Compare commits

..

1 Commits

Author SHA1 Message Date
Pavel
5a891647bf parser functions change
token_func proposed change to chunking. open_ai_func proposed change to embedding_pipeline. Late chunking first  implementation requires further testing.
2024-11-20 21:40:57 +04:00
595 changed files with 17932 additions and 73800 deletions

View File

@@ -1,15 +0,0 @@
FROM python:3.12-bookworm
# Install Node.js 20.x
RUN curl -fsSL https://deb.nodesource.com/setup_20.x | bash - \
&& apt-get install -y nodejs \
&& rm -rf /var/lib/apt/lists/*
# Install global npm packages
RUN npm install -g husky vite
# Create and activate Python virtual environment
RUN python -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
WORKDIR /workspace

View File

@@ -1,49 +0,0 @@
# Welcome to DocsGPT Devcontainer
Welcome to the DocsGPT development environment! This guide will help you get started quickly.
## Starting Services
To run DocsGPT, you need to start three main services: Flask (backend), Celery (task queue), and Vite (frontend). Here are the commands to start each service within the devcontainer:
### Vite (Frontend)
```bash
cd frontend
npm run dev -- --host
```
### Flask (Backend)
```bash
flask --app application/app.py run --host=0.0.0.0 --port=7091
```
### Celery (Task Queue)
```bash
celery -A application.app.celery worker -l INFO
```
## Github Codespaces Instructions
### 1. Make Ports Public:
Go to the "Ports" panel in Codespaces (usually located at the bottom of the VS Code window).
For both port 5173 and 7091, right-click on the port and select "Make Public".
![CleanShot 2025-02-12 at 09 46 14@2x](https://github.com/user-attachments/assets/00a34b16-a7ef-47af-9648-87a7e3008475)
### 2. Update VITE_API_HOST:
After making port 7091 public, copy the public URL provided by Codespaces for port 7091.
Open the file frontend/.env.development.
Find the line VITE_API_HOST=http://localhost:7091.
Replace http://localhost:7091 with the public URL you copied from Codespaces.
![CleanShot 2025-02-12 at 09 46 56@2x](https://github.com/user-attachments/assets/c472242f-1079-4cd8-bc0b-2d78db22b94c)

View File

@@ -1,24 +0,0 @@
{
"name": "DocsGPT Dev Container",
"dockerComposeFile": ["docker-compose-dev.yaml", "docker-compose.override.yaml"],
"service": "dev",
"workspaceFolder": "/workspace",
"postCreateCommand": ".devcontainer/post-create-command.sh",
"forwardPorts": [7091, 5173, 6379, 27017],
"customizations": {
"vscode": {
"extensions": [
"ms-python.python",
"ms-toolsai.jupyter",
"esbenp.prettier-vscode",
"dbaeumer.vscode-eslint"
]
},
"codespaces": {
"openFiles": [
".devcontainer/devc-welcome.md",
"CONTRIBUTING.md"
]
}
}
}

View File

@@ -1,40 +0,0 @@
version: '3.8'
services:
dev:
build:
context: .
dockerfile: Dockerfile
volumes:
- ../:/workspace:cached
command: sleep infinity
depends_on:
redis:
condition: service_healthy
mongo:
condition: service_healthy
environment:
- CELERY_BROKER_URL=redis://redis:6379/0
- CELERY_RESULT_BACKEND=redis://redis:6379/1
- MONGO_URI=mongodb://mongo:27017/docsgpt
- CACHE_REDIS_URL=redis://redis:6379/2
networks:
- default
redis:
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 30s
retries: 5
mongo:
healthcheck:
test: ["CMD", "mongosh", "--eval", "db.adminCommand('ping')"]
interval: 5s
timeout: 30s
retries: 5
networks:
default:
name: docsgpt-dev-network

View File

@@ -1,32 +0,0 @@
#!/bin/bash
set -e # Exit immediately if a command exits with a non-zero status
if [ ! -f frontend/.env.development ]; then
cp -n .env-template frontend/.env.development || true # Assuming .env-template is in the root
fi
# Determine VITE_API_HOST based on environment
if [ -n "$CODESPACES" ]; then
# Running in Codespaces
CODESPACE_NAME=$(echo "$CODESPACES" | cut -d'-' -f1) # Extract codespace name
PUBLIC_API_HOST="https://${CODESPACE_NAME}-7091.${GITHUB_CODESPACES_PORT_FORWARDING_DOMAIN}"
echo "Setting VITE_API_HOST for Codespaces: $PUBLIC_API_HOST in frontend/.env.development"
sed -i "s|VITE_API_HOST=.*|VITE_API_HOST=$PUBLIC_API_HOST|" frontend/.env.development
else
# Not running in Codespaces (local devcontainer)
DEFAULT_API_HOST="http://localhost:7091"
echo "Setting VITE_API_HOST for local dev: $DEFAULT_API_HOST in frontend/.env.development"
sed -i "s|VITE_API_HOST=.*|VITE_API_HOST=$DEFAULT_API_HOST|" frontend/.env.development
fi
mkdir -p model
if [ ! -d model/all-mpnet-base-v2 ]; then
wget -q https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip -O model/mpnet-base-v2.zip
unzip -q model/mpnet-base-v2.zip -d model
rm model/mpnet-base-v2.zip
fi
pip install -r application/requirements.txt
cd frontend
npm install --include=dev

2
.gitattributes vendored
View File

@@ -1,2 +0,0 @@
# Auto detect text files and perform LF normalization
* text=auto

3
.github/FUNDING.yml vendored
View File

@@ -1,3 +0,0 @@
# These are supported funding model platforms
github: arc53

View File

@@ -8,16 +8,12 @@ updates:
- package-ecosystem: "pip" # See documentation for possible values
directory: "/application" # Location of package manifests
schedule:
interval: "daily"
interval: "weekly"
- package-ecosystem: "npm" # See documentation for possible values
directory: "/frontend" # Location of package manifests
schedule:
interval: "daily"
- package-ecosystem: "npm"
directory: "/extensions/react-widget"
schedule:
interval: "daily"
interval: "weekly"
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "daily"
interval: "weekly"

View File

@@ -1,11 +0,0 @@
extends: spelling
level: warning
message: "Did you really mean '%s'?"
ignore:
- "**/node_modules/**"
- "**/dist/**"
- "**/build/**"
- "**/coverage/**"
- "**/public/**"
- "**/static/**"
vocab: DocsGPT

View File

@@ -1,46 +0,0 @@
Ollama
Qdrant
Milvus
Chatwoot
Nextra
VSCode
npm
LLMs
APIs
Groq
SGLang
LMDeploy
OAuth
Vite
LLM
JSONPath
UIs
configs
uncomment
qdrant
vectorstore
docsgpt
llm
GPUs
kubectl
Lightsail
enqueues
chatbot
VSCode's
Shareability
feedbacks
automations
Premade
Signup
Repo
repo
env
URl
agentic
llama_cpp
parsable
SDKs
boolean
bool
hardcode
EOL

View File

@@ -1,40 +0,0 @@
name: Bandit Security Scan
on:
push:
branches:
- main
pull_request:
types: [opened, synchronize, reopened]
jobs:
bandit_scan:
if: ${{ github.repository == 'arc53/DocsGPT' }}
runs-on: ubuntu-latest
permissions:
security-events: write
actions: read
contents: read
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.12'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install bandit # Bandit is needed for this action
if [ -f application/requirements.txt ]; then pip install -r application/requirements.txt; fi
- name: Run Bandit scan
uses: PyCQA/bandit-action@v1
with:
severity: medium
confidence: medium
targets: application/
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -5,33 +5,20 @@ on:
types: [published]
jobs:
build:
deploy:
if: github.repository == 'arc53/DocsGPT'
strategy:
matrix:
include:
- platform: linux/amd64
runner: ubuntu-latest
suffix: amd64
- platform: linux/arm64
runner: ubuntu-24.04-arm
suffix: arm64
runs-on: ${{ matrix.runner }}
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v4
- name: Set up QEMU # Only needed for emulation, not for native arm64 builds
if: matrix.platform == 'linux/arm64'
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
@@ -46,67 +33,15 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push platform-specific images
- name: Build and push Docker images to docker.io and ghcr.io
uses: docker/build-push-action@v6
with:
file: './application/Dockerfile'
platforms: ${{ matrix.platform }}
platforms: linux/amd64
context: ./application
push: true
tags: |
${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }}-${{ matrix.suffix }}
ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }}-${{ matrix.suffix }}
provenance: false
sbom: false
${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }},${{ secrets.DOCKER_USERNAME }}/docsgpt:latest
ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }},ghcr.io/${{ github.repository_owner }}/docsgpt:latest
cache-from: type=registry,ref=${{ secrets.DOCKER_USERNAME }}/docsgpt:latest
cache-to: type=inline
manifest:
if: github.repository == 'arc53/DocsGPT'
needs: build
runs-on: ubuntu-latest
permissions:
packages: write
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Login to ghcr.io
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Create and push manifest for DockerHub
run: |
set -e
docker manifest create ${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }} \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }}-amd64 \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }}-arm64
docker manifest push ${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }}
docker manifest create ${{ secrets.DOCKER_USERNAME }}/docsgpt:latest \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }}-amd64 \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt:${{ github.event.release.tag_name }}-arm64
docker manifest push ${{ secrets.DOCKER_USERNAME }}/docsgpt:latest
- name: Create and push manifest for ghcr.io
run: |
set -e
docker manifest create ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }} \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }}-amd64 \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }}-arm64
docker manifest push ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }}
docker manifest create ghcr.io/${{ github.repository_owner }}/docsgpt:latest \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }}-amd64 \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt:${{ github.event.release.tag_name }}-arm64
docker manifest push ghcr.io/${{ github.repository_owner }}/docsgpt:latest

View File

@@ -5,33 +5,20 @@ on:
types: [published]
jobs:
build:
deploy:
if: github.repository == 'arc53/DocsGPT'
strategy:
matrix:
include:
- platform: linux/amd64
runner: ubuntu-latest
suffix: amd64
- platform: linux/arm64
runner: ubuntu-24.04-arm
suffix: arm64
runs-on: ${{ matrix.runner }}
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v4
- name: Set up QEMU # Only needed for emulation, not for native arm64 builds
if: matrix.platform == 'linux/arm64'
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
@@ -46,67 +33,16 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push platform-specific images
# Runs a single command using the runners shell
- name: Build and push Docker images to docker.io and ghcr.io
uses: docker/build-push-action@v6
with:
file: './frontend/Dockerfile'
platforms: ${{ matrix.platform }}
platforms: linux/amd64, linux/arm64
context: ./frontend
push: true
tags: |
${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }}-${{ matrix.suffix }}
ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }}-${{ matrix.suffix }}
provenance: false
sbom: false
${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }},${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:latest
ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }},ghcr.io/${{ github.repository_owner }}/docsgpt-fe:latest
cache-from: type=registry,ref=${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:latest
cache-to: type=inline
manifest:
if: github.repository == 'arc53/DocsGPT'
needs: build
runs-on: ubuntu-latest
permissions:
packages: write
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Login to ghcr.io
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Create and push manifest for DockerHub
run: |
set -e
docker manifest create ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }} \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }}-amd64 \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }}-arm64
docker manifest push ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }}
docker manifest create ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:latest \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }}-amd64 \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:${{ github.event.release.tag_name }}-arm64
docker manifest push ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:latest
- name: Create and push manifest for ghcr.io
run: |
set -e
docker manifest create ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }} \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }}-amd64 \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }}-arm64
docker manifest push ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }}
docker manifest create ghcr.io/${{ github.repository_owner }}/docsgpt-fe:latest \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }}-amd64 \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt-fe:${{ github.event.release.tag_name }}-arm64
docker manifest push ghcr.io/${{ github.repository_owner }}/docsgpt-fe:latest

View File

@@ -1,4 +1,4 @@
name: Build and push multi-arch DocsGPT Docker image
name: Build and push DocsGPT Docker image for development
on:
workflow_dispatch:
@@ -7,36 +7,27 @@ on:
- main
jobs:
build:
deploy:
if: github.repository == 'arc53/DocsGPT'
strategy:
matrix:
include:
- platform: linux/amd64
runner: ubuntu-latest
suffix: amd64
- platform: linux/arm64
runner: ubuntu-24.04-arm
suffix: arm64
runs-on: ${{ matrix.runner }}
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Login to ghcr.io
uses: docker/login-action@v3
with:
@@ -44,57 +35,15 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push platform-specific images
- name: Build and push Docker images to docker.io and ghcr.io
uses: docker/build-push-action@v6
with:
file: './application/Dockerfile'
platforms: ${{ matrix.platform }}
platforms: linux/amd64
context: ./application
push: true
tags: |
${{ secrets.DOCKER_USERNAME }}/docsgpt:develop-${{ matrix.suffix }}
ghcr.io/${{ github.repository_owner }}/docsgpt:develop-${{ matrix.suffix }}
provenance: false
sbom: false
${{ secrets.DOCKER_USERNAME }}/docsgpt:develop
ghcr.io/${{ github.repository_owner }}/docsgpt:develop
cache-from: type=registry,ref=${{ secrets.DOCKER_USERNAME }}/docsgpt:develop
cache-to: type=inline
manifest:
if: github.repository == 'arc53/DocsGPT'
needs: build
runs-on: ubuntu-latest
permissions:
packages: write
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Login to ghcr.io
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Create and push manifest for DockerHub
run: |
docker manifest create ${{ secrets.DOCKER_USERNAME }}/docsgpt:develop \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt:develop-amd64 \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt:develop-arm64
docker manifest push ${{ secrets.DOCKER_USERNAME }}/docsgpt:develop
- name: Create and push manifest for ghcr.io
run: |
docker manifest create ghcr.io/${{ github.repository_owner }}/docsgpt:develop \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt:develop-amd64 \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt:develop-arm64
docker manifest push ghcr.io/${{ github.repository_owner }}/docsgpt:develop

