex = keyword ? new RegExp(`(${escapedKeyword})`, 'gi') : null;
let isInCodeBlock = false;
let codeBlockContent: string[] = [];
let matchingLines: ParsedElement[] = [];
let firstLine: ParsedElement | null = null;
for (let i = 0; i < lines.length; i++) {
const trimmedLine = lines[i].trim();
if (!trimmedLine) continue;
if (trimmedLine.startsWith('```')) {
if (!isInCodeBlock) {
isInCodeBlock = true;
codeBlockContent = [];
} else {
isInCodeBlock = false;
const codeContent = codeBlockContent.join('\n');
const parsedElement: ParsedElement = {
content: codeContent,
tag: 'code'
};
if (!firstLine) {
firstLine = parsedElement;
}
if (keywordLower && codeContent.toLowerCase().includes(keywordLower)) {
parsedElement.content = parsedElement.content.replace(keywordRegex!, '<span class="highlight">$1</span>');
matchingLines.push(parsedElement);
}
}
continue;
}
if (isInCodeBlock) {
codeBlockContent.push(trimmedLine);
continue;
}
let parsedElement: ParsedElement | null = null;
const headingMatch = trimmedLine.match(/^(#{1,6})\s+(.+)$/);
const bulletMatch = trimmedLine.match(/^[-*]\s+(.+)$/);
const numberedMatch = trimmedLine.match(/^\d+\.\s+(.+)$/);
const blockquoteMatch = trimmedLine.match(/^>+\s*(.+)$/);
let content = trimmedLine;
if (headingMatch) {
content = headingMatch[2];
parsedElement = {
content: content,
tag: 'heading'
};
} else if (bulletMatch) {
content = bulletMatch[1];
parsedElement = {
content: content,
tag: 'bulletList'
};
} else if (numberedMatch) {
content = numberedMatch[1];
parsedElement = {
content: content,
tag: 'numberedList'
};
} else if (blockquoteMatch) {
content = blockquoteMatch[1];
parsedElement = {
content: content,
tag: 'blockquote'
};
} else {
parsedElement = {
content: content,
tag: 'text'
};
}
if (!firstLine) {
firstLine = parsedElement;
}
if (keywordLower && parsedElement.content.toLowerCase().includes(keywordLower)) {
parsedElement.content = parsedElement.content.replace(keywordRegex!, '<span class="highlight">$1</span>');
matchingLines.push(parsedElement);
}
}
if (isInCodeBlock && codeBlockContent.length > 0) {
const codeContent = codeBlockContent.join('\n');
const parsedElement: ParsedElement = {
content: codeContent,
tag: 'code'
};
if (!firstLine) {
firstLine = parsedElement;
}
if (keywordLower && codeContent.toLowerCase().includes(keywordLower)) {
parsedElement.content = parsedElement.content.replace(keywordRegex!, '<span class="highlight">$1</span>');
matchingLines.push(parsedElement);
}
}
if (keywordLower && matchingLines.length > 0) {
return matchingLines;
}
return firstLine ? [firstLine] : [];
};

View File

@@ -21,7 +21,7 @@
/* Linting */
"strict": true,
"noUnusedLocals": false,
"noUnusedParameters": false,
"noUnusedParameters": true,
"noFallthroughCasesInSwitch": true,
/* The "typeRoots" configuration specifies the locations where
TypeScript looks for type definitions (.d.ts files) to

View File

@@ -5,7 +5,7 @@
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0,viewport-fit=cover" />
<meta name="apple-mobile-web-app-capable" content="yes">
<title>DocsGPT</title>
<title>DocsGPT 🦖</title>
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" />
</head>

File diff suppressed because it is too large Load Diff

View File

@@ -19,21 +19,20 @@
]
},
"dependencies": {
"@reduxjs/toolkit": "^2.5.1",
"@reduxjs/toolkit": "^2.2.7",
"chart.js": "^4.4.4",
"i18next": "^24.2.0",
"i18next-browser-languagedetector": "^8.0.2",
"i18next": "^23.15.1",
"i18next-browser-languagedetector": "^8.0.0",
"prop-types": "^15.8.1",
"react": "^18.2.0",
"react-chartjs-2": "^5.3.0",
"react-chartjs-2": "^5.2.0",
"react-copy-to-clipboard": "^5.1.0",
"react-dom": "^18.3.1",
"react-helmet": "^6.1.0",
"react-dropzone": "^14.3.5",
"react-i18next": "^15.4.0",
"react-dropzone": "^14.2.3",
"react-i18next": "^15.0.2",
"react-markdown": "^9.0.1",
"react-redux": "^8.0.5",
"react-router-dom": "^7.1.1",
"react-router-dom": "^6.8.1",
"react-syntax-highlighter": "^15.5.0",
"rehype-katex": "^7.0.1",
"remark-gfm": "^4.0.0",
@@ -42,29 +41,28 @@
"devDependencies": {
"@types/react": "^18.0.27",
"@types/react-dom": "^18.3.0",
"@types/react-helmet": "^6.1.11",
"@types/react-syntax-highlighter": "^15.5.13",
"@typescript-eslint/eslint-plugin": "^5.51.0",
"@typescript-eslint/parser": "^5.62.0",
"@vitejs/plugin-react": "^4.3.4",
"@vitejs/plugin-react": "^4.3.1",
"autoprefixer": "^10.4.13",
"eslint": "^8.57.1",
"eslint-config-prettier": "^9.1.0",
"eslint-config-standard-with-typescript": "^34.0.0",
"eslint-plugin-import": "^2.31.0",
"eslint-plugin-import": "^2.30.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-prettier": "^5.2.1",
"eslint-plugin-promise": "^6.6.0",
"eslint-plugin-react": "^7.37.3",
"eslint-plugin-react": "^7.35.0",
"eslint-plugin-unused-imports": "^4.1.4",
"husky": "^8.0.0",
"lint-staged": "^15.3.0",
"postcss": "^8.4.49",
"prettier": "^3.4.2",
"prettier-plugin-tailwindcss": "^0.6.9",
"tailwindcss": "^3.4.17",
"typescript": "^5.7.2",
"vite": "^5.4.14",
"lint-staged": "^15.2.10",
"postcss": "^8.4.41",
"prettier": "^3.3.3",
"prettier-plugin-tailwindcss": "^0.6.8",
"tailwindcss": "^3.4.11",
"typescript": "^5.6.2",
"vite": "^5.4.6",
"vite-plugin-svgr": "^4.2.0"
}
}

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<svg viewBox="1 6 38 28" xmlns="http://www.w3.org/2000/svg">
<path d="M3,33.5c-0.827,0-1.5-0.673-1.5-1.5V8c0-0.827,0.673-1.5,1.5-1.5h34c0.827,0,1.5,0.673,1.5,1.5v24 c0,0.827-0.673,1.5-1.5,1.5H3z" style="fill: rgb(7, 106, 255);"/>
<path d="M37,7c0.551,0,1,0.449,1,1v24c0,0.551-0.449,1-1,1H3c-0.551,0-1-0.449-1-1V8c0-0.551,0.449-1,1-1 H37 M37,6H3C1.895,6,1,6.895,1,8v24c0,1.105,0.895,2,2,2h34c1.105,0,2-0.895,2-2V8C39,6.895,38.105,6,37,6L37,6z" style="fill: rgb(7, 106, 255);"/>
<path d="M 19.296 13.226 C 20.066 13.06 21.108 12.955 22.147 12.955 C 23.772 12.955 25.153 13.185 26.047 14.038 C 26.88 14.766 27.255 15.931 27.255 17.118 C 27.255 18.638 26.798 19.718 26.07 20.489 C 25.196 21.426 23.801 21.842 22.656 21.842 C 22.47 21.842 22.302 21.842 22.115 21.821 L 22.115 27.045 L 19.297 27.045 L 19.297 13.226 L 19.296 13.226 Z M 22.114 19.616 C 22.259 19.637 22.405 19.637 22.571 19.637 C 23.945 19.637 24.55 18.657 24.55 17.347 C 24.55 16.119 24.049 15.162 22.78 15.162 C 22.532 15.162 22.281 15.203 22.114 15.266 L 22.114 19.616 Z M 29.158 12.955 L 31.976 12.955 L 31.976 27.045 L 29.158 27.045 L 29.158 12.955 Z M 15.001 27.045 L 17.887 27.045 L 14.91 12.955 L 11.342 12.955 L 8.024 27.045 L 10.91 27.045 L 11.524 24.227 L 14.408 24.227 L 15.001 27.045 Z M 13 15.547 L 13.068 15.547 C 13.205 16.467 13.409 17.888 13.568 18.745 L 14.021 21.409 L 11.942 21.409 L 12.457 18.746 C 12.614 17.93 12.841 16.488 13 15.547 Z" style="fill: rgb(255, 255, 255);"/>
</svg>