View File

@@ -7,33 +7,20 @@ on:
- main
jobs:
build:
deploy:
if: github.repository == 'arc53/DocsGPT'
strategy:
matrix:
include:
- platform: linux/amd64
runner: ubuntu-latest
suffix: amd64
- platform: linux/arm64
runner: ubuntu-24.04-arm
suffix: arm64
runs-on: ${{ matrix.runner }}
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v4
- name: Set up QEMU # Only needed for emulation, not for native arm64 builds
if: matrix.platform == 'linux/arm64'
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
@@ -48,57 +35,15 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push platform-specific images
- name: Build and push Docker images to docker.io and ghcr.io
uses: docker/build-push-action@v6
with:
file: './frontend/Dockerfile'
platforms: ${{ matrix.platform }}
platforms: linux/amd64
context: ./frontend
push: true
tags: |
${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:develop-${{ matrix.suffix }}
ghcr.io/${{ github.repository_owner }}/docsgpt-fe:develop-${{ matrix.suffix }}
provenance: false
sbom: false
${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:develop
ghcr.io/${{ github.repository_owner }}/docsgpt-fe:develop
cache-from: type=registry,ref=${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:develop
cache-to: type=inline
manifest:
if: github.repository == 'arc53/DocsGPT'
needs: build
runs-on: ubuntu-latest
permissions:
packages: write
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
install: true
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Login to ghcr.io
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Create and push manifest for DockerHub
run: |
docker manifest create ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:develop \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:develop-amd64 \
--amend ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:develop-arm64
docker manifest push ${{ secrets.DOCKER_USERNAME }}/docsgpt-fe:develop
- name: Create and push manifest for ghcr.io
run: |
docker manifest create ghcr.io/${{ github.repository_owner }}/docsgpt-fe:develop \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt-fe:develop-amd64 \
--amend ghcr.io/${{ github.repository_owner }}/docsgpt-fe:develop-arm64
docker manifest push ghcr.io/${{ github.repository_owner }}/docsgpt-fe:develop

View File

@@ -6,7 +6,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.12"]
python-version: ["3.11"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
@@ -16,15 +16,15 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest pytest-cov
cd application
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
cd ../tests
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Test with pytest and generate coverage report
run: |
python -m pytest --cov=application --cov-report=xml --cov-report=term-missing
python -m pytest --cov=application --cov-report=xml
- name: Upload coverage reports to Codecov
if: github.event_name == 'pull_request' && matrix.python-version == '3.12'
uses: codecov/codecov-action@v5
if: github.event_name == 'pull_request' && matrix.python-version == '3.11'
uses: codecov/codecov-action@v4
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}

View File

@@ -1,26 +0,0 @@
name: Vale Documentation Linter
on:
pull_request:
paths:
- 'docs/**/*.md'
- 'docs/**/*.mdx'
- '**/*.md'
- '.vale.ini'
- '.github/styles/**'
jobs:
vale:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Vale linter
uses: errata-ai/vale-action@v2
with:
files: docs
fail_on_error: false
version: 3.0.5
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

3
.gitignore vendored
View File

@@ -2,9 +2,7 @@
__pycache__/
*.py[cod]
*$py.class
experiments/
experiments
# C extensions
*.so
*.next
@@ -115,7 +113,6 @@ venv.bak/
# Spyder project settings
.spyderproject
.spyproject
.jwt_secret_key
# Rope project settings
.ropeproject

View File

@@ -1,5 +0,0 @@
MinAlertLevel = warning
StylesPath = .github/styles
[*.{md,mdx}]
BasedOnStyles = DocsGPT

71
.vscode/launch.json vendored
View File

@@ -2,70 +2,15 @@
"version": "0.2.0",
"configurations": [
{
"name": "Frontend Debug (npm)",
"type": "node-terminal",
"name": "Docker Debug Frontend",
"request": "launch",
"command": "npm run dev",
"cwd": "${workspaceFolder}/frontend"
},
{
"name": "Flask Debugger",
"type": "debugpy",
"request": "launch",
"module": "flask",
"env": {
"FLASK_APP": "application/app.py",
"PYTHONPATH": "${workspaceFolder}",
"FLASK_ENV": "development",
"FLASK_DEBUG": "1",
"FLASK_RUN_PORT": "7091",
"FLASK_RUN_HOST": "0.0.0.0"
},
"args": [
"run",
"--no-debugger"
],
"cwd": "${workspaceFolder}",
},
{
"name": "Celery Debugger",
"type": "debugpy",
"request": "launch",
"module": "celery",
"env": {
"PYTHONPATH": "${workspaceFolder}",
},
"args": [
"-A",
"application.app.celery",
"worker",
"-l",
"INFO",
"--pool=solo"
],
"cwd": "${workspaceFolder}"
},
{
"name": "Dev Containers (Mongo + Redis)",
"type": "node-terminal",
"request": "launch",
"command": "docker compose -f deployment/docker-compose-dev.yaml up --build",
"cwd": "${workspaceFolder}"
}
],
"compounds": [
{
"name": "DocsGPT: Full Stack",
"configurations": [
"Frontend Debug (npm)",
"Flask Debugger",
"Celery Debugger"
],
"presentation": {
"group": "DocsGPT",
"order": 1
}
"type": "chrome",
"preLaunchTask": "docker-compose: debug:frontend",
"url": "http://127.0.0.1:5173",
"webRoot": "${workspaceFolder}/frontend",
"skipFiles": [
"<node_internals>/**"
]
}
]
}

21
.vscode/tasks.json vendored Normal file
View File

@@ -0,0 +1,21 @@
{
"version": "2.0.0",
"tasks": [
{
"type": "docker-compose",
"label": "docker-compose: debug:frontend",
"dockerCompose": {
"up": {
"detached": true,
"services": [
"frontend"
],
"build": true
},
"files": [
"${workspaceFolder}/docker-compose.yaml"
]
}
}
]
}

View File

@@ -27,7 +27,6 @@ Before creating issues, please check out how the latest version of our app looks
### 👨‍💻 If you're interested in contributing code, here are some important things to know:
For instructions on setting up a development environment, please refer to our [Development Deployment Guide](https://docs.docsgpt.cloud/Deploying/Development-Environment).
Tech Stack Overview:
@@ -35,40 +34,19 @@ Tech Stack Overview:
- 🖥 Backend: Developed in Python 🐍
### 🌐 Frontend Contributions (⚛️ React, Vite)
### 🌐 If you are looking to contribute to frontend (⚛React, Vite):
* The updated Figma design can be found [here](https://www.figma.com/file/OXLtrl1EAy885to6S69554/DocsGPT?node-id=0%3A1&t=hjWVuxRg9yi5YkJ9-1). Please try to follow the guidelines.
* **Coding Style:** We follow a strict coding style enforced by ESLint and Prettier. Please ensure your code adheres to the configuration provided in our repository's `fronetend/.eslintrc.js` file. We recommend configuring your editor with ESLint and Prettier to help with this.
* **Component Structure:** Strive for small, reusable components. Favor functional components and hooks over class components where possible.
* **State Management** If you need to add stores, please use Redux.
- The current frontend is being migrated from [`/application`](https://github.com/arc53/DocsGPT/tree/main/application) to [`/frontend`](https://github.com/arc53/DocsGPT/tree/main/frontend) with a new design, so please contribute to the new one.
- Check out this [milestone](https://github.com/arc53/DocsGPT/milestone/1) and its issues.
- The updated Figma design can be found [here](https://www.figma.com/file/OXLtrl1EAy885to6S69554/DocsGPT?node-id=0%3A1&t=hjWVuxRg9yi5YkJ9-1).
### 🖥 Backend Contributions (🐍 Python)
Please try to follow the guidelines.
- Review our issues and contribute to [`/application`](https://github.com/arc53/DocsGPT/tree/main/application)
### 🖥 If you are looking to contribute to Backend (🐍 Python):
- Review our issues and contribute to [`/application`](https://github.com/arc53/DocsGPT/tree/main/application) or [`/scripts`](https://github.com/arc53/DocsGPT/tree/main/scripts) (please disregard old [`ingest_rst.py`](https://github.com/arc53/DocsGPT/blob/main/scripts/old/ingest_rst.py) [`ingest_rst_sphinx.py`](https://github.com/arc53/DocsGPT/blob/main/scripts/old/ingest_rst_sphinx.py) files; these will be deprecated soon).
- All new code should be covered with unit tests ([pytest](https://github.com/pytest-dev/pytest)). Please find tests under [`/tests`](https://github.com/arc53/DocsGPT/tree/main/tests) folder.
- Before submitting your Pull Request, ensure it can be queried after ingesting some test data.
- **Coding Style:** We adhere to the [PEP 8](https://www.python.org/dev/peps/pep-0008/) style guide for Python code. We use `ruff` as our linter and code formatter. Please ensure your code is formatted correctly and passes `ruff` checks before submitting.
- **Type Hinting:** Please use type hints for all function arguments and return values. This improves code readability and helps catch errors early. Example:
```python
def my_function(name: str, count: int) -> list[str]:
...
```
- **Docstrings:** All functions and classes should have docstrings explaining their purpose, parameters, and return values. We prefer the [Google style docstrings](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html). Example:
```python
def my_function(name: str, count: int) -> list[str]:
"""Does something with a name and a count.
Args:
name: The name to use.
count: The number of times to do it.
Returns:
A list of strings.
"""
...
```
### Testing
@@ -147,5 +125,5 @@ Here's a step-by-step guide on how to contribute to DocsGPT:
Thank you for considering contributing to DocsGPT! 🙏
## Questions/collaboration
Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
# Thank you so much for considering to contributing DocsGPT!🙏

View File

@@ -1,14 +1,15 @@
# **🎉 Join the Hacktoberfest with DocsGPT and win a Free T-shirt for a meaningful PR! 🎉**
# **🎉 Join the Hacktoberfest with DocsGPT and win a Free T-shirt and other prizes! 🎉**
Welcome, contributors! We're excited to announce that DocsGPT is participating in Hacktoberfest. Get involved by submitting meaningful pull requests.
All Meaningful contributors with accepted PRs that were created for issues with the `hacktoberfest` label (set by our maintainer team: dartpain, siiddhantt, pabik, ManishMadan2882) will receive a cool T-shirt! 🤩.
<img width="1331" height="678" alt="hacktoberfest-mocks-preview" src="https://github.com/user-attachments/assets/633f6377-38db-48f5-b519-a8b3855a9eb4" />
All contributors with accepted PRs will receive a cool Holopin! 🤩 (Watch out for a reply in your PR to collect it).
Fill in [this form](https://forms.gle/Npaba4n9Epfyx56S8
) after your PR was merged please
### 🏆 Top 50 contributors will receive a special T-shirt
If you are in doubt don't hesitate to ping us on discord, ping me - Alex (dartpain).
### 🏆 [LLM Document analysis by LexEU competition](https://github.com/arc53/DocsGPT/blob/main/lexeu-competition.md):
A separate competition is available for those who submit new retrieval / workflow method that will analyze a Document using EU laws.
With 200$, 100$, 50$ prize for 1st, 2nd and 3rd place respectively.
You can find more information [here](https://github.com/arc53/DocsGPT/blob/main/lexeu-competition.md)
## 📜 Here's How to Contribute:
```text
@@ -22,18 +23,19 @@ https://github.com/arc53/DocsGPT-cli
Non-Code Contributions:
📚 Wiki: Improve our documentation, create a guide.
📚 Wiki: Improve our documentation, create a guide or change existing documentation.
🖥️ Design: Improve the UI/UX or design a new feature.
📝 Blogging or Content Creation: Write articles or create videos to showcase DocsGPT or highlight your contributions!
```
### 📝 Guidelines for Pull Requests:
- Familiarize yourself with the current contributions and our [Roadmap](https://github.com/orgs/arc53/projects/2).
- Before contributing check existing [issues](https://github.com/arc53/DocsGPT/issues) or [create](https://github.com/arc53/DocsGPT/issues/new/choose) an issue and wait to get assigned.
- Once you are finished with your contribution, please fill in this [form](https://forms.gle/Npaba4n9Epfyx56S8).
- Before contributing we highly advise that you check existing [issues](https://github.com/arc53/DocsGPT/issues) or [create](https://github.com/arc53/DocsGPT/issues/new/choose) an issue and wait to get assigned.
- Once you are finished with your contribution, please fill in this [form](https://airtable.com/appikMaJwdHhC1SDP/pagoblCJ9W29wf6Hf/form).
- Refer to the [Documentation](https://docs.docsgpt.cloud/).
- Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/vN7YFfdMpj).
- Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/n5BX8dh8rU).
Thank you very much for considering contributing to DocsGPT during Hacktoberfest! 🙏 Your contributions (not just simple typos) could earn you a stylish new t-shirt.
Thank you very much for considering contributing to DocsGPT during Hacktoberfest! 🙏 Your contributions (not just simple typos) could earn you a stylish new t-shirt and other prizes as a token of our appreciation. 🎁 Join us, and let's code together! 🚀
We will publish a t-shirt design later into the October.

229
README.md
View File

@@ -3,11 +3,13 @@
</h1>
<p align="center">
<strong>Private AI for agents, assistants and enterprise search</strong>
<strong>Open-Source Documentation Assistant</strong>
</p>
<p align="left">
<strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> is an open-source AI platform for building intelligent agents and assistants. Features Agent Builder, deep research tools, document analysis (PDF, Office, web content), Multi-model support (choose your provider or run locally), and rich API connectivity for agents with actionable tools and integrations. Deploy anywhere with complete privacy control.
<strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> is a cutting-edge open-source solution that streamlines the process of finding information in the project documentation. With its integration of the powerful <strong>GPT</strong> models, developers can easily ask questions about a project and receive accurate answers.
Say goodbye to time-consuming manual searches, and let <strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
</p>
<div align="center">
@@ -15,135 +17,174 @@
<a href="https://github.com/arc53/DocsGPT">![link to main GitHub showing Stars number](https://img.shields.io/github/stars/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT">![link to main GitHub showing Forks number](https://img.shields.io/github/forks/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT/blob/main/LICENSE">![link to license file](https://img.shields.io/github/license/arc53/docsgpt)</a>
<a href="https://www.bestpractices.dev/projects/9907"><img src="https://www.bestpractices.dev/projects/9907/badge"></a>
<a href="https://discord.gg/vN7YFfdMpj">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://x.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/vN7YFfdMpj">💬 Discord</a>
<br>
<a href="https://docs.docsgpt.cloud/">📖 Documentation</a><a href="https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md">👫 Contribute</a><a href="https://blog.docsgpt.cloud/">🗞 Blog</a>
<br>
<a href="https://discord.gg/n5BX8dh8rU">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://twitter.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
</div>
<div align="center">
<br>
<img src="https://d3dg1063dc54p9.cloudfront.net/videos/demov7.gif" alt="video-example-of-docs-gpt" width="800" height="450">
</div>
<h3 align="left">
<strong>Key Features:</strong>
</h3>
<ul align="left">
<li><strong>🗂️ Wide Format Support:</strong> Reads PDF, DOCX, CSV, XLSX, EPUB, MD, RST, HTML, MDX, JSON, PPTX, and images.</li>
<li><strong>🌐 Web & Data Integration:</strong> Ingests from URLs, sitemaps, Reddit, GitHub and web crawlers.</li>
<li><strong>✅ Reliable Answers:</strong> Get accurate, hallucination-free responses with source citations viewable in a clean UI.</li>
<li><strong>🔑 Streamlined API Keys:</strong> Generate keys linked to your settings, documents, and models, simplifying chatbot and integration setup.</li>
<li><strong>🔗 Actionable Tooling:</strong> Connect to APIs, tools, and other services to enable LLM actions.</li>
<li><strong>🧩 Pre-built Integrations:</strong> Use readily available HTML/React chat widgets, search tools, Discord/Telegram bots, and more.</li>
<li><strong>🔌 Flexible Deployment:</strong> Works with major LLMs (OpenAI, Google, Anthropic) and local models (Ollama, llama_cpp).</li>
<li><strong>🏢 Secure & Scalable:</strong> Run privately and securely with Kubernetes support, designed for enterprise-grade reliability.</li>
</ul>
## Roadmap
- [x] Full GoogleAI compatibility (Jan 2025)
- [x] Add tools (Jan 2025)
- [x] Manually updating chunks in the app UI (Feb 2025)
- [x] Devcontainer for easy development (Feb 2025)
- [x] ReACT agent (March 2025)
- [x] Chatbots menu re-design to handle tools, agent types, and more (April 2025)
- [x] New input box in the conversation menu (April 2025)
- [x] Add triggerable actions / tools (webhook) (April 2025)
- [x] Agent optimisations (May 2025)
- [x] Filesystem sources update (July 2025)
- [x] Json Responses (August 2025)
- [x] MCP support (August 2025)
- [x] Google Drive integration (September 2025)
- [x] Add OAuth 2.0 authentication for MCP (September 2025)
- [ ] SharePoint integration (October 2025)
- [ ] Deep Agents (October 2025)
- [ ] Agent scheduling
You can find our full roadmap [here](https://github.com/orgs/arc53/projects/2). Please don't hesitate to contribute or create issues, it helps us improve DocsGPT!
### Production Support / Help for Companies:
We're eager to provide personalized assistance when deploying your DocsGPT to a live environment.
[Get a Demo :wave:](https://www.docsgpt.cloud/contact)
[Book a Meeting :wave:](https://cal.com/arc53/docsgpt-demo-b2b)
[Send Email :email:](mailto:support@docsgpt.cloud?subject=DocsGPT%20support%2Fsolutions)
[Send Email :email:](mailto:contact@arc53.com?subject=DocsGPT%20support%2Fsolutions)
## Join the Lighthouse Program 🌟
Calling all developers and GenAI innovators! The **DocsGPT Lighthouse Program** connects technical leaders actively deploying or extending DocsGPT in real-world scenarios. Collaborate directly with our team to shape the roadmap, access priority support, and build enterprise-ready solutions with exclusive community insights.
<img src="https://github.com/user-attachments/assets/9a1f21de-7a15-4e42-9424-70d22ba5a913" alt="video-example-of-docs-gpt" width="1000" height="500">
[Learn More & Apply →](https://docs.google.com/forms/d/1KAADiJinUJ8EMQyfTXUIGyFbqINNClNR3jBNWq7DgTE)
## Roadmap
You can find our roadmap [here](https://github.com/orgs/arc53/projects/2). Please don't hesitate to contribute or create issues, it helps us improve DocsGPT!
## Our Open-Source Models Optimized for DocsGPT:
| Name | Base Model | Requirements (or similar) |
| --------------------------------------------------------------------- | ----------- | ------------------------- |
| [Docsgpt-7b-mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral) | Mistral-7b | 1xA10G gpu |
| [Docsgpt-14b](https://huggingface.co/Arc53/docsgpt-14b) | llama-2-14b | 2xA10 gpu's |
| [Docsgpt-40b-falcon](https://huggingface.co/Arc53/docsgpt-40b-falcon) | falcon-40b | 8xA10G gpu's |
If you don't have enough resources to run it, you can use bitsnbytes to quantize.
## End to End AI Framework for Information Retrieval
![Architecture chart](https://github.com/user-attachments/assets/fc6a7841-ddfc-45e6-b5a0-d05fe648cbe2)
## Useful Links
- :mag: :fire: [Cloud Version](https://app.docsgpt.cloud/)
- :speech_balloon: :tada: [Join our Discord](https://discord.gg/n5BX8dh8rU)
- :books: :sunglasses: [Guides](https://docs.docsgpt.cloud/)
- :couple: [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
- :file_folder: :rocket: [How to use any other documentation](https://docs.docsgpt.cloud/Guides/How-to-train-on-other-documentation)
- :house: :closed_lock_with_key: [How to host it locally (so all data will stay on-premises)](https://docs.docsgpt.cloud/Guides/How-to-use-different-LLM)
## Project Structure
- Application - Flask app (main application).
- Extensions - Chrome extension.
- Scripts - Script that creates similarity search index for other libraries.
- Frontend - Frontend uses <a href="https://vitejs.dev/">Vite</a> and <a href="https://react.dev/">React</a>.
## QuickStart
> [!Note]
> Make sure you have [Docker](https://docs.docker.com/engine/install/) installed
A more detailed [Quickstart](https://docs.docsgpt.cloud/quickstart) is available in our documentation
On Mac OS or Linux, write:
1. **Clone the repository:**
`./setup.sh`
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
It will install all the dependencies and allow you to download the local model, use OpenAI or use our LLM API.
Otherwise, refer to this Guide for Windows:
1. Download and open this repository with `git clone https://github.com/arc53/DocsGPT.git`
2. Create a `.env` file in your root directory and set the env variables and `VITE_API_STREAMING` to true or false, depending on whether you want streaming answers or not.
It should look like this inside:
```
LLM_NAME=[docsgpt or openai or others]
VITE_API_STREAMING=true
API_KEY=[if LLM_NAME is openai]
```
**For macOS and Linux:**
See optional environment variables in the [/.env-template](https://github.com/arc53/DocsGPT/blob/main/.env-template) and [/application/.env_sample](https://github.com/arc53/DocsGPT/blob/main/application/.env_sample) files.
2. **Run the setup script:**
3. Run [./run-with-docker-compose.sh](https://github.com/arc53/DocsGPT/blob/main/run-with-docker-compose.sh).
4. Navigate to http://localhost:5173/.
```bash
./setup.sh
```
To stop, just run `Ctrl + C`.
**For Windows:**
## Development Environments
2. **Run the PowerShell setup script:**
### Spin up Mongo and Redis
```powershell
PowerShell -ExecutionPolicy Bypass -File .\setup.ps1
```
For development, only two containers are used from [docker-compose.yaml](https://github.com/arc53/DocsGPT/blob/main/docker-compose.yaml) (by deleting all services except for Redis and Mongo).
See file [docker-compose-dev.yaml](./docker-compose-dev.yaml).
Either script will guide you through setting up DocsGPT. Five options available: using the public API, running locally, connecting to a local inference engine, using a cloud API provider, or build the docker image locally. Scripts will automatically configure your `.env` file and handle necessary downloads and installations based on your chosen option.
Run
**Navigate to http://localhost:5173/**
To stop DocsGPT, open a terminal in the `DocsGPT` directory and run:
```bash
docker compose -f deployment/docker-compose.yaml down
```
docker compose -f docker-compose-dev.yaml build
docker compose -f docker-compose-dev.yaml up -d
```
(or use the specific `docker compose down` command shown after running the setup script).
### Run the Backend
> [!Note]
> For development environment setup instructions, please refer to the [Development Environment Guide](https://docs.docsgpt.cloud/Deploying/Development-Environment).
> Make sure you have Python 3.10 or 3.11 installed.
1. Export required environment variables or prepare a `.env` file in the project folder:
- Copy [.env-template](https://github.com/arc53/DocsGPT/blob/main/application/.env-template) and create `.env`.
(check out [`application/core/settings.py`](application/core/settings.py) if you want to see more config options.)
2. (optional) Create a Python virtual environment:
You can follow the [Python official documentation](https://docs.python.org/3/tutorial/venv.html) for virtual environments.
a) On Mac OS and Linux
```commandline
python -m venv venv
. venv/bin/activate
```
b) On Windows
```commandline
python -m venv venv
venv/Scripts/activate
```
3. Download embedding model and save it in the `model/` folder:
You can use the script below, or download it manually from [here](https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip), unzip it and save it in the `model/` folder.
```commandline
wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip
unzip mpnet-base-v2.zip -d model
rm mpnet-base-v2.zip
```
4. Install dependencies for the backend:
```commandline
pip install -r application/requirements.txt
```
5. Run the app using `flask --app application/app.py run --host=0.0.0.0 --port=7091`.
6. Start worker with `celery -A application.app.celery worker -l INFO`.
### Start Frontend
> [!Note]
> Make sure you have Node version 16 or higher.
1. Navigate to the [/frontend](https://github.com/arc53/DocsGPT/tree/main/frontend) folder.
2. Install the required packages `husky` and `vite` (ignore if already installed).
```commandline
npm install husky -g
npm install vite -g
```
3. Install dependencies by running `npm install --include=dev`.
4. Run the app using `npm run dev`.
## Contributing
Please refer to the [CONTRIBUTING.md](CONTRIBUTING.md) file for information about how to get involved. We welcome issues, questions, and pull requests.
## Architecture
![Architecture chart](https://github.com/user-attachments/assets/fc6a7841-ddfc-45e6-b5a0-d05fe648cbe2)
## Project Structure
- Application - Flask app (main application).
- Extensions - Extensions, like react widget or discord bot.
- Frontend - Frontend uses <a href="https://vitejs.dev/">Vite</a> and <a href="https://react.dev/">React</a>.
- Scripts - Miscellaneous scripts.
## Code Of Conduct
We as members, contributors, and leaders, pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. Please refer to the [CODE_OF_CONDUCT.md](CODE_OF_CONDUCT.md) file for more information about contributing.

View File

@@ -6,20 +6,21 @@ ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
# Install necessary packages and Python
apt-get update && \
apt-get install -y --no-install-recommends gcc wget unzip libc6-dev python3.12 python3.12-venv && \
apt-get install -y --no-install-recommends gcc wget unzip libc6-dev python3.11 python3.11-distutils python3.11-venv && \
rm -rf /var/lib/apt/lists/*
# Verify Python installation and setup symlink
RUN if [ -f /usr/bin/python3.12 ]; then \
ln -s /usr/bin/python3.12 /usr/bin/python; \
RUN if [ -f /usr/bin/python3.11 ]; then \
ln -s /usr/bin/python3.11 /usr/bin/python; \
else \
echo "Python 3.12 not found"; exit 1; \
echo "Python 3.11 not found"; exit 1; \
fi
# Download and unzip the model
RUN wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip && \
unzip mpnet-base-v2.zip -d models && \
unzip mpnet-base-v2.zip -d model && \
rm mpnet-base-v2.zip
# Install Rust
@@ -32,7 +33,7 @@ RUN apt-get remove --purge -y wget unzip && apt-get autoremove -y && rm -rf /var
COPY requirements.txt .
# Setup Python virtual environment
RUN python3.12 -m venv /venv
RUN python3.11 -m venv /venv
# Activate virtual environment and install Python packages
ENV PATH="/venv/bin:$PATH"
@@ -48,8 +49,9 @@ FROM ubuntu:24.04 as final
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
apt-get update && apt-get install -y --no-install-recommends python3.12 && \
ln -s /usr/bin/python3.12 /usr/bin/python && \
# Install Python
apt-get update && apt-get install -y --no-install-recommends python3.11 && \
ln -s /usr/bin/python3.11 /usr/bin/python && \
rm -rf /var/lib/apt/lists/*
# Set working directory
@@ -61,8 +63,7 @@ RUN groupadd -r appuser && \
# Copy the virtual environment and model from the builder stage
COPY --from=builder /venv /venv
COPY --from=builder /models /app/models
COPY --from=builder /model /app/model
# Copy your application code
COPY . /app/application
@@ -84,4 +85,4 @@ EXPOSE 7091
USER appuser
# Start Gunicorn
CMD ["gunicorn", "-w", "1", "--timeout", "120", "--bind", "0.0.0.0:7091", "--preload", "application.wsgi:app"]
CMD ["gunicorn", "-w", "2", "--timeout", "120", "--bind", "0.0.0.0:7091", "application.wsgi:app"]

View File

@@ -1,20 +0,0 @@
from application.agents.classic_agent import ClassicAgent
from application.agents.react_agent import ReActAgent
import logging
logger = logging.getLogger(__name__)
class AgentCreator:
agents = {
"classic": ClassicAgent,
"react": ReActAgent,