Before

Width:  |  Height:  |  Size: 1.5 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 122.88 122.88"><path d="M17.89 0h88.9c8.85 0 16.1 7.24 16.1 16.1v90.68c0 8.85-7.24 16.1-16.1 16.1H16.1c-8.85 0-16.1-7.24-16.1-16.1v-88.9C0 8.05 8.05 0 17.89 0zm57.04 66.96l16.46 4.96c-1.1 4.61-2.84 8.47-5.23 11.56-2.38 3.1-5.32 5.43-8.85 7-3.52 1.57-8.01 2.36-13.45 2.36-6.62 0-12.01-.96-16.21-2.87-4.19-1.92-7.79-5.3-10.83-10.13-3.04-4.82-4.57-11.02-4.57-18.54 0-10.04 2.67-17.76 8.02-23.17 5.36-5.39 12.93-8.09 22.71-8.09 7.65 0 13.68 1.54 18.06 4.64 4.37 3.1 7.64 7.85 9.76 14.27l-16.55 3.66c-.58-1.84-1.19-3.18-1.82-4.03-1.06-1.43-2.35-2.53-3.86-3.3-1.53-.78-3.22-1.16-5.11-1.16-4.27 0-7.54 1.71-9.8 5.12-1.71 2.53-2.57 6.52-2.57 11.94 0 6.73 1.02 11.33 3.07 13.83 2.05 2.49 4.92 3.73 8.63 3.73 3.59 0 6.31-1 8.15-3.03 1.83-1.99 3.16-4.92 3.99-8.75z" fill-rule="evenodd" clip-rule="evenodd"/></svg>

Before

Width:  |  Height:  |  Size: 855 B

View File

@@ -1,29 +0,0 @@
<?xml version="1.0" encoding="utf-8"?><!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="-8.78 0 70 70" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://www.w3.org/2000/svg">
<metadata>
<rdf:RDF>
<cc:Work>
<dc:subject>
Data
</dc:subject>
<dc:identifier>
sql-database-generic
</dc:identifier>
<dc:title>
SQL Database (Generic)
</dc:title>
<dc:format>
image/svg+xml
</dc:format>
<dc:publisher>
Amido Limited
</dc:publisher>
<dc:creator>
Richard Slater
</dc:creator>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
</cc:Work>
</rdf:RDF>
</metadata>
<path d="m 852.97077,1013.9363 c -6.55238,-0.4723 -13.02857,-2.1216 -17.00034,-4.3296 -2.26232,-1.2576 -3.98589,-2.8032 -4.66223,-4.1807 l -0.4024,-0.8196 0,-25.70807 0,-25.7081 0.31843,-0.6465 c 1.42297,-2.889 5.96432,-5.4935 12.30378,-7.0562 2.15195,-0.5305 5.2586,-1.0588 7.79304,-1.3252 2.58797,-0.2721 9.44765,-0.2307 12.02919,0.073 6.86123,0.8061 12.69967,2.6108 16.29768,5.0377 1.38756,0.9359 2.81137,2.4334 3.29371,3.4642 l 0.41358,0.8838 -0.0354,25.6303 -0.0354,25.63047 -0.33195,0.6744 c -0.18257,0.3709 -0.73406,1.1007 -1.22553,1.6216 -2.99181,3.1715 -9.40919,5.5176 -17.8267,6.5172 -1.71567,0.2038 -9.16916,0.3686 -10.92937,0.2417 z m 12.07501,-22.02839 c -0.0252,-0.0657 -1.00472,-0.93831 -2.17671,-1.93922 -1.17199,-1.00091 -2.18138,-1.86687 -2.24309,-1.92436 -0.0617,-0.0575 0.15481,-0.26106 0.48117,-0.45237 0.32635,-0.19131 0.95163,-0.7235 1.3895,-1.18265 1.2805,-1.34272 1.88466,-3.00131 1.88466,-5.17388 0,-2.1388 -0.65162,-3.8645 -1.95671,-5.1818 -1.31533,-1.3278 -2.82554,-1.8983 -5.02486,-1.8983 -3.39007,0 -5.99368,1.9781 -6.82468,5.1851 -0.28586,1.1031 -0.28432,3.33211 0.003,4.31023 0.74941,2.55136 2.79044,4.40434 5.33062,4.83946 0.8596,0.14724 0.97605,0.21071 1.5621,0.85144 0.34829,0.38078 1.06301,1.14085 1.58827,1.68904 l 0.95501,0.9967 2.53878,0 c 1.39633,0 2.51816,-0.0537 2.49296,-0.11939 z m -8.70653,-7.10848 c -0.61119,-0.31868 -0.84225,-0.56599 -1.19079,-1.27453 -0.26919,-0.54724 -0.31522,-0.85851 -0.31824,-2.15197 -0.003,-1.3143 0.0388,-1.5983 0.31987,-2.169 0.45985,-0.9339 1.09355,-1.376 2.07384,-1.4469 1.36454,-0.099 2.15217,0.5707 2.56498,2.1801 0.50612,1.97321 -0.0504,4.07107 -1.26471,4.76729 -0.63707,0.36527 -1.58737,0.40659 -2.18495,0.095 z m -11.25315,3.66269 c 2.66179,-0.5048 4.1728,-2.0528 4.1728,-4.27495 0,-1.97137 -0.97548,-3.12004 -3.6716,-4.32364 -1.54338,-0.689 -2.10241,-1.1215 -2.10241,-1.6268 0,-0.4188 0.53052,-0.8777 1.14813,-0.993 0.60302,-0.1126 2.20237,0.1652 3.14683,0.5467 l 0.79167,0.3198 0,-1.7524 0,-1.7525 -0.85923,-0.1906 c -0.53103,-0.1178 -1.64689,-0.1885 -2.92137,-0.1849 -1.80528,0 -2.15881,0.044 -2.83818,0.3138 -1.98445,0.7878 -2.92613,2.1298 -2.91107,4.1485 0.0141,1.8898 1.01108,3.06864 3.49227,4.12912 1.46399,0.62572 2.05076,1.10218 2.05076,1.66522 0,1.1965 -1.99362,1.34375 -4.10437,0.30315 -0.57805,-0.28498 -1.09739,-0.54137 -1.1541,-0.56976 -0.0567,-0.0284 -0.10311,0.79023 -0.10311,1.81917 0,1.86239 0.002,1.87137 0.33919,1.99974 1.26979,0.48278 4.07626,0.69787 5.52379,0.42335 z m 30.4308,-1.72766 0,-1.58098 -2.40584,0 -2.40583,0 0,-5.43035 0,-5.4303 -2.13089,0 -2.13088,0 0,7.0113 0,7.01131 4.53672,0 4.53672,0 0,-1.58098 z m -14.84745,-27.70503 c 4.23447,-0.2937 7.4086,-0.8482 10.20178,-1.7821 2.78264,-0.9304 4.42643,-2.0562 4.79413,-3.2834 0.14166,-0.4729 0.13146,-0.6523 -0.0665,-1.1708 -0.88775,-2.3245 -5.84694,-4.1104 -13.42493,-4.8345 -3.24154,-0.3098 -9.13671,-0.2094 -12.22745,0.2081 -4.71604,0.6372 -8.54333,1.8208 -10.2451,3.1683 -3.44251,2.726 0.19793,5.7242 8.66397,7.1354 3.67084,0.6119 8.42674,0.828 12.30414,0.559 z" fill="#00bcf2" transform="translate(-830.906 -943.981)"/>
</svg>

Before

Width:  |  Height:  |  Size: 4.1 KiB

View File

@@ -1,10 +0,0 @@
<svg width="24" height="25" viewBox="0 0 24 25" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M12 0.5C8.81812 0.5 5.76375 1.76506 3.51562 4.01469C1.2652 6.26522 0.000643966 9.31734 0 12.5C0 15.6813 1.26562 18.7357 3.51562 20.9853C5.76375 23.2349 8.81812 24.5 12 24.5C15.1819 24.5 18.2362 23.2349 20.4844 20.9853C22.7344 18.7357 24 15.6813 24 12.5C24 9.31869 22.7344 6.26431 20.4844 4.01469C18.2362 1.76506 15.1819 0.5 12 0.5Z" fill="url(#paint0_linear_5586_9958)"/>
<path d="M5.43282 12.373C8.93157 10.849 11.2641 9.8443 12.4303 9.3588C15.7641 7.97261 16.4559 7.73186 16.9078 7.7237C17.0072 7.72211 17.2284 7.74667 17.3728 7.86339C17.4928 7.96183 17.5266 8.09495 17.5434 8.18842C17.5584 8.2818 17.5791 8.49461 17.5622 8.66074C17.3822 10.5582 16.6003 15.1629 16.2028 17.2882C16.0359 18.1874 15.7041 18.4889 15.3834 18.5184C14.6859 18.5825 14.1572 18.0579 13.4822 17.6155C12.4266 16.9231 11.8303 16.4922 10.8047 15.8167C9.6197 15.0359 10.3884 14.6067 11.0634 13.9055C11.2397 13.7219 14.3109 10.9291 14.3691 10.6758C14.3766 10.6441 14.3841 10.526 14.3128 10.4637C14.2434 10.4013 14.1403 10.4227 14.0653 10.4395C13.9584 10.4635 12.2728 11.5788 9.00282 13.7851C8.52469 14.114 8.09157 14.2743 7.70157 14.2659C7.27407 14.2567 6.44907 14.0236 5.83595 13.8245C5.08595 13.5802 4.48782 13.451 4.54032 13.036C4.56657 12.82 4.8647 12.599 5.43282 12.373Z" fill="white"/>
<defs>
<linearGradient id="paint0_linear_5586_9958" x1="1200" y1="0.5" x2="1200" y2="2400.5" gradientUnits="userSpaceOnUse">
<stop stop-color="#2AABEE"/>
<stop offset="1" stop-color="#229ED9"/>
</linearGradient>
</defs>
</svg>

Before

Width:  |  Height:  |  Size: 1.6 KiB

View File

@@ -37,14 +37,12 @@ export default function Hero({
<Fragment key={key}>
<button
onClick={() => handleQuestion({ question: demo.query })}
className="w-full rounded-full border border-silver px-6 py-4 text-left hover:border-gray-4000 dark:hover:border-gray-3000 xl:min-w-[24vw] bg-white dark:bg-raisin-black focus:outline-none focus:ring-2 focus:ring-purple-taupe"
className="w-full rounded-full border border-silver px-6 py-4 text-left hover:border-gray-4000 dark:hover:border-gray-3000 xl:min-w-[24vw]"
>
<p className="mb-1 font-semibold text-black-1000 dark:text-bright-gray">
<p className="mb-1 font-semibold text-black dark:text-silver">
{demo.header}
</p>
<span className="text-gray-700 dark:text-gray-300">
{demo.query}
</span>
<span className="text-gray-400">{demo.query}</span>
</button>
</Fragment>
),

View File

@@ -21,10 +21,11 @@ import {
handleAbort,
} from './conversation/conversationSlice';
import ConversationTile from './conversation/ConversationTile';
import { useDarkTheme, useMediaQuery } from './hooks';
import { useDarkTheme, useMediaQuery, useOutsideAlerter } from './hooks';
import useDefaultDocument from './hooks/useDefaultDocument';
import DeleteConvModal from './modals/DeleteConvModal';
import { ActiveState, Doc } from './models/misc';
import APIKeyModal from './preferences/APIKeyModal';
import { getConversations, getDocs } from './preferences/preferenceApi';
import {
selectApiKeyStatus,
@@ -50,7 +51,21 @@ interface NavigationProps {
navOpen: boolean;
setNavOpen: React.Dispatch<React.SetStateAction<boolean>>;
}
/* const NavImage: React.FC<{
Light: string | undefined;
Dark: string | undefined;
}> = ({ Light, Dark }) => {
return (
<>
<img src={Dark} alt="icon" className="ml-2 hidden w-5 dark:block " />
<img src={Light} alt="icon" className="ml-2 w-5 dark:hidden filter dark:invert" />
</>
);
};
NavImage.propTypes = {
Light: PropTypes.string,
Dark: PropTypes.string,
}; */
export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
const dispatch = useDispatch();
const queries = useSelector(selectQueries);
@@ -67,6 +82,8 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
const [isDocsListOpen, setIsDocsListOpen] = useState(false);
const { t } = useTranslation();
const isApiKeySet = useSelector(selectApiKeyStatus);
const [apiKeyModalState, setApiKeyModalState] =
useState<ActiveState>('INACTIVE');
const [uploadModalState, setUploadModalState] =
useState<ActiveState>('INACTIVE');
@@ -189,6 +206,12 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
console.error(err);
});
}
useOutsideAlerter(navRef, () => {
if (isMobile && navOpen && apiKeyModalState === 'INACTIVE') {
setNavOpen(false);
setIsDocsListOpen(false);
}
}, [navOpen, isDocsListOpen, apiKeyModalState]);
/*
Needed to fix bug where if mobile nav was closed and then window was resized to desktop, nav would still be closed but the button to open would be gone, as per #1 on issue #146
@@ -211,7 +234,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={Expand}
alt="Toggle navigation menu"
alt="menu toggle"
className={`${
!navOpen ? 'rotate-180' : 'rotate-0'
} m-auto transition-all duration-200`}
@@ -225,7 +248,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={openNewChat}
alt="Start new chat"
alt="open new chat icon"
className="cursor-pointer"
/>
</button>
@@ -254,7 +277,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
}}
>
<a href="/" className="flex gap-1.5">
<img className="mb-2 h-10" src={DocsGPT3} alt="DocsGPT Logo" />
<img className="mb-2 h-10" src={DocsGPT3} alt="" />
<p className="my-auto text-2xl font-semibold">DocsGPT</p>
</a>
</div>
@@ -266,7 +289,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={Expand}
alt="Toggle navigation menu"
alt="menu toggle"
className={`${
!navOpen ? 'rotate-180' : 'rotate-0'
} m-auto transition-all duration-200`}
@@ -289,7 +312,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={Add}
alt="Create new chat"
alt="new"
className="opacity-80 group-hover:opacity-100"
/>
<p className=" text-sm text-dove-gray group-hover:text-neutral-600 dark:text-chinese-silver dark:group-hover:text-bright-gray">
@@ -305,7 +328,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
<img
src={isDarkTheme ? SpinnerDark : Spinner}
className="animate-spin cursor-pointer bg-transparent"
alt="Loading conversations"
alt="Loading..."
/>
</div>
)}
@@ -356,7 +379,6 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
<img
className="mt-2 h-9 w-9 hover:cursor-pointer"
src={UploadIcon}
alt="Upload document"
onClick={() => {
setUploadModalState('ACTIVE');
if (isMobile) {
@@ -384,7 +406,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={SettingGear}
alt="Settings"
alt="icon"
className="ml-2 w-5 filter dark:invert"
/>
<p className="my-auto text-sm text-eerie-black dark:text-white">
@@ -406,7 +428,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={Discord}
alt="Join Discord community"
alt="discord"
className="m-2 w-6 self-center filter dark:invert"
/>
</NavLink>
@@ -419,7 +441,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={Twitter}
alt="Follow us on Twitter"
alt="x"
className="m-2 w-5 self-center filter dark:invert"
/>
</NavLink>
@@ -432,7 +454,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={Github}
alt="View on GitHub"
alt="github"
className="m-2 w-6 self-center filter dark:invert"
/>
</NavLink>
@@ -449,13 +471,18 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
>
<img
src={Hamburger}
alt="Toggle mobile menu"
alt="menu toggle"
className="w-7 filter dark:invert"
/>
</button>
<div className="text-[#949494] font-medium text-[20px]">DocsGPT</div>
</div>
</div>
<APIKeyModal
modalState={apiKeyModalState}
setModalState={setApiKeyModalState}
isCancellable={isApiKeySet}
/>
<DeleteConvModal
modalState={modalStateDeleteConv}
setModalState={setModalStateDeleteConv}
@@ -463,10 +490,8 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
/>
{uploadModalState === 'ACTIVE' && (
<Upload
receivedFile={[]}
setModalState={setUploadModalState}
isOnboarding={false}
renderTab={null}
close={() => setUploadModalState('INACTIVE')}
></Upload>
)}

View File

@@ -18,12 +18,6 @@ const endpoints = {
FEEDBACK_ANALYTICS: '/api/get_feedback_analytics',
LOGS: `/api/get_user_logs`,
MANAGE_SYNC: '/api/manage_sync',
GET_AVAILABLE_TOOLS: '/api/available_tools',
GET_USER_TOOLS: '/api/get_tools',
CREATE_TOOL: '/api/create_tool',
UPDATE_TOOL_STATUS: '/api/update_tool_status',
UPDATE_TOOL: '/api/update_tool',
DELETE_TOOL: '/api/delete_tool',
},
CONVERSATION: {
ANSWER: '/api/answer',

View File

@@ -35,18 +35,6 @@ const userService = {
apiClient.post(endpoints.USER.LOGS, data),
manageSync: (data: any): Promise<any> =>
apiClient.post(endpoints.USER.MANAGE_SYNC, data),
getAvailableTools: (): Promise<any> =>
apiClient.get(endpoints.USER.GET_AVAILABLE_TOOLS),
getUserTools: (): Promise<any> =>
apiClient.get(endpoints.USER.GET_USER_TOOLS),
createTool: (data: any): Promise<any> =>
apiClient.post(endpoints.USER.CREATE_TOOL, data),
updateToolStatus: (data: any): Promise<any> =>
apiClient.post(endpoints.USER.UPDATE_TOOL_STATUS, data),
updateTool: (data: any): Promise<any> =>
apiClient.post(endpoints.USER.UPDATE_TOOL, data),
deleteTool: (data: any): Promise<any> =>
apiClient.post(endpoints.USER.DELETE_TOOL, data),
};
export default userService;

View File

@@ -1,4 +0,0 @@
<svg width="72" height="72" viewBox="0 0 72 72" fill="current" xmlns="http://www.w3.org/2000/svg">
<path d="M33.8788 9.87836C34.4413 9.31595 35.2043 9 35.9998 9C36.7952 9 37.5582 9.31595 38.1208 9.87836L50.1208 21.8784C50.6672 22.4442 50.9696 23.202 50.9628 23.9886C50.9559 24.7752 50.6404 25.5276 50.0842 26.0838C49.528 26.64 48.7755 26.9555 47.989 26.9624C47.2024 26.9692 46.4446 26.6668 45.8788 26.1204L38.9998 19.2414V47.9994C38.9998 48.795 38.6837 49.5581 38.1211 50.1207C37.5585 50.6833 36.7954 50.9994 35.9998 50.9994C35.2041 50.9994 34.441 50.6833 33.8784 50.1207C33.3158 49.5581 32.9998 48.795 32.9998 47.9994V19.2414L26.1208 26.1204C25.555 26.6668 24.7971 26.9692 24.0106 26.9624C23.224 26.9555 22.4715 26.64 21.9153 26.0838C21.3591 25.5276 21.0436 24.7752 21.0367 23.9886C21.0299 23.202 21.3323 22.4442 21.8788 21.8784L33.8788 9.87836Z" fill="#313131"/>
<path d="M18 51C18 50.2044 17.6839 49.4413 17.1213 48.8787C16.5587 48.3161 15.7956 48 15 48C14.2044 48 13.4413 48.3161 12.8787 48.8787C12.3161 49.4413 12 50.2044 12 51V52.8C12 58.446 16.554 63 22.2 63H49.8C55.446 63 60 58.446 60 52.8V51C60 50.2044 59.6839 49.4413 59.1213 48.8787C58.5587 48.3161 57.7957 48 57 48C56.2043 48 55.4413 48.3161 54.8787 48.8787C54.3161 49.4413 54 50.2044 54 51V52.8C54 55.134 52.134 57 49.8 57H22.2C19.866 57 18 55.134 18 52.8V51Z" fill="#313131"/>
</svg>