}
@classmethod
def create_agent(cls, type, *args, **kwargs):
agent_class = cls.agents.get(type.lower())
if not agent_class:
raise ValueError(f"No agent class found for type {type}")
return agent_class(*args, **kwargs)

View File

@@ -1,472 +0,0 @@
import logging
import uuid
from abc import ABC, abstractmethod
from typing import Dict, Generator, List, Optional
from bson.objectid import ObjectId
from application.agents.tools.tool_action_parser import ToolActionParser
from application.agents.tools.tool_manager import ToolManager
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.llm.handlers.handler_creator import LLMHandlerCreator
from application.llm.llm_creator import LLMCreator
from application.logging import build_stack_data, log_activity, LogContext
logger = logging.getLogger(__name__)
class BaseAgent(ABC):
def __init__(
self,
endpoint: str,
llm_name: str,
model_id: str,
api_key: str,
user_api_key: Optional[str] = None,
prompt: str = "",
chat_history: Optional[List[Dict]] = None,
retrieved_docs: Optional[List[Dict]] = None,
decoded_token: Optional[Dict] = None,
attachments: Optional[List[Dict]] = None,
json_schema: Optional[Dict] = None,
limited_token_mode: Optional[bool] = False,
token_limit: Optional[int] = settings.DEFAULT_AGENT_LIMITS["token_limit"],
limited_request_mode: Optional[bool] = False,
request_limit: Optional[int] = settings.DEFAULT_AGENT_LIMITS["request_limit"],
compressed_summary: Optional[str] = None,
):
self.endpoint = endpoint
self.llm_name = llm_name
self.model_id = model_id
self.api_key = api_key
self.user_api_key = user_api_key
self.prompt = prompt
self.decoded_token = decoded_token or {}
self.user: str = self.decoded_token.get("sub")
self.tool_config: Dict = {}
self.tools: List[Dict] = []
self.tool_calls: List[Dict] = []
self.chat_history: List[Dict] = chat_history if chat_history is not None else []
self.llm = LLMCreator.create_llm(
llm_name,
api_key=api_key,
user_api_key=user_api_key,
decoded_token=decoded_token,
model_id=model_id,
)
self.retrieved_docs = retrieved_docs or []
self.llm_handler = LLMHandlerCreator.create_handler(
llm_name if llm_name else "default"
)
self.attachments = attachments or []
self.json_schema = json_schema
self.limited_token_mode = limited_token_mode
self.token_limit = token_limit
self.limited_request_mode = limited_request_mode
self.request_limit = request_limit
self.compressed_summary = compressed_summary
self.current_token_count = 0
self.context_limit_reached = False
@log_activity()
def gen(
self, query: str, log_context: LogContext = None
) -> Generator[Dict, None, None]:
yield from self._gen_inner(query, log_context)
@abstractmethod
def _gen_inner(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
pass
def _get_tools(self, api_key: str = None) -> Dict[str, Dict]:
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
agents_collection = db["agents"]
tools_collection = db["user_tools"]
agent_data = agents_collection.find_one({"key": api_key or self.user_api_key})
tool_ids = agent_data.get("tools", []) if agent_data else []
tools = (
tools_collection.find(
{"_id": {"$in": [ObjectId(tool_id) for tool_id in tool_ids]}}
)
if tool_ids
else []
)
tools = list(tools)
tools_by_id = {str(tool["_id"]): tool for tool in tools} if tools else {}
return tools_by_id
def _get_user_tools(self, user="local"):
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
user_tools_collection = db["user_tools"]
user_tools = user_tools_collection.find({"user": user, "status": True})
user_tools = list(user_tools)
return {str(i): tool for i, tool in enumerate(user_tools)}
def _build_tool_parameters(self, action):
params = {"type": "object", "properties": {}, "required": []}
for param_type in ["query_params", "headers", "body", "parameters"]:
if param_type in action and action[param_type].get("properties"):
for k, v in action[param_type]["properties"].items():
if v.get("filled_by_llm", True):
params["properties"][k] = {
key: value
for key, value in v.items()
if key != "filled_by_llm" and key != "value"
}
params["required"].append(k)
return params
def _prepare_tools(self, tools_dict):
self.tools = [
{
"type": "function",
"function": {
"name": f"{action['name']}_{tool_id}",
"description": action["description"],
"parameters": self._build_tool_parameters(action),
},
}
for tool_id, tool in tools_dict.items()
if (
(tool["name"] == "api_tool" and "actions" in tool.get("config", {}))
or (tool["name"] != "api_tool" and "actions" in tool)
)
for action in (
tool["config"]["actions"].values()
if tool["name"] == "api_tool"
else tool["actions"]
)
if action.get("active", True)
]
def _execute_tool_action(self, tools_dict, call):
parser = ToolActionParser(self.llm.__class__.__name__)
tool_id, action_name, call_args = parser.parse_args(call)
call_id = getattr(call, "id", None) or str(uuid.uuid4())
# Check if parsing failed
if tool_id is None or action_name is None:
error_message = f"Error: Failed to parse LLM tool call. Tool name: {getattr(call, 'name', 'unknown')}"
logger.error(error_message)
tool_call_data = {
"tool_name": "unknown",
"call_id": call_id,
"action_name": getattr(call, "name", "unknown"),
"arguments": call_args or {},
"result": f"Failed to parse tool call. Invalid tool name format: {getattr(call, 'name', 'unknown')}",
}
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return "Failed to parse tool call.", call_id
# Check if tool_id exists in available tools
if tool_id not in tools_dict:
error_message = f"Error: Tool ID '{tool_id}' extracted from LLM call not found in available tools_dict. Available IDs: {list(tools_dict.keys())}"
logger.error(error_message)
# Return error result
tool_call_data = {
"tool_name": "unknown",
"call_id": call_id,
"action_name": f"{action_name}_{tool_id}",
"arguments": call_args,
"result": f"Tool with ID {tool_id} not found. Available tools: {list(tools_dict.keys())}",
}
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return f"Tool with ID {tool_id} not found.", call_id
tool_call_data = {
"tool_name": tools_dict[tool_id]["name"],
"call_id": call_id,
"action_name": f"{action_name}_{tool_id}",
"arguments": call_args,
}
yield {"type": "tool_call", "data": {**tool_call_data, "status": "pending"}}
tool_data = tools_dict[tool_id]
action_data = (
tool_data["config"]["actions"][action_name]
if tool_data["name"] == "api_tool"
else next(
action
for action in tool_data["actions"]
if action["name"] == action_name
)
)
query_params, headers, body, parameters = {}, {}, {}, {}
param_types = {
"query_params": query_params,
"headers": headers,
"body": body,
"parameters": parameters,
}
for param_type, target_dict in param_types.items():
if param_type in action_data and action_data[param_type].get("properties"):
for param, details in action_data[param_type]["properties"].items():
if param not in call_args and "value" in details:
target_dict[param] = details["value"]
for param, value in call_args.items():
for param_type, target_dict in param_types.items():
if param_type in action_data and param in action_data[param_type].get(
"properties", {}
):
target_dict[param] = value
tm = ToolManager(config={})
# Prepare tool_config and add tool_id for memory tools
if tool_data["name"] == "api_tool":
tool_config = {
"url": tool_data["config"]["actions"][action_name]["url"],
"method": tool_data["config"]["actions"][action_name]["method"],
"headers": headers,
"query_params": query_params,
}
else:
tool_config = tool_data["config"].copy() if tool_data["config"] else {}
# Add tool_id from MongoDB _id for tools that need instance isolation (like memory tool)
# Use MongoDB _id if available, otherwise fall back to enumerated tool_id
tool_config["tool_id"] = str(tool_data.get("_id", tool_id))
tool = tm.load_tool(
tool_data["name"],
tool_config=tool_config,
user_id=self.user, # Pass user ID for MCP tools credential decryption
)
if tool_data["name"] == "api_tool":
print(
f"Executing api: {action_name} with query_params: {query_params}, headers: {headers}, body: {body}"
)
result = tool.execute_action(action_name, **body)
else:
print(f"Executing tool: {action_name} with args: {call_args}")
result = tool.execute_action(action_name, **parameters)
tool_call_data["result"] = (
f"{str(result)[:50]}..." if len(str(result)) > 50 else result
)
yield {"type": "tool_call", "data": {**tool_call_data, "status": "completed"}}
self.tool_calls.append(tool_call_data)
return result, call_id
def _get_truncated_tool_calls(self):
return [
{
**tool_call,
"result": (
f"{str(tool_call['result'])[:50]}..."
if len(str(tool_call["result"])) > 50
else tool_call["result"]
),
"status": "completed",
}
for tool_call in self.tool_calls
]
def _calculate_current_context_tokens(self, messages: List[Dict]) -> int:
"""
Calculate total tokens in current context (messages).
Args:
messages: List of message dicts
Returns:
Total token count
"""
from application.api.answer.services.compression.token_counter import (
TokenCounter,
)
return TokenCounter.count_message_tokens(messages)
def _check_context_limit(self, messages: List[Dict]) -> bool:
"""
Check if we're approaching context limit (80%).
Args:
messages: Current message list
Returns:
True if at or above 80% of context limit
"""
from application.core.model_utils import get_token_limit
from application.core.settings import settings
try:
# Calculate current tokens
current_tokens = self._calculate_current_context_tokens(messages)
self.current_token_count = current_tokens
# Get context limit for model
context_limit = get_token_limit(self.model_id)
# Calculate threshold (80%)
threshold = int(context_limit * settings.COMPRESSION_THRESHOLD_PERCENTAGE)
# Check if we've reached the limit
if current_tokens >= threshold:
logger.warning(
f"Context limit approaching: {current_tokens}/{context_limit} tokens "
f"({(current_tokens/context_limit)*100:.1f}%)"
)
return True
return False
except Exception as e:
logger.error(f"Error checking context limit: {str(e)}", exc_info=True)
return False
def _build_messages(
self,
system_prompt: str,
query: str,
) -> List[Dict]:
"""Build messages using pre-rendered system prompt"""
# Append compression summary to system prompt if present
if self.compressed_summary:
compression_context = (
"\n\n---\n\n"
"This session is being continued from a previous conversation that "
"has been compressed to fit within context limits. "
"The conversation is summarized below:\n\n"
f"{self.compressed_summary}"
)
system_prompt = system_prompt + compression_context
messages = [{"role": "system", "content": system_prompt}]
for i in self.chat_history:
if "prompt" in i and "response" in i:
messages.append({"role": "user", "content": i["prompt"]})
messages.append({"role": "assistant", "content": i["response"]})
if "tool_calls" in i:
for tool_call in i["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
function_call_dict = {
"function_call": {
"name": tool_call.get("action_name"),
"args": tool_call.get("arguments"),
"call_id": call_id,
}
}
function_response_dict = {
"function_response": {
"name": tool_call.get("action_name"),
"response": {"result": tool_call.get("result")},
"call_id": call_id,
}
}
messages.append(
{"role": "assistant", "content": [function_call_dict]}
)
messages.append(
{"role": "tool", "content": [function_response_dict]}
)
messages.append({"role": "user", "content": query})
return messages
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
gen_kwargs = {"model": self.model_id, "messages": messages}
if (
hasattr(self.llm, "_supports_tools")
and self.llm._supports_tools
and self.tools
):
gen_kwargs["tools"] = self.tools
if (
self.json_schema
and hasattr(self.llm, "_supports_structured_output")
and self.llm._supports_structured_output()
):
structured_format = self.llm.prepare_structured_output_format(
self.json_schema
)
if structured_format:
if self.llm_name == "openai":
gen_kwargs["response_format"] = structured_format
elif self.llm_name == "google":
gen_kwargs["response_schema"] = structured_format
resp = self.llm.gen_stream(**gen_kwargs)
if log_context:
data = build_stack_data(self.llm, exclude_attributes=["client"])
log_context.stacks.append({"component": "llm", "data": data})
return resp
def _llm_handler(
self,
resp,
tools_dict: Dict,
messages: List[Dict],
log_context: Optional[LogContext] = None,
attachments: Optional[List[Dict]] = None,
):
resp = self.llm_handler.process_message_flow(
self, resp, tools_dict, messages, attachments, True
)
if log_context:
data = build_stack_data(self.llm_handler, exclude_attributes=["tool_calls"])
log_context.stacks.append({"component": "llm_handler", "data": data})
return resp
def _handle_response(self, response, tools_dict, messages, log_context):
is_structured_output = (
self.json_schema is not None
and hasattr(self.llm, "_supports_structured_output")
and self.llm._supports_structured_output()
)
if isinstance(response, str):
answer_data = {"answer": response}
if is_structured_output:
answer_data["structured"] = True
answer_data["schema"] = self.json_schema
yield answer_data
return
if hasattr(response, "message") and getattr(response.message, "content", None):
answer_data = {"answer": response.message.content}
if is_structured_output:
answer_data["structured"] = True
answer_data["schema"] = self.json_schema
yield answer_data
return
processed_response_gen = self._llm_handler(
response, tools_dict, messages, log_context, self.attachments
)
for event in processed_response_gen:
if isinstance(event, str):
answer_data = {"answer": event}
if is_structured_output:
answer_data["structured"] = True
answer_data["schema"] = self.json_schema
yield answer_data
elif hasattr(event, "message") and getattr(event.message, "content", None):
answer_data = {"answer": event.message.content}
if is_structured_output:
answer_data["structured"] = True
answer_data["schema"] = self.json_schema
yield answer_data
elif isinstance(event, dict) and "type" in event:
yield event

View File

@@ -1,37 +0,0 @@
import logging
from typing import Dict, Generator
from application.agents.base import BaseAgent
from application.logging import LogContext
logger = logging.getLogger(__name__)
class ClassicAgent(BaseAgent):
"""A simplified agent with clear execution flow"""
def _gen_inner(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Core generator function for ClassicAgent execution flow"""
tools_dict = (
self._get_user_tools(self.user)
if not self.user_api_key
else self._get_tools(self.user_api_key)
)
self._prepare_tools(tools_dict)
messages = self._build_messages(self.prompt, query)
llm_response = self._llm_gen(messages, log_context)
yield from self._handle_response(
llm_response, tools_dict, messages, log_context
)
yield {"sources": self.retrieved_docs}
yield {"tool_calls": self._get_truncated_tool_calls()}
log_context.stacks.append(
{"component": "agent", "data": {"tool_calls": self.tool_calls.copy()}}
)

View File

@@ -1,238 +0,0 @@
import logging
import os
from typing import Any, Dict, Generator, List
from application.agents.base import BaseAgent
from application.logging import build_stack_data, LogContext