Before

Width:  |  Height:  |  Size: 1.3 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="rgb(34 197 94)" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-circle-check"><circle cx="12" cy="12" r="10"/><path d="m9 12 2 2 4-4"/></svg>

Before

Width:  |  Height:  |  Size: 281 B

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="rgb(239 68 68)" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-circle-x"><circle cx="12" cy="12" r="10"/><path d="m15 9-6 6"/><path d="m9 9 6 6"/></svg>

Before

Width:  |  Height:  |  Size: 293 B

View File

@@ -1,3 +0,0 @@
<svg width="16" height="17" viewBox="0 0 16 17" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M8.00182 11.2502C7.23838 11.2502 6.50621 10.9552 5.96637 10.4301C5.42654 9.90499 5.12327 9.1928 5.12327 8.4502C5.12327 7.70759 5.42654 6.9954 5.96637 6.4703C6.50621 5.9452 7.23838 5.6502 8.00182 5.6502C8.76525 5.6502 9.49743 5.9452 10.0373 6.4703C10.5771 6.9954 10.8804 7.70759 10.8804 8.4502C10.8804 9.1928 10.5771 9.90499 10.0373 10.4301C9.49743 10.9552 8.76525 11.2502 8.00182 11.2502ZM14.1126 9.2262C14.1455 8.9702 14.1701 8.7142 14.1701 8.4502C14.1701 8.1862 14.1455 7.9222 14.1126 7.6502L15.8479 6.3462C16.0042 6.2262 16.0453 6.0102 15.9466 5.8342L14.3017 3.0662C14.203 2.8902 13.981 2.8182 13.8 2.8902L11.7522 3.6902C11.3245 3.3782 10.8804 3.1062 10.3622 2.9062L10.0579 0.786197C10.0412 0.69197 9.99076 0.606538 9.91549 0.545038C9.84022 0.483538 9.745 0.449939 9.6467 0.450197H6.35693C6.15132 0.450197 5.97861 0.594197 5.94571 0.786197L5.64141 2.9062C5.12327 3.1062 4.67915 3.3782 4.25148 3.6902L2.2036 2.8902C2.02266 2.8182 1.8006 2.8902 1.70191 3.0662L0.0570212 5.8342C-0.0498963 6.0102 -0.00054964 6.2262 0.155714 6.3462L1.89107 7.6502C1.85817 7.9222 1.8335 8.1862 1.8335 8.4502C1.8335 8.7142 1.85817 8.9702 1.89107 9.2262L0.155714 10.5542C-0.00054964 10.6742 -0.0498963 10.8902 0.0570212 11.0662L1.70191 13.8342C1.8006 14.0102 2.02266 14.0742 2.2036 14.0102L4.25148 13.2022C4.67915 13.5222 5.12327 13.7942 5.64141 13.9942L5.94571 16.1142C5.97861 16.3062 6.15132 16.4502 6.35693 16.4502H9.6467C9.85231 16.4502 10.025 16.3062 10.0579 16.1142L10.3622 13.9942C10.8804 13.7862 11.3245 13.5222 11.7522 13.2022L13.8 14.0102C13.981 14.0742 14.203 14.0102 14.3017 13.8342L15.9466 11.0662C16.0453 10.8902 16.0042 10.6742 15.8479 10.5542L14.1126 9.2262Z" fill="#747474"/>
</svg>

Before

Width:  |  Height:  |  Size: 1.7 KiB

View File

@@ -1,15 +0,0 @@
<svg width="113" height="124" viewBox="0 0 113 124" fill="none" xmlns="http://www.w3.org/2000/svg">
<circle cx="55.5" cy="71" r="53" fill="#2D2E33"/>
<rect x="-0.599797" y="0.654564" width="43.9445" height="61.5222" rx="4.39444" transform="matrix(-0.999048 0.0436194 0.0436194 0.999048 68.9873 43.3176)" fill="#45464D" stroke="#5F6167" stroke-width="1.25556"/>
<rect x="0.704349" y="-0.540466" width="46.4556" height="64.0333" rx="5.65" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 96.3673 40.893)" fill="#3F4147" stroke="#5F6167" stroke-width="1.25556"/>
<path d="M94.3796 45.7849C94.7417 43.0349 92.8059 40.5122 90.0559 40.1501L55.2011 35.5614C52.4511 35.1994 49.9284 37.1352 49.5663 39.8851L48.3372 49.2212L93.1505 55.121L94.3796 45.7849Z" fill="#54555B"/>
<rect width="1.88333" height="6.27778" rx="0.941667" transform="matrix(-0.130526 0.991445 0.991445 0.130526 40.4766 36.7888)" fill="#5F6167"/>
<rect width="1.88333" height="6.27778" rx="0.941667" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 57.6758 26.3892)" fill="#5F6167"/>
<rect width="1.88333" height="6.27778" rx="0.941667" transform="matrix(-0.793353 0.608761 0.608761 0.793353 46.6406 28.1023)" fill="#5F6167"/>
<rect width="36.4111" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 88.4668 57.0371)" fill="#5F6167"/>
<rect width="36.4111" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 86.8281 69.4851)" fill="#5F6167"/>
<rect width="36.4111" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 85.1895 81.9333)" fill="#5F6167"/>
<rect width="13.1833" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 87.8105 62.0164)" fill="#5F6167"/>
<rect width="13.1833" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 86.1719 74.4644)" fill="#5F6167"/>
<rect width="13.1833" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 84.5332 86.9126)" fill="#5F6167"/>
</svg>

Before

Width:  |  Height:  |  Size: 2.0 KiB

View File

@@ -1,15 +0,0 @@
<svg width="113" height="124" viewBox="0 0 113 124" fill="none" xmlns="http://www.w3.org/2000/svg">
<circle cx="55.5" cy="71" r="53" fill="#F1F1F1" fill-opacity="0.5"/>
<rect x="-0.599797" y="0.654564" width="43.9445" height="61.5222" rx="4.39444" transform="matrix(-0.999048 0.0436194 0.0436194 0.999048 68.9873 43.3176)" fill="#EEEEEE" stroke="#999999" stroke-width="1.25556"/>
<rect x="0.704349" y="-0.540466" width="46.4556" height="64.0333" rx="5.65" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 96.3673 40.893)" fill="#FAFAFA" stroke="#999999" stroke-width="1.25556"/>
<path d="M94.3796 45.7849C94.7417 43.0349 92.8059 40.5122 90.0559 40.1501L55.2011 35.5614C52.4511 35.1994 49.9284 37.1352 49.5663 39.8851L48.3372 49.2212L93.1505 55.121L94.3796 45.7849Z" fill="#EEEEEE"/>
<rect width="1.88333" height="6.27778" rx="0.941667" transform="matrix(-0.130526 0.991445 0.991445 0.130526 40.4766 36.7888)" fill="#999999"/>
<rect width="1.88333" height="6.27778" rx="0.941667" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 57.6758 26.3892)" fill="#999999"/>
<rect width="1.88333" height="6.27778" rx="0.941667" transform="matrix(-0.793353 0.608761 0.608761 0.793353 46.6406 28.1023)" fill="#999999"/>
<rect width="36.4111" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 88.4668 57.0371)" fill="#DCDCDC"/>
<rect width="36.4111" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 86.8281 69.4851)" fill="#DCDCDC"/>
<rect width="36.4111" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 85.1895 81.9333)" fill="#DCDCDC"/>
<rect width="13.1833" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 87.8105 62.0164)" fill="#EEEEEE"/>
<rect width="13.1833" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 86.1719 74.4644)" fill="#EEEEEE"/>
<rect width="13.1833" height="2.51111" rx="1.25556" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 84.5332 86.9126)" fill="#EEEEEE"/>
</svg>

Before

Width:  |  Height:  |  Size: 2.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 735 B

View File

@@ -5,7 +5,7 @@ export default function Avatar({
size,
className,
}: {
avatar: ReactNode;
avatar: string | ReactNode;
size?: 'SMALL' | 'MEDIUM' | 'LARGE';
className: string;
}) {

View File

@@ -1,5 +1,4 @@
import React, { useState } from 'react';
import { useTranslation } from 'react-i18next';
import SingleArrowLeft from '../assets/single-left-arrow.svg';
import SingleArrowRight from '../assets/single-right-arrow.svg';
import DoubleArrowLeft from '../assets/double-arrow-left.svg';
@@ -20,11 +19,7 @@ const Pagination: React.FC<PaginationProps> = ({
onPageChange,
onRowsPerPageChange,
}) => {
const { t } = useTranslation();
const [isDropdownOpen, setIsDropdownOpen] = useState(false);
const rowsPerPageOptions = [5, 10, 20, 50];
const toggleDropdown = () => setIsDropdownOpen((prev) => !prev);
const [rowsPerPageOptions] = useState([5, 10, 15, 20]);
const handlePreviousPage = () => {
if (currentPage > 1) {
@@ -46,53 +41,31 @@ const Pagination: React.FC<PaginationProps> = ({
onPageChange(totalPages);
};
const handleSelectRowsPerPage = (rows: number) => {
setIsDropdownOpen(false);
onRowsPerPageChange(rows);
};
return (
<div className="flex items-center text-xs justify-end gap-4 mt-2 p-2 border-gray-200">
{/* Rows per page dropdown */}
<div className="flex items-center gap-2 relative">
<span className="text-gray-900 dark:text-gray-50">
{t('pagination.rowsPerPage')}:
</span>
<div className="relative">
<button
onClick={toggleDropdown}
className="px-3 py-1 border rounded dark:bg-dark-charcoal dark:text-light-gray hover:bg-gray-200 dark:hover:bg-neutral-700"
>
{rowsPerPage}
</button>
<div
className={`absolute z-50 right-0 mt-1 w-28 transform bg-white dark:bg-dark-charcoal shadow-lg ring-1 ring-black ring-opacity-5 transition-all duration-200 ease-in-out ${
isDropdownOpen
? 'scale-100 opacity-100 block'
: 'scale-95 opacity-0 hidden'
}`}
>
{rowsPerPageOptions.map((option) => (
<div
key={option}
onClick={() => handleSelectRowsPerPage(option)}
className={`cursor-pointer px-4 py-2 text-xs hover:bg-gray-100 dark:hover:bg-neutral-700 ${
rowsPerPage === option
? 'bg-gray-100 dark:bg-neutral-700 dark:text-light-gray'
: 'bg-white dark:bg-dark-charcoal dark:text-light-gray'
}`}
>
{option}
</div>
))}
</div>
</div>
<div className="flex items-center gap-2 ">
<span className="text-gray-900 dark:text-gray-50">Rows per page:</span>
<select
value={rowsPerPage}
onChange={(e) => onRowsPerPageChange(Number(e.target.value))}
className="border border-gray-300 rounded px-2 py-1 dark:bg-dark-charcoal dark:text-gray-50"
>
{rowsPerPageOptions.map((option) => (
<option
className="bg-white dark:bg-dark-charcoal dark:text-gray-50"
key={option}
value={option}
>
{option}
</option>
))}
</select>
</div>
{/* Pagination controls */}
<div className="text-gray-900 dark:text-gray-50">
{t('pagination.pageOf', { currentPage, totalPages })}
Page {currentPage} of {totalPages}
</div>
<div className="flex items-center gap-2 text-gray-900 dark:text-gray-50">
<button
onClick={handleFirstPage}
@@ -101,7 +74,7 @@ const Pagination: React.FC<PaginationProps> = ({
>
<img
src={DoubleArrowLeft}
alt={t('pagination.firstPage')}
alt="arrow"
className="dark:invert dark:sepia dark:brightness-200"
/>
</button>
@@ -112,7 +85,7 @@ const Pagination: React.FC<PaginationProps> = ({
>
<img
src={SingleArrowLeft}
alt={t('pagination.previousPage')}
alt="arrow"
className="dark:invert dark:sepia dark:brightness-200"
/>
</button>
@@ -123,7 +96,7 @@ const Pagination: React.FC<PaginationProps> = ({
>
<img
src={SingleArrowRight}
alt={t('pagination.nextPage')}
alt="arrow"
className="dark:invert dark:sepia dark:brightness-200"
/>
</button>
@@ -134,7 +107,7 @@ const Pagination: React.FC<PaginationProps> = ({
>
<img
src={DoubleArrowRight}
alt={t('pagination.lastPage')}
alt="arrow"
className="dark:invert dark:sepia dark:brightness-200"
/>
</button>

View File

@@ -48,7 +48,7 @@ export default function DropdownMenu({
<div className="static inline-block text-left" ref={dropdownRef}>
<button
onClick={handleToggle}
className="flex w-20 cursor-pointer flex-row gap-1 rounded-3xl border-purple-30/25 bg-purple-30 p-2 text-xs text-white hover:bg-[#6F3FD1] focus:outline-none"
className="flex w-20 cursor-pointer flex-row items-center gap-px rounded-3xl border-purple-30/25 bg-purple-30 p-2 text-xs text-white hover:bg-[#6F3FD1] focus:outline-none"
>
{icon && <img src={icon} alt="OptionIcon" className="h-4 w-4" />}
{selectedOption.value !== 'never' ? selectedOption.label : name}

View File

@@ -7,7 +7,6 @@ const Input = ({
value,
isAutoFocused = false,
placeholder,
label,
maxLength,
className,
colorVariant = 'silver',
@@ -27,30 +26,21 @@ const Input = ({
thick: 'border-2',
};
return (
<div className="relative">
<input
className={`h-[42px] w-full rounded-full px-3 py-1 outline-none dark:bg-transparent dark:text-white ${className} ${colorStyles[colorVariant]} ${borderStyles[borderVariant]}`}
type={type}
id={id}
name={name}
autoFocus={isAutoFocused}
placeholder={placeholder}
maxLength={maxLength}
value={value}
onChange={onChange}
onPaste={onPaste}
onKeyDown={onKeyDown}
>
{children}
</input>
{label && (
<div className="absolute -top-2 left-2">
<span className="bg-white px-2 text-xs text-gray-4000 dark:bg-outer-space dark:text-silver">
{label}
</span>
</div>
)}
</div>
<input
className={`h-[42px] w-full rounded-full px-3 py-1 outline-none dark:bg-transparent dark:text-white ${className} ${colorStyles[colorVariant]} ${borderStyles[borderVariant]}`}
type={type}
id={id}
name={name}
autoFocus={isAutoFocused}
placeholder={placeholder}
maxLength={maxLength}
value={value}
onChange={onChange}
onPaste={onPaste}
onKeyDown={onKeyDown}
>
{children}
</input>
);
};

View File

@@ -13,7 +13,6 @@ const useTabs = () => {
t('settings.apiKeys.label'),
t('settings.analytics.label'),
t('settings.logs.label'),
t('settings.tools.label'),
];
return tabs;
};
@@ -59,8 +58,7 @@ const SettingsBar = ({ setActiveTab, activeTab }: SettingsBarProps) => {
<div className="md:hidden z-10">
<button
onClick={() => scrollTabs(-1)}
className="flex h-6 w-6 items-center rounded-full justify-center transition-all hover:bg-gray-200 dark:hover:bg-gray-700"
aria-label="Scroll tabs left"
className="flex h-6 w-6 items-center rounded-full justify-center transition-all hover:bg-gray-100"
>
<img src={ArrowLeft} alt="left-arrow" className="h-3" />
</button>
@@ -68,22 +66,16 @@ const SettingsBar = ({ setActiveTab, activeTab }: SettingsBarProps) => {
<div
ref={containerRef}
className="flex flex-nowrap overflow-x-auto no-scrollbar md:space-x-4 scroll-smooth snap-x"
role="tablist"
aria-label="Settings tabs"
>
{tabs.map((tab, index) => (
<button
key={index}
onClick={() => setActiveTab(tab)}
className={`snap-start h-9 rounded-3xl px-4 font-bold transition-colors ${
className={`snap-start h-9 rounded-3xl px-4 font-bold hover:text-neutral-600 dark:hover:text-white/60 ${
activeTab === tab
? 'bg-neutral-200 text-neutral-900 dark:bg-dark-charcoal dark:text-white'
: 'text-neutral-700 hover:text-neutral-900 dark:text-neutral-400 dark:hover:text-white'
? 'bg-neutral-100 text-neutral-600 dark:bg-dark-charcoal dark:text-white/60'
: 'text-gray-6000'
}`}
role="tab"
aria-selected={activeTab === tab}
aria-controls={`${tab.toLowerCase()}-panel`}
id={`${tab.toLowerCase()}-tab`}
>
{tab}
</button>
@@ -92,8 +84,7 @@ const SettingsBar = ({ setActiveTab, activeTab }: SettingsBarProps) => {
<div className="md:hidden z-10">
<button
onClick={() => scrollTabs(1)}
className="flex h-6 w-6 rounded-full items-center justify-center hover:bg-gray-200 dark:hover:bg-gray-700"
aria-label="Scroll tabs right"
className="flex h-6 w-6 rounded-full items-center justify-center hover:bg-gray-100"
>
<img src={ArrowRight} alt="right-arrow" className="h-3" />
</button>

View File

@@ -1,58 +0,0 @@
import React from 'react';
type ToggleSwitchProps = {
checked: boolean;
onChange: (checked: boolean) => void;
className?: string;
label?: string;
disabled?: boolean;
activeColor?: string;
inactiveColor?: string;
id?: string;
};
const ToggleSwitch: React.FC<ToggleSwitchProps> = ({
checked,
onChange,
className = '',
label,
disabled = false,
activeColor = 'bg-purple-30',
inactiveColor = 'bg-transparent',
id,
}) => {
return (
<label
className={`cursor-pointer select-none justify-between flex flex-row items-center ${disabled ? 'opacity-50 cursor-not-allowed' : ''} ${className}`}
htmlFor={id}
>
{label && (
<span className="mr-2 text-eerie-black dark:text-white">{label}</span>
)}
<div className="relative">
<input
type="checkbox"
checked={checked}
onChange={(e) => onChange(e.target.checked)}
className="sr-only"
disabled={disabled}
id={id}
/>
<div
className={`box block h-8 w-14 rounded-full border border-purple-30 ${
checked
? `${activeColor} dark:${activeColor}`
: `${inactiveColor} dark:${inactiveColor}`
}`}
></div>
<div
className={`absolute left-1 top-1 flex h-6 w-6 items-center justify-center rounded-full transition ${
checked ? 'translate-x-full bg-silver' : 'bg-purple-30'
}`}
></div>
</div>
</label>
);
};
export default ToggleSwitch;