logger = logging.getLogger(__name__)
MAX_ITERATIONS_REASONING = 10
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(
os.path.join(current_dir, "application/prompts", "react_planning_prompt.txt"), "r"
) as f:
PLANNING_PROMPT_TEMPLATE = f.read()
with open(
os.path.join(current_dir, "application/prompts", "react_final_prompt.txt"), "r"
) as f:
FINAL_PROMPT_TEMPLATE = f.read()
class ReActAgent(BaseAgent):
"""
Research and Action (ReAct) Agent - Advanced reasoning agent with iterative planning.
Implements a think-act-observe loop for complex problem-solving:
1. Creates a strategic plan based on the query
2. Executes tools and gathers observations
3. Iteratively refines approach until satisfied
4. Synthesizes final answer from all observations
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.plan: str = ""
self.observations: List[str] = []
def _gen_inner(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Execute ReAct reasoning loop with planning, action, and observation cycles"""
self._reset_state()
tools_dict = (
self._get_tools(self.user_api_key)
if self.user_api_key
else self._get_user_tools(self.user)
)
self._prepare_tools(tools_dict)
for iteration in range(1, MAX_ITERATIONS_REASONING + 1):
yield {"thought": f"Reasoning... (iteration {iteration})\n\n"}
yield from self._planning_phase(query, log_context)
if not self.plan:
logger.warning(
f"ReActAgent: No plan generated in iteration {iteration}"
)
break
self.observations.append(f"Plan (iteration {iteration}): {self.plan}")
satisfied = yield from self._execution_phase(query, tools_dict, log_context)
if satisfied:
logger.info("ReActAgent: Goal satisfied, stopping reasoning loop")
break
yield from self._synthesis_phase(query, log_context)
def _reset_state(self):
"""Reset agent state for new query"""
self.plan = ""
self.observations = []
def _planning_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Generate strategic plan for query"""
logger.info("ReActAgent: Creating plan...")
plan_prompt = self._build_planning_prompt(query)
messages = [{"role": "user", "content": plan_prompt}]
plan_stream = self.llm.gen_stream(
model=self.model_id,
messages=messages,
tools=self.tools if self.tools else None,
)
if log_context:
log_context.stacks.append(
{"component": "planning_llm", "data": build_stack_data(self.llm)}
)
plan_parts = []
for chunk in plan_stream:
content = self._extract_content(chunk)
if content:
plan_parts.append(content)
yield {"thought": content}
self.plan = "".join(plan_parts)
def _execution_phase(
self, query: str, tools_dict: Dict, log_context: LogContext
) -> Generator[bool, None, None]:
"""Execute plan with tool calls and observations"""
execution_prompt = self._build_execution_prompt(query)
messages = self._build_messages(execution_prompt, query)
llm_response = self._llm_gen(messages, log_context)
initial_content = self._extract_content(llm_response)
if initial_content:
self.observations.append(f"Initial response: {initial_content}")
processed_response = self._llm_handler(
llm_response, tools_dict, messages, log_context
)
for tool_call in self.tool_calls:
observation = (
f"Executed: {tool_call.get('tool_name', 'Unknown')} "
f"with args {tool_call.get('arguments', {})}. "
f"Result: {str(tool_call.get('result', ''))[:200]}"
)
self.observations.append(observation)
final_content = self._extract_content(processed_response)
if final_content:
self.observations.append(f"Response after tools: {final_content}")
if log_context:
log_context.stacks.append(
{
"component": "agent_tool_calls",
"data": {"tool_calls": self.tool_calls.copy()},
}
)
yield {"sources": self.retrieved_docs}
yield {"tool_calls": self._get_truncated_tool_calls()}
return "SATISFIED" in (final_content or "")
def _synthesis_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Synthesize final answer from all observations"""
logger.info("ReActAgent: Generating final answer...")
final_prompt = self._build_final_answer_prompt(query)
messages = [{"role": "user", "content": final_prompt}]
final_stream = self.llm.gen_stream(
model=self.model_id, messages=messages, tools=None
)
if log_context:
log_context.stacks.append(
{"component": "final_answer_llm", "data": build_stack_data(self.llm)}
)
for chunk in final_stream:
content = self._extract_content(chunk)
if content:
yield {"answer": content}
def _build_planning_prompt(self, query: str) -> str:
"""Build planning phase prompt"""
prompt = PLANNING_PROMPT_TEMPLATE.replace("{query}", query)
prompt = prompt.replace("{prompt}", self.prompt or "")
prompt = prompt.replace("{summaries}", "")
prompt = prompt.replace("{observations}", "\n".join(self.observations))
return prompt
def _build_execution_prompt(self, query: str) -> str:
"""Build execution phase prompt with plan and observations"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 20000:
observations_str = observations_str[:20000] + "\n...[truncated]"
return (
f"{self.prompt or ''}\n\n"
f"Follow this plan:\n{self.plan}\n\n"
f"Observations:\n{observations_str}\n\n"
f"If sufficient data exists to answer '{query}', respond with 'SATISFIED'. "
f"Otherwise, continue executing the plan."
)
def _build_final_answer_prompt(self, query: str) -> str:
"""Build final synthesis prompt"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 10000:
observations_str = observations_str[:10000] + "\n...[truncated]"
logger.warning("ReActAgent: Observations truncated for final answer")
return FINAL_PROMPT_TEMPLATE.format(query=query, observations=observations_str)
def _extract_content(self, response: Any) -> str:
"""Extract text content from various LLM response formats"""
if not response:
return ""
collected = []
if isinstance(response, str):
return response
if hasattr(response, "message") and hasattr(response.message, "content"):
if response.message.content:
return response.message.content
if hasattr(response, "choices") and response.choices:
if hasattr(response.choices[0], "message"):
content = response.choices[0].message.content
if content:
return content
if hasattr(response, "content") and isinstance(response.content, list):
if response.content and hasattr(response.content[0], "text"):
return response.content[0].text
try:
for chunk in response:
content_piece = ""
if hasattr(chunk, "choices") and chunk.choices:
if hasattr(chunk.choices[0], "delta"):
delta_content = chunk.choices[0].delta.content
if delta_content:
content_piece = delta_content
elif hasattr(chunk, "type") and chunk.type == "content_block_delta":
if hasattr(chunk, "delta") and hasattr(chunk.delta, "text"):
content_piece = chunk.delta.text
elif isinstance(chunk, str):
content_piece = chunk
if content_piece:
collected.append(content_piece)
except (TypeError, AttributeError):
logger.debug(
f"Response not iterable or unexpected format: {type(response)}"
)
except Exception as e:
logger.error(f"Error extracting content: {e}")
return "".join(collected)

View File

@@ -1,72 +0,0 @@
import json
import requests
from application.agents.tools.base import Tool
class APITool(Tool):
"""
API Tool
A flexible tool for performing various API actions (e.g., sending messages, retrieving data) via custom user-specified APIs
"""
def __init__(self, config):
self.config = config
self.url = config.get("url", "")
self.method = config.get("method", "GET")
self.headers = config.get("headers", {"Content-Type": "application/json"})
self.query_params = config.get("query_params", {})
def execute_action(self, action_name, **kwargs):
return self._make_api_call(
self.url, self.method, self.headers, self.query_params, kwargs
)
def _make_api_call(self, url, method, headers, query_params, body):
if query_params:
url = f"{url}?{requests.compat.urlencode(query_params)}"
# if isinstance(body, dict):
# body = json.dumps(body)
try:
print(f"Making API call: {method} {url} with body: {body}")
if body == "{}":
body = None
response = requests.request(method, url, headers=headers, data=body)
response.raise_for_status()
content_type = response.headers.get(
"Content-Type", "application/json"
).lower()
if "application/json" in content_type:
try:
data = response.json()
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}. Raw response: {response.text}")
return {
"status_code": response.status_code,
"message": f"API call returned invalid JSON. Error: {e}",
"data": response.text,
}
elif "text/" in content_type or "application/xml" in content_type:
data = response.text
elif not response.content:
data = None
else:
print(f"Unsupported content type: {content_type}")
data = response.content
return {
"status_code": response.status_code,
"data": data,
"message": "API call successful.",
}
except requests.exceptions.RequestException as e:
return {
"status_code": response.status_code if response else None,
"message": f"API call failed: {str(e)}",
}
def get_actions_metadata(self):
return []
def get_config_requirements(self):
return {}

View File

@@ -1,21 +0,0 @@
from abc import ABC, abstractmethod
class Tool(ABC):
@abstractmethod
def execute_action(self, action_name: str, **kwargs):
pass
@abstractmethod
def get_actions_metadata(self):
"""
Returns a list of JSON objects describing the actions supported by the tool.
"""
pass
@abstractmethod
def get_config_requirements(self):
"""
Returns a dictionary describing the configuration requirements for the tool.
"""
pass

View File

@@ -1,182 +0,0 @@
import requests
from application.agents.tools.base import Tool
class BraveSearchTool(Tool):
"""
Brave Search
A tool for performing web and image searches using the Brave Search API.
Requires an API key for authentication.
"""
def __init__(self, config):
self.config = config
self.token = config.get("token", "")
self.base_url = "https://api.search.brave.com/res/v1"
def execute_action(self, action_name, **kwargs):
actions = {
"brave_web_search": self._web_search,
"brave_image_search": self._image_search,
}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _web_search(
self,
query,
country="ALL",
search_lang="en",
count=10,
offset=0,
safesearch="off",
freshness=None,
result_filter=None,
extra_snippets=False,
summary=False,
):
"""
Performs a web search using the Brave Search API.
"""
print(f"Performing Brave web search for: {query}")
url = f"{self.base_url}/web/search"
params = {
"q": query,
"country": country,
"search_lang": search_lang,
"count": min(count, 20),
"offset": min(offset, 9),
"safesearch": safesearch,
}
if freshness:
params["freshness"] = freshness
if result_filter:
params["result_filter"] = result_filter
if extra_snippets:
params["extra_snippets"] = 1
if summary:
params["summary"] = 1
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": self.token,
}
response = requests.get(url, params=params, headers=headers)
if response.status_code == 200:
return {
"status_code": response.status_code,
"results": response.json(),
"message": "Search completed successfully.",
}
else:
return {
"status_code": response.status_code,
"message": f"Search failed with status code: {response.status_code}.",
}
def _image_search(
self,
query,
country="ALL",
search_lang="en",
count=5,
safesearch="off",
spellcheck=False,
):
"""
Performs an image search using the Brave Search API.
"""
print(f"Performing Brave image search for: {query}")
url = f"{self.base_url}/images/search"
params = {
"q": query,
"country": country,
"search_lang": search_lang,
"count": min(count, 100), # API max is 100
"safesearch": safesearch,
"spellcheck": 1 if spellcheck else 0,
}
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": self.token,
}
response = requests.get(url, params=params, headers=headers)
if response.status_code == 200:
return {
"status_code": response.status_code,
"results": response.json(),
"message": "Image search completed successfully.",
}
else:
return {
"status_code": response.status_code,
"message": f"Image search failed with status code: {response.status_code}.",
}
def get_actions_metadata(self):
return [
{
"name": "brave_web_search",
"description": "Perform a web search using Brave Search",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query (max 400 characters, 50 words)",
},
"search_lang": {
"type": "string",
"description": "The search language preference (default: en)",
},
"freshness": {
"type": "string",
"description": "Time filter for results (pd: last 24h, pw: last week, pm: last month, py: last year)",
},
},
"required": ["query"],
"additionalProperties": False,
},
},
{
"name": "brave_image_search",
"description": "Perform an image search using Brave Search",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query (max 400 characters, 50 words)",
},
"count": {
"type": "integer",
"description": "Number of results to return (max 100, default: 5)",
},
},
"required": ["query"],
"additionalProperties": False,
},
},
]
def get_config_requirements(self):
return {
"token": {
"type": "string",
"description": "Brave Search API key for authentication",
},
}

View File

@@ -1,76 +0,0 @@
import requests
from application.agents.tools.base import Tool
class CryptoPriceTool(Tool):
"""
CryptoPrice
A tool for retrieving cryptocurrency prices using the CryptoCompare public API
"""
def __init__(self, config):
self.config = config
def execute_action(self, action_name, **kwargs):
actions = {"cryptoprice_get": self._get_price}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _get_price(self, symbol, currency):
"""
Fetches the current price of a given cryptocurrency symbol in the specified currency.
Example:
symbol = "BTC"
currency = "USD"
returns price in USD.
"""
url = f"https://min-api.cryptocompare.com/data/price?fsym={symbol.upper()}&tsyms={currency.upper()}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
if currency.upper() in data:
return {
"status_code": response.status_code,
"price": data[currency.upper()],
"message": f"Price of {symbol.upper()} in {currency.upper()} retrieved successfully.",
}
else:
return {
"status_code": response.status_code,
"message": f"Couldn't find price for {symbol.upper()} in {currency.upper()}.",
}
else:
return {
"status_code": response.status_code,
"message": "Failed to retrieve price.",
}
def get_actions_metadata(self):
return [
{
"name": "cryptoprice_get",
"description": "Retrieve the price of a specified cryptocurrency in a given currency",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "The cryptocurrency symbol (e.g. BTC)",
},
"currency": {
"type": "string",
"description": "The currency in which you want the price (e.g. USD)",
},
},
"required": ["symbol", "currency"],
"additionalProperties": False,
},
}
]
def get_config_requirements(self):
# No specific configuration needed for this tool as it just queries a public endpoint
return {}

View File

@@ -1,114 +0,0 @@
from application.agents.tools.base import Tool
from duckduckgo_search import DDGS
class DuckDuckGoSearchTool(Tool):
"""
DuckDuckGo Search
A tool for performing web and image searches using DuckDuckGo.
"""
def __init__(self, config):
self.config = config
def execute_action(self, action_name, **kwargs):
actions = {
"ddg_web_search": self._web_search,
"ddg_image_search": self._image_search,