View File

@@ -8,7 +8,6 @@ export type InputProps = {
maxLength?: number;
name?: string;
placeholder?: string;
label?: string;
className?: string;
children?: React.ReactElement;
onChange: (

View File

@@ -1,10 +1,8 @@
import { Fragment, useCallback, useEffect, useRef, useState } from 'react';
import { Fragment, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch, useSelector } from 'react-redux';
import { useNavigate } from 'react-router-dom';
import Hero from '../Hero';
import { useDropzone } from 'react-dropzone';
import DragFileUpload from '../assets/DragFileUpload.svg';
import ArrowDown from '../assets/arrow-down.svg';
import newChatIcon from '../assets/openNewChat.svg';
import Send from '../assets/send.svg';
@@ -23,15 +21,12 @@ import { FEEDBACK, Query } from './conversationModels';
import {
addQuery,
fetchAnswer,
resendQuery,
selectQueries,
selectStatus,
setConversation,
updateConversationId,
updateQuery,
} from './conversationSlice';
import Upload from '../upload/Upload';
import { ActiveState } from '../models/misc';
export default function Conversation() {
const queries = useSelector(selectQueries);
@@ -49,47 +44,6 @@ export default function Conversation() {
const [isShareModalOpen, setShareModalState] = useState<boolean>(false);
const { t } = useTranslation();
const { isMobile } = useMediaQuery();
const [uploadModalState, setUploadModalState] =
useState<ActiveState>('INACTIVE');
const [files, setFiles] = useState<File[]>([]);
const [handleDragActive, setHandleDragActive] = useState<boolean>(false);
const onDrop = useCallback((acceptedFiles: File[]) => {
setUploadModalState('ACTIVE');
setFiles(acceptedFiles);
setHandleDragActive(false);
}, []);
const { getRootProps, getInputProps } = useDropzone({
onDrop,
noClick: true,
multiple: true,
onDragEnter: () => {
setHandleDragActive(true);
},
onDragLeave: () => {
setHandleDragActive(false);
},
maxSize: 25000000,
accept: {
'application/pdf': ['.pdf'],
'text/plain': ['.txt'],
'text/x-rst': ['.rst'],
'text/x-markdown': ['.md'],
'application/zip': ['.zip'],
'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
['.docx'],
'application/json': ['.json'],
'text/csv': ['.csv'],
'text/html': ['.html'],
'application/epub+zip': ['.epub'],
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': [
'.xlsx',
],
'application/vnd.openxmlformats-officedocument.presentationml.presentation':
['.pptx'],
},
});
const handleUserInterruption = () => {
if (!eventInterrupt && status === 'loading') setEventInterrupt(true);
@@ -131,57 +85,27 @@ export default function Conversation() {
const handleQuestion = ({
question,
isRetry = false,
updated = null,
indx = undefined,
}: {
question: string;
isRetry?: boolean;
updated?: boolean | null;
indx?: number;
}) => {
if (updated === true) {
!isRetry &&
dispatch(resendQuery({ index: indx as number, prompt: question })); //dispatch only new queries
fetchStream.current = dispatch(fetchAnswer({ question, indx }));
} else {
question = question.trim();
if (question === '') return;
setEventInterrupt(false);
!isRetry && dispatch(addQuery({ prompt: question })); //dispatch only new queries
fetchStream.current = dispatch(fetchAnswer({ question }));
}
question = question.trim();
if (question === '') return;
setEventInterrupt(false);
!isRetry && dispatch(addQuery({ prompt: question })); //dispatch only new queries
fetchStream.current = dispatch(fetchAnswer({ question }));
};
const handleFeedback = (query: Query, feedback: FEEDBACK, index: number) => {
const prevFeedback = query.feedback;
dispatch(updateQuery({ index, query: { feedback } }));
handleSendFeedback(
query.prompt,
query.response!,
feedback,
conversationId as string,
index,
).catch(() =>
handleSendFeedback(
query.prompt,
query.response!,
feedback,
conversationId as string,
index,
).catch(() =>
dispatch(updateQuery({ index, query: { feedback: prevFeedback } })),
),
handleSendFeedback(query.prompt, query.response!, feedback).catch(() =>
dispatch(updateQuery({ index, query: { feedback: prevFeedback } })),
);
};
const handleQuestionSubmission = (
updatedQuestion?: string,
updated?: boolean,
indx?: number,
) => {
if (updated === true) {
handleQuestion({ question: updatedQuestion as string, updated, indx });
} else if (inputRef.current?.value && status !== 'loading') {
const handleQuestionSubmission = () => {
if (inputRef.current?.value && status !== 'loading') {
if (lastQueryReturnedErr) {
// update last failed query with new prompt
dispatch(
@@ -366,8 +290,6 @@ export default function Conversation() {
key={`${index}QUESTION`}
message={query.prompt}
type="QUESTION"
handleUpdatedQuestionSubmission={handleQuestionSubmission}
questionNumber={index}
sources={query.sources}
></ConversationBubble>
@@ -381,24 +303,14 @@ export default function Conversation() {
)}
</div>
<div className="flex w-11/12 flex-col items-end self-center rounded-2xl bg-opacity-0 z-3 sm:w-[62%] h-auto py-1">
<div
{...getRootProps()}
className="flex w-full items-center rounded-[40px] border border-silver bg-white dark:bg-raisin-black"
>
<label htmlFor="file-upload" className="sr-only">
{t('modals.uploadDoc.label')}
</label>
<input {...getInputProps()} id="file-upload" />
<label htmlFor="message-input" className="sr-only">
{t('inputPlaceholder')}
</label>
<div className="flex w-11/12 flex-col items-end self-center rounded-2xl bg-opacity-0 z-3 sm:w-[62%] h-auto">
<div className="flex w-full items-center rounded-[40px] border border-silver bg-white py-1 dark:bg-raisin-black">
<textarea
id="message-input"
id="inputbox"
ref={inputRef}
tabIndex={1}
placeholder={t('inputPlaceholder')}
className={`inputbox-style w-full overflow-y-auto overflow-x-hidden whitespace-pre-wrap rounded-full bg-transparent py-5 text-base leading-tight opacity-100 focus:outline-none dark:bg-transparent dark:text-bright-gray dark:placeholder-bright-gray dark:placeholder-opacity-50`}
className={`inputbox-style w-full overflow-y-auto overflow-x-hidden whitespace-pre-wrap rounded-full bg-transparent py-5 text-base leading-tight opacity-100 focus:outline-none dark:bg-transparent dark:text-bright-gray`}
onInput={handleInput}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey) {
@@ -406,27 +318,19 @@ export default function Conversation() {
handleQuestionSubmission();
}
}}
aria-label={t('inputPlaceholder')}
></textarea>
{status === 'loading' ? (
<img
src={isDarkTheme ? SpinnerDark : Spinner}
className="relative right-[38px] bottom-[24px] -mr-[30px] animate-spin cursor-pointer self-end bg-transparent"
alt={t('loading')}
/>
></img>
) : (
<div className="mx-1 cursor-pointer rounded-full p-3 text-center hover:bg-gray-3000 dark:hover:bg-dark-charcoal">
<button
onClick={() => handleQuestionSubmission()}
aria-label={t('send')}
className="flex items-center justify-center"
>
<img
className="ml-[4px] h-6 w-6 text-white"
src={isDarkTheme ? SendDark : Send}
alt={t('send')}
/>
</button>
<img
className="ml-[4px] h-6 w-6 text-white "
onClick={handleQuestionSubmission}
src={isDarkTheme ? SendDark : Send}
></img>
</div>
)}
</div>
@@ -435,26 +339,6 @@ export default function Conversation() {
{t('tagline')}
</p>
</div>
{handleDragActive && (
<div className="pointer-events-none fixed top-0 left-0 z-30 flex flex-col size-full items-center justify-center bg-opacity-50 bg-white dark:bg-gray-alpha">
<img className="filter dark:invert" src={DragFileUpload} />
<span className="px-2 text-2xl font-bold text-outer-space dark:text-silver">
{t('modals.uploadDoc.drag.title')}
</span>
<span className="p-2 text-s w-48 text-center text-outer-space dark:text-silver">
{t('modals.uploadDoc.drag.description')}
</span>
</div>
)}
{uploadModalState === 'ACTIVE' && (
<Upload
receivedFile={files}
setModalState={setUploadModalState}
isOnboarding={false}
renderTab={'file'}
close={() => setUploadModalState('INACTIVE')}
></Upload>
)}
</div>
);
}