}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _web_search(
self,
query,
max_results=5,
):
print(f"Performing DuckDuckGo web search for: {query}")
try:
results = DDGS().text(
query,
max_results=max_results,
)
return {
"status_code": 200,
"results": results,
"message": "Web search completed successfully.",
}
except Exception as e:
return {
"status_code": 500,
"message": f"Web search failed: {str(e)}",
}
def _image_search(
self,
query,
max_results=5,
):
print(f"Performing DuckDuckGo image search for: {query}")
try:
results = DDGS().images(
keywords=query,
max_results=max_results,
)
return {
"status_code": 200,
"results": results,
"message": "Image search completed successfully.",
}
except Exception as e:
return {
"status_code": 500,
"message": f"Image search failed: {str(e)}",
}
def get_actions_metadata(self):
return [
{
"name": "ddg_web_search",
"description": "Perform a web search using DuckDuckGo.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query",
},
"max_results": {
"type": "integer",
"description": "Number of results to return (default: 5)",
},
},
"required": ["query"],
},
},
{
"name": "ddg_image_search",
"description": "Perform an image search using DuckDuckGo.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query",
},
"max_results": {
"type": "integer",
"description": "Number of results to return (default: 5, max: 50)",
},
},
"required": ["query"],
},
},
]
def get_config_requirements(self):
return {}

View File

@@ -1,861 +0,0 @@
import asyncio
import base64
import json
import logging
import time
from typing import Any, Dict, List, Optional
from urllib.parse import parse_qs, urlparse
from application.agents.tools.base import Tool
from application.api.user.tasks import mcp_oauth_status_task, mcp_oauth_task
from application.cache import get_redis_instance
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.security.encryption import decrypt_credentials
from fastmcp import Client
from fastmcp.client.auth import BearerAuth
from fastmcp.client.transports import (
SSETransport,
StdioTransport,
StreamableHttpTransport,
)
from mcp.client.auth import OAuthClientProvider, TokenStorage
from mcp.shared.auth import OAuthClientInformationFull, OAuthClientMetadata, OAuthToken
from pydantic import AnyHttpUrl, ValidationError
from redis import Redis
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
_mcp_clients_cache = {}
class MCPTool(Tool):
"""
MCP Tool
Connect to remote Model Context Protocol (MCP) servers to access dynamic tools and resources.
"""
def __init__(self, config: Dict[str, Any], user_id: Optional[str] = None):
"""
Initialize the MCP Tool with configuration.
Args:
config: Dictionary containing MCP server configuration:
- server_url: URL of the remote MCP server
- transport_type: Transport type (auto, sse, http, stdio)
- auth_type: Type of authentication (bearer, oauth, api_key, basic, none)
- encrypted_credentials: Encrypted credentials (if available)
- timeout: Request timeout in seconds (default: 30)
- headers: Custom headers for requests
- command: Command for STDIO transport
- args: Arguments for STDIO transport
- oauth_scopes: OAuth scopes for oauth auth type
- oauth_client_name: OAuth client name for oauth auth type
user_id: User ID for decrypting credentials (required if encrypted_credentials exist)
"""
self.config = config
self.user_id = user_id
self.server_url = config.get("server_url", "")
self.transport_type = config.get("transport_type", "auto")
self.auth_type = config.get("auth_type", "none")
self.timeout = config.get("timeout", 30)
self.custom_headers = config.get("headers", {})
self.auth_credentials = {}
if config.get("encrypted_credentials") and user_id:
self.auth_credentials = decrypt_credentials(
config["encrypted_credentials"], user_id
)
else:
self.auth_credentials = config.get("auth_credentials", {})
self.oauth_scopes = config.get("oauth_scopes", [])
self.oauth_task_id = config.get("oauth_task_id", None)
self.oauth_client_name = config.get("oauth_client_name", "DocsGPT-MCP")
self.redirect_uri = f"{settings.API_URL}/api/mcp_server/callback"
self.available_tools = []
self._cache_key = self._generate_cache_key()
self._client = None
# Only validate and setup if server_url is provided and not OAuth
if self.server_url and self.auth_type != "oauth":
self._setup_client()
def _generate_cache_key(self) -> str:
"""Generate a unique cache key for this MCP server configuration."""
auth_key = ""
if self.auth_type == "oauth":
scopes_str = ",".join(self.oauth_scopes) if self.oauth_scopes else "none"
auth_key = f"oauth:{self.oauth_client_name}:{scopes_str}"
elif self.auth_type in ["bearer"]:
token = self.auth_credentials.get(
"bearer_token", ""
) or self.auth_credentials.get("access_token", "")
auth_key = f"bearer:{token[:10]}..." if token else "bearer:none"
elif self.auth_type == "api_key":
api_key = self.auth_credentials.get("api_key", "")
auth_key = f"apikey:{api_key[:10]}..." if api_key else "apikey:none"
elif self.auth_type == "basic":
username = self.auth_credentials.get("username", "")
auth_key = f"basic:{username}"
else:
auth_key = "none"
return f"{self.server_url}#{self.transport_type}#{auth_key}"
def _setup_client(self):
"""Setup FastMCP client with proper transport and authentication."""
global _mcp_clients_cache
if self._cache_key in _mcp_clients_cache:
cached_data = _mcp_clients_cache[self._cache_key]
if time.time() - cached_data["created_at"] < 1800:
self._client = cached_data["client"]
return
else:
del _mcp_clients_cache[self._cache_key]
transport = self._create_transport()
auth = None
if self.auth_type == "oauth":
redis_client = get_redis_instance()
auth = DocsGPTOAuth(
mcp_url=self.server_url,
scopes=self.oauth_scopes,
redis_client=redis_client,
redirect_uri=self.redirect_uri,
task_id=self.oauth_task_id,
db=db,
user_id=self.user_id,
)
elif self.auth_type == "bearer":
token = self.auth_credentials.get(
"bearer_token", ""
) or self.auth_credentials.get("access_token", "")
if token:
auth = BearerAuth(token)
self._client = Client(transport, auth=auth)
_mcp_clients_cache[self._cache_key] = {
"client": self._client,
"created_at": time.time(),
}
def _create_transport(self):
"""Create appropriate transport based on configuration."""
headers = {"Content-Type": "application/json", "User-Agent": "DocsGPT-MCP/1.0"}
headers.update(self.custom_headers)
if self.auth_type == "api_key":
api_key = self.auth_credentials.get("api_key", "")
header_name = self.auth_credentials.get("api_key_header", "X-API-Key")
if api_key:
headers[header_name] = api_key
elif self.auth_type == "basic":
username = self.auth_credentials.get("username", "")
password = self.auth_credentials.get("password", "")
if username and password:
credentials = base64.b64encode(
f"{username}:{password}".encode()
).decode()
headers["Authorization"] = f"Basic {credentials}"
if self.transport_type == "auto":
if "sse" in self.server_url.lower() or self.server_url.endswith("/sse"):
transport_type = "sse"
else:
transport_type = "http"
else:
transport_type = self.transport_type
if transport_type == "sse":
headers.update({"Accept": "text/event-stream", "Cache-Control": "no-cache"})
return SSETransport(url=self.server_url, headers=headers)
elif transport_type == "http":
return StreamableHttpTransport(url=self.server_url, headers=headers)
elif transport_type == "stdio":
command = self.config.get("command", "python")
args = self.config.get("args", [])
env = self.auth_credentials if self.auth_credentials else None
return StdioTransport(command=command, args=args, env=env)
else:
return StreamableHttpTransport(url=self.server_url, headers=headers)
def _format_tools(self, tools_response) -> List[Dict]:
"""Format tools response to match expected format."""
if hasattr(tools_response, "tools"):
tools = tools_response.tools
elif isinstance(tools_response, list):
tools = tools_response
else:
tools = []
tools_dict = []
for tool in tools:
if hasattr(tool, "name"):
tool_dict = {
"name": tool.name,
"description": tool.description,
}
if hasattr(tool, "inputSchema"):
tool_dict["inputSchema"] = tool.inputSchema
tools_dict.append(tool_dict)
elif isinstance(tool, dict):
tools_dict.append(tool)
else:
if hasattr(tool, "model_dump"):
tools_dict.append(tool.model_dump())
else:
tools_dict.append({"name": str(tool), "description": ""})
return tools_dict
async def _execute_with_client(self, operation: str, *args, **kwargs):
"""Execute operation with FastMCP client."""
if not self._client:
raise Exception("FastMCP client not initialized")
async with self._client:
if operation == "ping":
return await self._client.ping()
elif operation == "list_tools":
tools_response = await self._client.list_tools()
self.available_tools = self._format_tools(tools_response)
return self.available_tools
elif operation == "call_tool":
tool_name = args[0]
tool_args = kwargs
return await self._client.call_tool(tool_name, tool_args)
elif operation == "list_resources":
return await self._client.list_resources()
elif operation == "list_prompts":
return await self._client.list_prompts()
else:
raise Exception(f"Unknown operation: {operation}")
def _run_async_operation(self, operation: str, *args, **kwargs):
"""Run async operation in sync context."""
try:
try:
loop = asyncio.get_running_loop()
import concurrent.futures
def run_in_thread():
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
try:
return new_loop.run_until_complete(
self._execute_with_client(operation, *args, **kwargs)
)
finally:
new_loop.close()
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_thread)
return future.result(timeout=self.timeout)
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(
self._execute_with_client(operation, *args, **kwargs)
)
finally:
loop.close()
except Exception as e:
print(f"Error occurred while running async operation: {e}")
raise
def discover_tools(self) -> List[Dict]:
"""
Discover available tools from the MCP server using FastMCP.
Returns:
List of tool definitions from the server
"""
if not self.server_url:
return []
if not self._client:
self._setup_client()
try:
tools = self._run_async_operation("list_tools")
self.available_tools = tools
return self.available_tools
except Exception as e:
raise Exception(f"Failed to discover tools from MCP server: {str(e)}")
def execute_action(self, action_name: str, **kwargs) -> Any:
"""
Execute an action on the remote MCP server using FastMCP.
Args:
action_name: Name of the action to execute
**kwargs: Parameters for the action
Returns:
Result from the MCP server
"""
if not self.server_url:
raise Exception("No MCP server configured")
if not self._client:
self._setup_client()
cleaned_kwargs = {}
for key, value in kwargs.items():
if value == "" or value is None:
continue
cleaned_kwargs[key] = value
try:
result = self._run_async_operation(
"call_tool", action_name, **cleaned_kwargs
)
return self._format_result(result)
except Exception as e:
raise Exception(f"Failed to execute action '{action_name}': {str(e)}")
def _format_result(self, result) -> Dict:
"""Format FastMCP result to match expected format."""
if hasattr(result, "content"):
content_list = []
for content_item in result.content:
if hasattr(content_item, "text"):
content_list.append({"type": "text", "text": content_item.text})
elif hasattr(content_item, "data"):
content_list.append({"type": "data", "data": content_item.data})
else:
content_list.append(
{"type": "unknown", "content": str(content_item)}
)
return {
"content": content_list,
"isError": getattr(result, "isError", False),
}
else:
return result
def test_connection(self) -> Dict:
"""
Test the connection to the MCP server and validate functionality.
Returns:
Dictionary with connection test results including tool count
"""
if not self.server_url:
return {
"success": False,
"message": "No MCP server URL configured",
"tools_count": 0,
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"error_type": "ConfigurationError",
}
if not self._client:
self._setup_client()
try:
if self.auth_type == "oauth":
return self._test_oauth_connection()
else:
return self._test_regular_connection()
except Exception as e:
return {
"success": False,
"message": f"Connection failed: {str(e)}",
"tools_count": 0,
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"error_type": type(e).__name__,
}
def _test_regular_connection(self) -> Dict:
"""Test connection for non-OAuth auth types."""
try:
self._run_async_operation("ping")
ping_success = True
except Exception:
ping_success = False
tools = self.discover_tools()
message = f"Successfully connected to MCP server. Found {len(tools)} tools."
if not ping_success:
message += " (Ping not supported, but tool discovery worked)"
return {
"success": True,
"message": message,
"tools_count": len(tools),
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"ping_supported": ping_success,
"tools": [tool.get("name", "unknown") for tool in tools],
}
def _test_oauth_connection(self) -> Dict:
"""Test connection for OAuth auth type with proper async handling."""
try:
task = mcp_oauth_task.delay(config=self.config, user=self.user_id)
if not task:
raise Exception("Failed to start OAuth authentication")
return {
"success": True,
"requires_oauth": True,
"task_id": task.id,
"status": "pending",
"message": "OAuth flow started",
}
except Exception as e:
return {
"success": False,
"message": f"OAuth connection failed: {str(e)}",
"tools_count": 0,
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"error_type": type(e).__name__,
}
def get_actions_metadata(self) -> List[Dict]:
"""
Get metadata for all available actions.
Returns:
List of action metadata dictionaries
"""
actions = []
for tool in self.available_tools:
input_schema = (
tool.get("inputSchema")
or tool.get("input_schema")
or tool.get("schema")
or tool.get("parameters")
)
parameters_schema = {
"type": "object",
"properties": {},
"required": [],
}
if input_schema:
if isinstance(input_schema, dict):
if "properties" in input_schema:
parameters_schema = {
"type": input_schema.get("type", "object"),
"properties": input_schema.get("properties", {}),
"required": input_schema.get("required", []),
}
for key in ["additionalProperties", "description"]:
if key in input_schema:
parameters_schema[key] = input_schema[key]
else:
parameters_schema["properties"] = input_schema
action = {
"name": tool.get("name", ""),
"description": tool.get("description", ""),
"parameters": parameters_schema,
}
actions.append(action)
return actions
def get_config_requirements(self) -> Dict:
"""Get configuration requirements for the MCP tool."""
return {
"server_url": {
"type": "string",
"description": "URL of the remote MCP server (e.g., https://api.example.com/mcp or https://docs.mcp.cloudflare.com/sse)",
"required": True,
},
"transport_type": {
"type": "string",
"description": "Transport type for connection",
"enum": ["auto", "sse", "http", "stdio"],
"default": "auto",
"required": False,
"help": {
"auto": "Automatically detect best transport",
"sse": "Server-Sent Events (for real-time streaming)",
"http": "HTTP streaming (recommended for production)",
"stdio": "Standard I/O (for local servers)",
},
},
"auth_type": {
"type": "string",
"description": "Authentication type",
"enum": ["none", "bearer", "oauth", "api_key", "basic"],
"default": "none",
"required": True,
"help": {
"none": "No authentication",
"bearer": "Bearer token authentication",
"oauth": "OAuth 2.1 authentication (with frontend integration)",
"api_key": "API key authentication",
"basic": "Basic authentication",
},
},
"auth_credentials": {
"type": "object",
"description": "Authentication credentials (varies by auth_type)",
"required": False,
"properties": {
"bearer_token": {
"type": "string",
"description": "Bearer token for bearer auth",
},
"access_token": {
"type": "string",
"description": "Access token for OAuth (if pre-obtained)",
},
"api_key": {
"type": "string",
"description": "API key for api_key auth",
},
"api_key_header": {
"type": "string",
"description": "Header name for API key (default: X-API-Key)",
},
"username": {
"type": "string",
"description": "Username for basic auth",
},
"password": {
"type": "string",
"description": "Password for basic auth",
},
},
},
"oauth_scopes": {
"type": "array",
"description": "OAuth scopes to request (for oauth auth_type)",
"items": {"type": "string"},
"required": False,
"default": [],
},
"oauth_client_name": {
"type": "string",
"description": "Client name for OAuth registration (for oauth auth_type)",
"default": "DocsGPT-MCP",
"required": False,
},
"headers": {
"type": "object",
"description": "Custom headers to send with requests",
"required": False,
},
"timeout": {
"type": "integer",
"description": "Request timeout in seconds",
"default": 30,
"minimum": 1,
"maximum": 300,
"required": False,
},
"command": {
"type": "string",
"description": "Command to run for STDIO transport (e.g., 'python')",
"required": False,
},
"args": {
"type": "array",
"description": "Arguments for STDIO command",
"items": {"type": "string"},
"required": False,
},
}
class DocsGPTOAuth(OAuthClientProvider):
"""
Custom OAuth handler for DocsGPT that uses frontend redirect instead of browser.
"""
def __init__(
self,
mcp_url: str,
redirect_uri: str,
redis_client: Redis | None = None,
redis_prefix: str = "mcp_oauth:",
task_id: str = None,
scopes: str | list[str] | None = None,
client_name: str = "DocsGPT-MCP",
user_id=None,
db=None,
additional_client_metadata: dict[str, Any] | None = None,
):
"""
Initialize custom OAuth client provider for DocsGPT.
Args:
mcp_url: Full URL to the MCP endpoint
redirect_uri: Custom redirect URI for DocsGPT frontend
redis_client: Redis client for storing auth state
redis_prefix: Prefix for Redis keys
task_id: Task ID for tracking auth status
scopes: OAuth scopes to request
client_name: Name for this client during registration
user_id: User ID for token storage
db: Database instance for token storage
additional_client_metadata: Extra fields for OAuthClientMetadata
"""
self.redirect_uri = redirect_uri
self.redis_client = redis_client
self.redis_prefix = redis_prefix
self.task_id = task_id
self.user_id = user_id
self.db = db
parsed_url = urlparse(mcp_url)
self.server_base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
if isinstance(scopes, list):
scopes = " ".join(scopes)
client_metadata = OAuthClientMetadata(
client_name=client_name,
redirect_uris=[AnyHttpUrl(redirect_uri)],
grant_types=["authorization_code", "refresh_token"],
response_types=["code"],
scope=scopes,
**(additional_client_metadata or {}),
)
storage = DBTokenStorage(
server_url=self.server_base_url, user_id=self.user_id, db_client=self.db
)
super().__init__(
server_url=self.server_base_url,
client_metadata=client_metadata,
storage=storage,
redirect_handler=self.redirect_handler,
callback_handler=self.callback_handler,
)
self.auth_url = None
self.extracted_state = None
def _process_auth_url(self, authorization_url: str) -> tuple[str, str]:
"""Process authorization URL to extract state"""
try:
parsed_url = urlparse(authorization_url)
query_params = parse_qs(parsed_url.query)
state_params = query_params.get("state", [])
if state_params:
state = state_params[0]
else:
raise ValueError("No state in auth URL")
return authorization_url, state
except Exception as e:
raise Exception(f"Failed to process auth URL: {e}")
async def redirect_handler(self, authorization_url: str) -> None:
"""Store auth URL and state in Redis for frontend to use."""
auth_url, state = self._process_auth_url(authorization_url)
logging.info(
"[DocsGPTOAuth] Processed auth_url: %s, state: %s", auth_url, state
)
self.auth_url = auth_url
self.extracted_state = state
if self.redis_client and self.extracted_state:
key = f"{self.redis_prefix}auth_url:{self.extracted_state}"
self.redis_client.setex(key, 600, auth_url)
logging.info("[DocsGPTOAuth] Stored auth_url in Redis: %s", key)
if self.task_id:
status_key = f"mcp_oauth_status:{self.task_id}"
status_data = {
"status": "requires_redirect",
"message": "OAuth authorization required",
"authorization_url": self.auth_url,
"state": self.extracted_state,
"requires_oauth": True,
"task_id": self.task_id,
}
self.redis_client.setex(status_key, 600, json.dumps(status_data))
async def callback_handler(self) -> tuple[str, str | None]:
"""Wait for auth code from Redis using the state value."""
if not self.redis_client or not self.extracted_state:
raise Exception("Redis client or state not configured for OAuth")
poll_interval = 1
max_wait_time = 300
code_key = f"{self.redis_prefix}code:{self.extracted_state}"
if self.task_id:
status_key = f"mcp_oauth_status:{self.task_id}"
status_data = {
"status": "awaiting_callback",
"message": "Waiting for OAuth callback...",
"authorization_url": self.auth_url,
"state": self.extracted_state,
"requires_oauth": True,
"task_id": self.task_id,
}
self.redis_client.setex(status_key, 600, json.dumps(status_data))
start_time = time.time()
while time.time() - start_time < max_wait_time:
code_data = self.redis_client.get(code_key)
if code_data:
code = code_data.decode()
returned_state = self.extracted_state
self.redis_client.delete(code_key)
self.redis_client.delete(
f"{self.redis_prefix}auth_url:{self.extracted_state}"
)
self.redis_client.delete(
f"{self.redis_prefix}state:{self.extracted_state}"
)
if self.task_id:
status_data = {
"status": "callback_received",
"message": "OAuth callback received, completing authentication...",
"task_id": self.task_id,
}
self.redis_client.setex(status_key, 600, json.dumps(status_data))
return code, returned_state
error_key = f"{self.redis_prefix}error:{self.extracted_state}"
error_data = self.redis_client.get(error_key)
if error_data:
error_msg = error_data.decode()
self.redis_client.delete(error_key)
self.redis_client.delete(
f"{self.redis_prefix}auth_url:{self.extracted_state}"
)
self.redis_client.delete(
f"{self.redis_prefix}state:{self.extracted_state}"
)
raise Exception(f"OAuth error: {error_msg}")
await asyncio.sleep(poll_interval)
self.redis_client.delete(f"{self.redis_prefix}auth_url:{self.extracted_state}")
self.redis_client.delete(f"{self.redis_prefix}state:{self.extracted_state}")
raise Exception("OAuth callback timeout: no code received within 5 minutes")
class DBTokenStorage(TokenStorage):
def __init__(self, server_url: str, user_id: str, db_client):
self.server_url = server_url
self.user_id = user_id
self.db_client = db_client
self.collection = db_client["connector_sessions"]
@staticmethod
def get_base_url(url: str) -> str:
parsed = urlparse(url)
return f"{parsed.scheme}://{parsed.netloc}"
def get_db_key(self) -> dict:
return {
"server_url": self.get_base_url(self.server_url),
"user_id": self.user_id,
}
async def get_tokens(self) -> OAuthToken | None:
doc = await asyncio.to_thread(self.collection.find_one, self.get_db_key())
if not doc or "tokens" not in doc:
return None
try:
tokens = OAuthToken.model_validate(doc["tokens"])
return tokens
except ValidationError as e:
logging.error(f"Could not load tokens: {e}")
return None
async def set_tokens(self, tokens: OAuthToken) -> None:
await asyncio.to_thread(
self.collection.update_one,
self.get_db_key(),
{"$set": {"tokens": tokens.model_dump()}},
True,
)
logging.info(f"Saved tokens for {self.get_base_url(self.server_url)}")
async def get_client_info(self) -> OAuthClientInformationFull | None:
doc = await asyncio.to_thread(self.collection.find_one, self.get_db_key())
if not doc or "client_info" not in doc:
return None
try:
client_info = OAuthClientInformationFull.model_validate(doc["client_info"])
tokens = await self.get_tokens()
if tokens is None:
logging.debug(
"No tokens found, clearing client info to force fresh registration."
)
await asyncio.to_thread(
self.collection.update_one,
self.get_db_key(),
{"$unset": {"client_info": ""}},
)
return None
return client_info
except ValidationError as e:
logging.error(f"Could not load client info: {e}")
return None
def _serialize_client_info(self, info: dict) -> dict:
if "redirect_uris" in info and isinstance(info["redirect_uris"], list):
info["redirect_uris"] = [str(u) for u in info["redirect_uris"]]
return info
async def set_client_info(self, client_info: OAuthClientInformationFull) -> None:
serialized_info = self._serialize_client_info(client_info.model_dump())
await asyncio.to_thread(
self.collection.update_one,
self.get_db_key(),
{"$set": {"client_info": serialized_info}},
True,
)
logging.info(f"Saved client info for {self.get_base_url(self.server_url)}")
async def clear(self) -> None:
await asyncio.to_thread(self.collection.delete_one, self.get_db_key())
logging.info(f"Cleared OAuth cache for {self.get_base_url(self.server_url)}")
@classmethod
async def clear_all(cls, db_client) -> None:
collection = db_client["connector_sessions"]
await asyncio.to_thread(collection.delete_many, {})
logging.info("Cleared all OAuth client cache data.")
class MCPOAuthManager:
"""Manager for handling MCP OAuth callbacks."""
def __init__(self, redis_client: Redis | None, redis_prefix: str = "mcp_oauth:"):
self.redis_client = redis_client
self.redis_prefix = redis_prefix
def handle_oauth_callback(
self, state: str, code: str, error: Optional[str] = None
) -> bool:
"""
Handle OAuth callback from provider.
Args:
state: The state parameter from OAuth callback
code: The authorization code from OAuth callback
error: Error message if OAuth failed
Returns:
True if successful, False otherwise
"""
try:
if not self.redis_client or not state:
raise Exception("Redis client or state not provided")
if error:
error_key = f"{self.redis_prefix}error:{state}"
self.redis_client.setex(error_key, 300, error)
raise Exception(f"OAuth error received: {error}")
code_key = f"{self.redis_prefix}code:{state}"
self.redis_client.setex(code_key, 300, code)
state_key = f"{self.redis_prefix}state:{state}"
self.redis_client.setex(state_key, 300, "completed")
return True
except Exception as e:
logging.error(f"Error handling OAuth callback: {e}")
return False
def get_oauth_status(self, task_id: str) -> Dict[str, Any]:
"""Get current status of OAuth flow using provided task_id."""
if not task_id:
return {"status": "not_started", "message": "OAuth flow not started"}
return mcp_oauth_status_task(task_id)

View File

@@ -1,546 +0,0 @@
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List, Optional
import re
import uuid
from .base import Tool
from application.core.mongo_db import MongoDB
from application.core.settings import settings
class MemoryTool(Tool):
"""Memory
Stores and retrieves information across conversations through a memory file directory.
"""
def __init__(self, tool_config: Optional[Dict[str, Any]] = None, user_id: Optional[str] = None) -> None:
"""Initialize the tool.
Args:
tool_config: Optional tool configuration. Should include:
- tool_id: Unique identifier for this memory tool instance (from user_tools._id)
This ensures each user's tool configuration has isolated memories
user_id: The authenticated user's id (should come from decoded_token["sub"]).
"""
self.user_id: Optional[str] = user_id
# Get tool_id from configuration (passed from user_tools._id in production)
# In production, tool_id is the MongoDB ObjectId string from user_tools collection
if tool_config and "tool_id" in tool_config:
self.tool_id = tool_config["tool_id"]
elif user_id:
# Fallback for backward compatibility or testing
self.tool_id = f"default_{user_id}"
else:
# Last resort fallback (shouldn't happen in normal use)
self.tool_id = str(uuid.uuid4())
db = MongoDB.get_client()[settings.MONGO_DB_NAME]
self.collection = db["memories"]
# -----------------------------
# Action implementations
# -----------------------------
def execute_action(self, action_name: str, **kwargs: Any) -> str:
"""Execute an action by name.
Args:
action_name: One of view, create, str_replace, insert, delete, rename.
**kwargs: Parameters for the action.
Returns:
A human-readable string result.
"""
if not self.user_id:
return "Error: MemoryTool requires a valid user_id."
if action_name == "view":
return self._view(
kwargs.get("path", "/"),
kwargs.get("view_range")
)
if action_name == "create":
return self._create(
kwargs.get("path", ""),
kwargs.get("file_text", "")
)
if action_name == "str_replace":
return self._str_replace(
kwargs.get("path", ""),
kwargs.get("old_str", ""),
kwargs.get("new_str", "")
)
if action_name == "insert":
return self._insert(
kwargs.get("path", ""),
kwargs.get("insert_line", 1),
kwargs.get("insert_text", "")
)
if action_name == "delete":
return self._delete(kwargs.get("path", ""))
if action_name == "rename":
return self._rename(
kwargs.get("old_path", ""),
kwargs.get("new_path", "")
)
return f"Unknown action: {action_name}"
def get_actions_metadata(self) -> List[Dict[str, Any]]:
"""Return JSON metadata describing supported actions for tool schemas."""
return [
{
"name": "view",
"description": "Shows directory contents or file contents with optional line ranges.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "Path to file or directory (e.g., /notes.txt or /project/ or /)."
},
"view_range": {
"type": "array",
"items": {"type": "integer"},
"description": "Optional [start_line, end_line] to view specific lines (1-indexed)."
}
},
"required": ["path"]
},
},
{
"name": "create",
"description": "Create or overwrite a file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "File path to create (e.g., /notes.txt or /project/task.txt)."
},
"file_text": {
"type": "string",
"description": "Content to write to the file."
}
},
"required": ["path", "file_text"]
},
},
{
"name": "str_replace",
"description": "Replace text in a file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "File path (e.g., /notes.txt)."
},
"old_str": {
"type": "string",
"description": "String to find."
},
"new_str": {
"type": "string",
"description": "String to replace with."
}
},
"required": ["path", "old_str", "new_str"]
},
},
{
"name": "insert",
"description": "Insert text at a specific line in a file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "File path (e.g., /notes.txt)."
},
"insert_line": {
"type": "integer",
"description": "Line number to insert at (1-indexed)."