View File

@@ -1,6 +1,6 @@
import 'katex/dist/katex.min.css';
import { forwardRef, useRef, useState } from 'react';
import { forwardRef, useState } from 'react';
import ReactMarkdown from 'react-markdown';
import { useSelector } from 'react-redux';
import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter';
@@ -8,7 +8,6 @@ import { vscDarkPlus } from 'react-syntax-highlighter/dist/cjs/styles/prism';
import rehypeKatex from 'rehype-katex';
import remarkGfm from 'remark-gfm';
import remarkMath from 'remark-math';
import { useTranslation } from 'react-i18next';
import DocsGPT3 from '../assets/cute_docsgpt3.svg';
import Dislike from '../assets/dislike.svg?react';
@@ -16,8 +15,6 @@ import Document from '../assets/document.svg';
import Like from '../assets/like.svg?react';
import Link from '../assets/link.svg';
import Sources from '../assets/sources.svg';
import Edit from '../assets/edit.svg';
import UserIcon from '../assets/user.png';
import Avatar from '../components/Avatar';
import CopyButton from '../components/CopyButton';
import Sidebar from '../components/Sidebar';
@@ -28,7 +25,6 @@ import {
} from '../preferences/preferenceSlice';
import classes from './ConversationBubble.module.css';
import { FEEDBACK, MESSAGE_TYPE } from './conversationModels';
import { useOutsideAlerter } from '../hooks';
const DisableSourceFE = import.meta.env.VITE_DISABLE_SOURCE_FE || false;
@@ -42,114 +38,36 @@ const ConversationBubble = forwardRef<
handleFeedback?: (feedback: FEEDBACK) => void;
sources?: { title: string; text: string; source: string }[];
retryBtn?: React.ReactElement;
questionNumber?: number;
handleUpdatedQuestionSubmission?: (
updatedquestion?: string,
updated?: boolean,
index?: number,
) => void;
}
>(function ConversationBubble(
{
message,
type,
className,
feedback,
handleFeedback,
sources,
retryBtn,
questionNumber,
handleUpdatedQuestionSubmission,
},
{ message, type, className, feedback, handleFeedback, sources, retryBtn },
ref,
) {
const { t } = useTranslation();
// const bubbleRef = useRef<HTMLDivElement | null>(null);
const chunks = useSelector(selectChunks);
const selectedDocs = useSelector(selectSelectedDocs);
const [isLikeHovered, setIsLikeHovered] = useState(false);
const [isEditClicked, setIsEditClicked] = useState(false);
const [isDislikeHovered, setIsDislikeHovered] = useState(false);
const [isQuestionHovered, setIsQuestionHovered] = useState(false);
const [editInputBox, setEditInputBox] = useState<string>('');
const [isLikeClicked, setIsLikeClicked] = useState(false);
const [isDislikeClicked, setIsDislikeClicked] = useState(false);
const [activeTooltip, setActiveTooltip] = useState<number | null>(null);
const [isSidebarOpen, setIsSidebarOpen] = useState<boolean>(false);
const editableQueryRef = useRef<HTMLDivElement | null>(null);
useOutsideAlerter(editableQueryRef, () => setIsEditClicked(false), [], true);
const handleEditClick = () => {
setIsEditClicked(false);
handleUpdatedQuestionSubmission?.(editInputBox, true, questionNumber);
};
let bubble;
if (type === 'QUESTION') {
bubble = (
<div
onMouseEnter={() => setIsQuestionHovered(true)}
onMouseLeave={() => setIsQuestionHovered(false)}
ref={ref}
className={`flex flex-row-reverse self-end flex-wrap ${className}`}
>
<Avatar className="mt-2 text-2xl" avatar="🧑‍💻"></Avatar>
<div
ref={ref}
className={`flex flex-row-reverse self-end flex-wrap ${className}`}
style={{
wordBreak: 'break-word',
}}
className="ml-10 mr-2 flex items-center rounded-[28px] bg-purple-30 py-[14px] px-[19px] text-white max-w-full whitespace-pre-wrap leading-normal"
>
<Avatar
size="SMALL"
className="mt-2 text-2xl"
avatar={
<img className="rounded-full mr-1" width={30} src={UserIcon} />
}
/>
{!isEditClicked && (
<div
style={{
wordBreak: 'break-word',
}}
className="text-sm sm:text-base ml-2 mr-2 flex items-center rounded-[28px] bg-purple-30 py-[14px] px-[19px] text-white max-w-full whitespace-pre-wrap leading-normal"
>
{message}
</div>
)}
{isEditClicked && (
<div ref={editableQueryRef} className="w-[75%] flex flex-col">
<textarea
placeholder={t('conversation.edit.placeholder')}
onChange={(e) => {
setEditInputBox(e.target.value);
}}
rows={1}
value={editInputBox}
className="ml-2 mr-12 text-[15px] resize-y h-12 min-h-max rounded-3xl p-3 no-scrollbar leading-relaxed dark:border-[0.5px] dark:border-white dark:bg-raisin-black dark:text-white px-[18px] border-[1.5px] border-black"
/>
<div
className={`flex flex-row-reverse justify-end gap-1 mt-3 text-sm font-medium`}
>
<button
className="rounded-full bg-[#CDB5FF] hover:bg-[#E1D3FF] py-[10px] px-[15px] text-purple-30 max-w-full whitespace-pre-wrap leading-none"
onClick={() => handleEditClick()}
>
{t('conversation.edit.update')}
</button>
<button
className="py-[10px] px-[15px] no-underline hover:underline text-purple-30 max-w-full whitespace-pre-wrap leading-normal"
onClick={() => setIsEditClicked(false)}
>
{t('conversation.edit.cancel')}
</button>
</div>
</div>
)}
<button
onClick={() => {
setIsEditClicked(true);
setEditInputBox(message);
}}
className={`h-fit mt-3 p-2 cursor-pointer rounded-full hover:bg-[#35363B] flex items-center ${isQuestionHovered || isEditClicked ? 'visible' : 'invisible'}`}
>
<img src={Edit} alt="Edit" className="cursor-pointer" />
</button>
{message}
</div>
</div>
);
@@ -187,14 +105,12 @@ const ConversationBubble = forwardRef<
avatar={
<img
src={Sources}
alt={t('conversation.sources.title')}
alt="Sources"
className="h-full w-full object-fill"
/>
}
/>
<p className="text-base font-semibold">
{t('conversation.sources.title')}
</p>
<p className="text-base font-semibold">Sources</p>
</div>
<div className="grid grid-cols-2 gap-2 lg:grid-cols-4">
{Array.from({ length: 4 }).map((_, index) => (
@@ -221,14 +137,12 @@ const ConversationBubble = forwardRef<
avatar={
<img
src={Sources}
alt={t('conversation.sources.title')}
alt="Sources"
className="h-full w-full object-fill"
/>
}
/>
<p className="text-base font-semibold">
{t('conversation.sources.title')}
</p>
<p className="text-base font-semibold">Sources</p>
</div>
<div className="fade-in ml-3 mr-5 max-w-[90vw] md:max-w-[70vw] lg:max-w-[50vw]">
<div className="grid grid-cols-2 gap-2 lg:grid-cols-4">
@@ -295,11 +209,9 @@ const ConversationBubble = forwardRef<
className="flex h-28 cursor-pointer flex-col-reverse rounded-[20px] bg-gray-1000 p-4 text-purple-30 hover:bg-[#F1F1F1] hover:text-[#6D3ECC] dark:bg-gun-metal dark:hover:bg-[#2C2E3C] dark:hover:text-[#8C67D7]"
onClick={() => setIsSidebarOpen(true)}
>
<p className="ellipsis-text h-22 text-xs">
{t('conversation.sources.view_more', {
count: sources?.length ? sources.length - 3 : 0,
})}
</p>
<p className="ellipsis-text h-22 text-xs">{`View ${
sources?.length ? sources.length - 3 : 0
} more`}</p>
</div>
)}
</div>
@@ -314,14 +226,12 @@ const ConversationBubble = forwardRef<
avatar={
<img
src={DocsGPT3}
alt={t('conversation.answer')}
alt="DocsGPT"
className="h-full w-full object-cover"
/>
}
/>
<p className="text-base font-semibold">
{t('conversation.answer')}
</p>
<p className="text-base font-semibold">Answer</p>
</div>
<div
className={`fade-in-bubble ml-2 mr-5 flex max-w-[90vw] rounded-[28px] bg-gray-1000 py-[14px] px-7 dark:bg-gun-metal md:max-w-[70vw] lg:max-w-[50vw] ${
@@ -331,7 +241,7 @@ const ConversationBubble = forwardRef<
}`}
>
<ReactMarkdown
className="fade-in whitespace-pre-wrap break-words leading-normal"
className="fade-in whitespace-pre-wrap break-normal leading-normal"
remarkPlugins={[remarkGfm, remarkMath]}
rehypePlugins={[rehypeKatex]}
components={{
@@ -359,7 +269,12 @@ const ConversationBubble = forwardRef<
</div>
</div>
) : (
<code className="whitespace-pre-line">{children}</code>
<code
className={className ? className : 'whitespace-pre-line'}
{...props}
>
{children}
</code>
);
},
ul({ children }) {
@@ -429,7 +344,7 @@ const ConversationBubble = forwardRef<
${type !== 'ERROR' ? 'group-hover:lg:visible' : 'hidden'}`}
>
<div>
<SpeakButton text={message} />
<SpeakButton text={message} /> {/* Add SpeakButton here */}
</div>
</div>
{type === 'ERROR' && (
@@ -446,8 +361,7 @@ const ConversationBubble = forwardRef<
feedback === 'LIKE' || type !== 'ERROR'
? 'group-hover:lg:visible'
: ''
}
${feedback === 'DISLIKE' && type !== 'ERROR' ? 'hidden' : ''}`}
}`}
>
<div>
<div
@@ -465,15 +379,9 @@ const ConversationBubble = forwardRef<
: 'fill-none stroke-gray-4000'
}`}
onClick={() => {
if (feedback === undefined || feedback === null) {
handleFeedback?.('LIKE');
setIsLikeClicked(true);
setIsDislikeClicked(false);
} else if (feedback === 'LIKE') {
handleFeedback?.(null);
setIsLikeClicked(false);
setIsDislikeClicked(false);
}
handleFeedback?.('LIKE');
setIsLikeClicked(true);
setIsDislikeClicked(false);
}}
onMouseEnter={() => setIsLikeHovered(true)}
onMouseLeave={() => setIsLikeHovered(false)}
@@ -488,7 +396,7 @@ const ConversationBubble = forwardRef<
feedback === 'DISLIKE' || type !== 'ERROR'
? 'group-hover:lg:visible'
: ''
} ${feedback === 'LIKE' && type !== 'ERROR' ? ' hidden' : ''} `}
}`}
>
<div>
<div
@@ -505,15 +413,9 @@ const ConversationBubble = forwardRef<
: 'fill-none stroke-gray-4000'
}`}
onClick={() => {
if (feedback === undefined || feedback === null) {
handleFeedback?.('DISLIKE');
setIsDislikeClicked(true);
setIsLikeClicked(false);
} else if (feedback === 'DISLIKE') {
handleFeedback?.(null);
setIsLikeClicked(false);
setIsDislikeClicked(false);
}
handleFeedback?.('DISLIKE');
setIsDislikeClicked(true);
setIsLikeClicked(false);
}}
onMouseEnter={() => setIsDislikeHovered(true)}
onMouseLeave={() => setIsDislikeHovered(false)}
@@ -567,7 +469,7 @@ function AllSources(sources: AllSourcesProps) {
{source.source && source.source !== 'local' ? (
<img
src={Link}
alt={'Link'}
alt="Link"
className="h-3 w-3 cursor-pointer object-fill"
onClick={() =>
window.open(source.source, '_blank', 'noopener, noreferrer')

View File

@@ -115,19 +115,6 @@ export default function ConversationTile({
setConversationsName(conversation.name);
setIsEdit(false);
}
const handleRenameKeyDown = (e: React.KeyboardEvent<HTMLInputElement>) => {
e.stopPropagation();
if (e.key === 'Enter') {
handleSaveConversation({
id: conversation.id,
name: conversationName,
});
} else if (e.key === 'Escape') {
onClear();
}
};
return (
<>
<div
@@ -157,7 +144,6 @@ export default function ConversationTile({
className="h-6 w-full bg-transparent px-1 text-sm font-normal leading-6 focus:outline-[#0075FF]"
value={conversationName}
onChange={(e) => setConversationsName(e.target.value)}
onKeyDown={handleRenameKeyDown}
/>
) : (
<p className="my-auto overflow-hidden overflow-ellipsis whitespace-nowrap text-sm font-normal leading-6 text-eerie-black dark:text-white">
@@ -253,7 +239,7 @@ export default function ConversationTile({
>
<img
src={Trash}
alt="Delete"
alt="Edit"
width={24}
height={24}
className="cursor-pointer hover:opacity-50"

View File

@@ -26,7 +26,6 @@ import {
selectQueries,
} from './sharedConversationSlice';
import { useSelector } from 'react-redux';
import { Helmet } from 'react-helmet';
export const SharedConversation = () => {
const navigate = useNavigate();
@@ -177,111 +176,94 @@ export const SharedConversation = () => {
}, []);
return (
<>
<Helmet>
<title>{`DocsGPT | ${title}`}</title>
<meta name="description" content="Shared conversations with DocsGPT" />
<meta property="og:title" content={title} />
<meta
property="og:description"
content="Shared conversations with DocsGPT"
/>
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:title" content={title} />
<meta
name="twitter:description"
content="Shared conversations with DocsGPT"
/>
</Helmet>
<div className="flex h-full flex-col items-center justify-between gap-2 overflow-y-hidden dark:bg-raisin-black">
<div
ref={sharedConversationRef}
onWheel={handleUserInterruption}
onTouchMove={handleUserInterruption}
className="flex w-full justify-center overflow-auto"
>
<div className="mt-0 w-11/12 md:w-10/12 lg:w-6/12">
<div className="mb-2 w-full border-b pb-2 dark:border-b-silver">
<h1 className="font-semi-bold text-4xl text-chinese-black dark:text-chinese-silver">
{title}
</h1>
<h2 className="font-semi-bold text-base text-chinese-black dark:text-chinese-silver">
{t('sharedConv.subtitle')}{' '}
<a href="/" className="text-[#007DFF]">
DocsGPT
</a>
</h2>
<h2 className="font-semi-bold text-base text-chinese-black dark:text-chinese-silver">
{date}
</h2>
</div>
<div className="">
{queries?.map((query, index) => {
return (
<Fragment key={index}>
<ConversationBubble
ref={endMessageRef}
className={'mb-1 last:mb-28 md:mb-7'}
key={`${index}QUESTION`}
message={query.prompt}
type="QUESTION"
sources={query.sources}
></ConversationBubble>
<div className="flex h-full flex-col items-center justify-between gap-2 overflow-y-hidden dark:bg-raisin-black">
<div
ref={sharedConversationRef}
onWheel={handleUserInterruption}
onTouchMove={handleUserInterruption}
className="flex w-full justify-center overflow-auto"
>
<div className="mt-0 w-11/12 md:w-10/12 lg:w-6/12">
<div className="mb-2 w-full border-b pb-2 dark:border-b-silver">
<h1 className="font-semi-bold text-4xl text-chinese-black dark:text-chinese-silver">
{title}
</h1>
<h2 className="font-semi-bold text-base text-chinese-black dark:text-chinese-silver">
{t('sharedConv.subtitle')}{' '}
<a href="/" className="text-[#007DFF]">
DocsGPT
</a>
</h2>
<h2 className="font-semi-bold text-base text-chinese-black dark:text-chinese-silver">
{date}
</h2>
</div>
<div className="">
{queries?.map((query, index) => {
return (
<Fragment key={index}>
<ConversationBubble
ref={endMessageRef}
className={'mb-1 last:mb-28 md:mb-7'}
key={`${index}QUESTION`}
message={query.prompt}
type="QUESTION"
sources={query.sources}
></ConversationBubble>
{prepResponseView(query, index)}
</Fragment>
);
})}
</div>
{prepResponseView(query, index)}
</Fragment>
);
})}
</div>
</div>
<div className="flex w-11/12 flex-col items-center gap-4 pb-2 md:w-10/12 lg:w-6/12">
{apiKey ? (
<div className="flex h-full w-full items-center rounded-[40px] border border-silver bg-white py-1 dark:bg-raisin-black">
<div
id="inputbox"
ref={inputRef}
tabIndex={1}
onPaste={handlePaste}
placeholder={t('inputPlaceholder')}
contentEditable
className={`inputbox-style max-h-24 w-full overflow-y-auto overflow-x-hidden whitespace-pre-wrap rounded-full bg-white pt-5 pb-[22px] text-base leading-tight opacity-100 focus:outline-none dark:bg-raisin-black dark:text-bright-gray`}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
handleQuestionSubmission();
}
}}
></div>
{status === 'loading' ? (
<img
src={Spinner}
className="relative right-[38px] bottom-[24px] -mr-[30px] animate-spin cursor-pointer self-end bg-transparent filter dark:invert"
></img>
) : (
<div className="mx-1 cursor-pointer rounded-full p-3 text-center hover:bg-gray-3000 dark:hover:bg-dark-charcoal">
<img
onClick={handleQuestionSubmission}
className="ml-[4px] h-6 w-6 text-white filter dark:invert"
src={Send}
></img>
</div>
)}
</div>
) : (
<button
onClick={() => navigate('/')}
className="w-fit rounded-full bg-purple-30 p-4 text-white shadow-xl transition-colors duration-200 hover:bg-purple-taupe mb-14 sm:mb-0"
>
{t('sharedConv.button')}
</button>
)}
<span className="mb-2 hidden text-xs text-dark-charcoal dark:text-silver sm:inline">
{t('sharedConv.meta')}
</span>
</div>
</div>
</>
<div className=" flex w-11/12 flex-col items-center gap-4 pb-2 md:w-10/12 lg:w-6/12">
{apiKey ? (
<div className="flex h-full w-full items-center rounded-[40px] border border-silver bg-white py-1 dark:bg-raisin-black">
<div
id="inputbox"
ref={inputRef}
tabIndex={1}
onPaste={handlePaste}
placeholder={t('inputPlaceholder')}
contentEditable
className={`inputbox-style max-h-24 w-full overflow-y-auto overflow-x-hidden whitespace-pre-wrap rounded-full bg-white pt-5 pb-[22px] text-base leading-tight opacity-100 focus:outline-none dark:bg-raisin-black dark:text-bright-gray`}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
handleQuestionSubmission();
}
}}
></div>
{status === 'loading' ? (
<img
src={Spinner}
className="relative right-[38px] bottom-[24px] -mr-[30px] animate-spin cursor-pointer self-end bg-transparent filter dark:invert"
></img>
) : (
<div className="mx-1 cursor-pointer rounded-full p-3 text-center hover:bg-gray-3000 dark:hover:bg-dark-charcoal">
<img
onClick={handleQuestionSubmission}
className="ml-[4px] h-6 w-6 text-white filter dark:invert"
src={Send}
></img>
</div>
)}
</div>
) : (
<button
onClick={() => navigate('/')}
className="w-fit rounded-full bg-purple-30 p-4 text-white shadow-xl transition-colors duration-200 hover:bg-purple-taupe"
>
{t('sharedConv.button')}
</button>
)}
<span className="mb-2 hidden text-xs text-dark-charcoal dark:text-silver sm:inline">
{t('sharedConv.meta')}
</span>
</div>
</div>
);
};

Some files were not shown because too many files have changed in this diff Show More