},
"insert_text": {
"type": "string",
"description": "Text to insert."
}
},
"required": ["path", "insert_line", "insert_text"]
},
},
{
"name": "delete",
"description": "Delete a file or directory.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "Path to delete (e.g., /notes.txt or /project/)."
}
},
"required": ["path"]
},
},
{
"name": "rename",
"description": "Rename or move a file/directory.",
"parameters": {
"type": "object",
"properties": {
"old_path": {
"type": "string",
"description": "Current path (e.g., /old.txt)."
},
"new_path": {
"type": "string",
"description": "New path (e.g., /new.txt)."
}
},
"required": ["old_path", "new_path"]
},
},
]
def get_config_requirements(self) -> Dict[str, Any]:
"""Return configuration requirements."""
return {}
# -----------------------------
# Path validation
# -----------------------------
def _validate_path(self, path: str) -> Optional[str]:
"""Validate and normalize path.
Args:
path: User-provided path.
Returns:
Normalized path or None if invalid.
"""
if not path:
return None
# Remove any leading/trailing whitespace
path = path.strip()
# Preserve whether path ends with / (indicates directory)
is_directory = path.endswith("/")
# Ensure path starts with / for consistency
if not path.startswith("/"):
path = "/" + path
# Check for directory traversal patterns
if ".." in path or path.count("//") > 0:
return None
# Normalize the path
try:
# Convert to Path object and resolve to canonical form
normalized = str(Path(path).as_posix())
# Ensure it still starts with /
if not normalized.startswith("/"):
return None
# Preserve trailing slash for directories
if is_directory and not normalized.endswith("/") and normalized != "/":
normalized = normalized + "/"
return normalized
except Exception:
return None
# -----------------------------
# Internal helpers
# -----------------------------
def _view(self, path: str, view_range: Optional[List[int]] = None) -> str:
"""View directory contents or file contents."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
# Check if viewing directory (ends with / or is root)
if validated_path == "/" or validated_path.endswith("/"):
return self._view_directory(validated_path)
# Otherwise view file
return self._view_file(validated_path, view_range)
def _view_directory(self, path: str) -> str:
"""List files in a directory."""
# Ensure path ends with / for proper prefix matching
search_path = path if path.endswith("/") else path + "/"
# Find all files that start with this directory path
query = {
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(search_path)}"}
}
docs = list(self.collection.find(query, {"path": 1}))
if not docs:
return f"Directory: {path}\n(empty)"
# Extract filenames relative to the directory
files = []
for doc in docs:
file_path = doc["path"]
# Remove the directory prefix
if file_path.startswith(search_path):
relative = file_path[len(search_path):]
if relative:
files.append(relative)
files.sort()
file_list = "\n".join(f"- {f}" for f in files)
return f"Directory: {path}\n{file_list}"
def _view_file(self, path: str, view_range: Optional[List[int]] = None) -> str:
"""View file contents with optional line range."""
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": path})
if not doc or not doc.get("content"):
return f"Error: File not found: {path}"
content = str(doc["content"])
# Apply view_range if specified
if view_range and len(view_range) == 2:
lines = content.split("\n")
start, end = view_range
# Convert to 0-indexed
start_idx = max(0, start - 1)
end_idx = min(len(lines), end)
if start_idx >= len(lines):
return f"Error: Line range out of bounds. File has {len(lines)} lines."
selected_lines = lines[start_idx:end_idx]
# Add line numbers (enumerate with 1-based start)
numbered_lines = [f"{i}: {line}" for i, line in enumerate(selected_lines, start=start)]
return "\n".join(numbered_lines)
return content
def _create(self, path: str, file_text: str) -> str:
"""Create or overwrite a file."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if validated_path == "/" or validated_path.endswith("/"):
return "Error: Cannot create a file at directory path."
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path},
{
"$set": {
"content": file_text,
"updated_at": datetime.now()
}
},
upsert=True
)
return f"File created: {validated_path}"
def _str_replace(self, path: str, old_str: str, new_str: str) -> str:
"""Replace text in a file."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if not old_str:
return "Error: old_str is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path})
if not doc or not doc.get("content"):
return f"Error: File not found: {validated_path}"
current_content = str(doc["content"])
# Check if old_str exists (case-insensitive)
if old_str.lower() not in current_content.lower():
return f"Error: String '{old_str}' not found in file."
# Replace the string (case-insensitive)
import re as regex_module
updated_content = regex_module.sub(regex_module.escape(old_str), new_str, current_content, flags=regex_module.IGNORECASE)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path},
{
"$set": {
"content": updated_content,
"updated_at": datetime.now()
}
}
)
return f"File updated: {validated_path}"
def _insert(self, path: str, insert_line: int, insert_text: str) -> str:
"""Insert text at a specific line."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if not insert_text:
return "Error: insert_text is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path})
if not doc or not doc.get("content"):
return f"Error: File not found: {validated_path}"
current_content = str(doc["content"])
lines = current_content.split("\n")
# Convert to 0-indexed
index = insert_line - 1
if index < 0 or index > len(lines):
return f"Error: Invalid line number. File has {len(lines)} lines."
lines.insert(index, insert_text)
updated_content = "\n".join(lines)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path},
{
"$set": {
"content": updated_content,
"updated_at": datetime.now()
}
}
)
return f"Text inserted at line {insert_line} in {validated_path}"
def _delete(self, path: str) -> str:
"""Delete a file or directory."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if validated_path == "/":
# Delete all files for this user and tool
result = self.collection.delete_many({"user_id": self.user_id, "tool_id": self.tool_id})
return f"Deleted {result.deleted_count} file(s) from memory."
# Check if it's a directory (ends with /)
if validated_path.endswith("/"):
# Delete all files in directory
result = self.collection.delete_many({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(validated_path)}"}
})
return f"Deleted directory and {result.deleted_count} file(s)."
# Try to delete as directory first (without trailing slash)
# Check if any files start with this path + /
search_path = validated_path + "/"
directory_result = self.collection.delete_many({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(search_path)}"}
})
if directory_result.deleted_count > 0:
return f"Deleted directory and {directory_result.deleted_count} file(s)."
# Delete single file
result = self.collection.delete_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_path
})
if result.deleted_count:
return f"Deleted: {validated_path}"
return f"Error: File not found: {validated_path}"
def _rename(self, old_path: str, new_path: str) -> str:
"""Rename or move a file/directory."""
validated_old = self._validate_path(old_path)
validated_new = self._validate_path(new_path)
if not validated_old or not validated_new:
return "Error: Invalid path."
if validated_old == "/" or validated_new == "/":
return "Error: Cannot rename root directory."
# Check if renaming a directory
if validated_old.endswith("/"):
# Ensure validated_new also ends with / for proper path replacement
if not validated_new.endswith("/"):
validated_new = validated_new + "/"
# Find all files in the old directory
docs = list(self.collection.find({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(validated_old)}"}
}))
if not docs:
return f"Error: Directory not found: {validated_old}"
# Update paths for all files
for doc in docs:
old_file_path = doc["path"]
new_file_path = old_file_path.replace(validated_old, validated_new, 1)
self.collection.update_one(
{"_id": doc["_id"]},
{"$set": {"path": new_file_path, "updated_at": datetime.now()}}
)
return f"Renamed directory: {validated_old} -> {validated_new} ({len(docs)} files)"
# Rename single file
doc = self.collection.find_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_old
})
if not doc:
return f"Error: File not found: {validated_old}"
# Check if new path already exists
existing = self.collection.find_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_new
})
if existing:
return f"Error: File already exists at {validated_new}"
# Delete the old document and create a new one with the new path
self.collection.delete_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_old})
self.collection.insert_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_new,
"content": doc.get("content", ""),
"updated_at": datetime.now()
})
return f"Renamed: {validated_old} -> {validated_new}"

View File

@@ -1,199 +0,0 @@
from datetime import datetime
from typing import Any, Dict, List, Optional
import uuid
from .base import Tool
from application.core.mongo_db import MongoDB
from application.core.settings import settings
class NotesTool(Tool):
"""Notepad
Single note. Supports viewing, overwriting, string replacement.
"""
def __init__(self, tool_config: Optional[Dict[str, Any]] = None, user_id: Optional[str] = None) -> None:
"""Initialize the tool.
Args:
tool_config: Optional tool configuration. Should include:
- tool_id: Unique identifier for this notes tool instance (from user_tools._id)
This ensures each user's tool configuration has isolated notes
user_id: The authenticated user's id (should come from decoded_token["sub"]).
"""
self.user_id: Optional[str] = user_id
# Get tool_id from configuration (passed from user_tools._id in production)
# In production, tool_id is the MongoDB ObjectId string from user_tools collection
if tool_config and "tool_id" in tool_config:
self.tool_id = tool_config["tool_id"]
elif user_id:
# Fallback for backward compatibility or testing
self.tool_id = f"default_{user_id}"
else:
# Last resort fallback (shouldn't happen in normal use)
self.tool_id = str(uuid.uuid4())
db = MongoDB.get_client()[settings.MONGO_DB_NAME]
self.collection = db["notes"]
# -----------------------------
# Action implementations
# -----------------------------
def execute_action(self, action_name: str, **kwargs: Any) -> str:
"""Execute an action by name.
Args:
action_name: One of view, overwrite, str_replace, insert, delete.
**kwargs: Parameters for the action.
Returns:
A human-readable string result.
"""
if not self.user_id:
return "Error: NotesTool requires a valid user_id."
if action_name == "view":
return self._get_note()
if action_name == "overwrite":
return self._overwrite_note(kwargs.get("text", ""))
if action_name == "str_replace":
return self._str_replace(kwargs.get("old_str", ""), kwargs.get("new_str", ""))
if action_name == "insert":
return self._insert(kwargs.get("line_number", 1), kwargs.get("text", ""))
if action_name == "delete":
return self._delete_note()
return f"Unknown action: {action_name}"
def get_actions_metadata(self) -> List[Dict[str, Any]]:
"""Return JSON metadata describing supported actions for tool schemas."""
return [
{
"name": "view",
"description": "Retrieve the user's note.",
"parameters": {"type": "object", "properties": {}},
},
{
"name": "overwrite",
"description": "Replace the entire note content (creates if doesn't exist).",
"parameters": {
"type": "object",
"properties": {
"text": {"type": "string", "description": "New note content."}
},
"required": ["text"],
},
},
{
"name": "str_replace",
"description": "Replace occurrences of old_str with new_str in the note.",
"parameters": {
"type": "object",
"properties": {
"old_str": {"type": "string", "description": "String to find."},
"new_str": {"type": "string", "description": "String to replace with."}
},
"required": ["old_str", "new_str"],
},
},
{
"name": "insert",
"description": "Insert text at the specified line number (1-indexed).",
"parameters": {
"type": "object",
"properties": {
"line_number": {"type": "integer", "description": "Line number to insert at (1-indexed)."},
"text": {"type": "string", "description": "Text to insert."}
},
"required": ["line_number", "text"],
},
},
{
"name": "delete",
"description": "Delete the user's note.",
"parameters": {"type": "object", "properties": {}},
},
]
def get_config_requirements(self) -> Dict[str, Any]:
"""Return configuration requirements (none for now)."""
return {}
# -----------------------------
# Internal helpers (single-note)
# -----------------------------
def _get_note(self) -> str:
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id})
if not doc or not doc.get("note"):
return "No note found."
return str(doc["note"])
def _overwrite_note(self, content: str) -> str:
content = (content or "").strip()
if not content:
return "Note content required."
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"$set": {"note": content, "updated_at": datetime.utcnow()}},
upsert=True, # ✅ create if missing
)
return "Note saved."
def _str_replace(self, old_str: str, new_str: str) -> str:
if not old_str:
return "old_str is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id})
if not doc or not doc.get("note"):
return "No note found."
current_note = str(doc["note"])
# Case-insensitive search
if old_str.lower() not in current_note.lower():
return f"String '{old_str}' not found in note."
# Case-insensitive replacement
import re
updated_note = re.sub(re.escape(old_str), new_str, current_note, flags=re.IGNORECASE)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"$set": {"note": updated_note, "updated_at": datetime.utcnow()}},
)
return "Note updated."
def _insert(self, line_number: int, text: str) -> str:
if not text:
return "Text is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id})
if not doc or not doc.get("note"):
return "No note found."
current_note = str(doc["note"])
lines = current_note.split("\n")
# Convert to 0-indexed and validate
index = line_number - 1
if index < 0 or index > len(lines):
return f"Invalid line number. Note has {len(lines)} lines."
lines.insert(index, text)
updated_note = "\n".join(lines)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"$set": {"note": updated_note, "updated_at": datetime.utcnow()}},
)
return "Text inserted."
def _delete_note(self) -> str:
res = self.collection.delete_one({"user_id": self.user_id, "tool_id": self.tool_id})
return "Note deleted." if res.deleted_count else "No note found to delete."

View File

@@ -1,127 +0,0 @@
import requests
from application.agents.tools.base import Tool
class NtfyTool(Tool):
"""
Ntfy Tool
A tool for sending notifications to ntfy topics on a specified server.
"""
def __init__(self, config):
"""
Initialize the NtfyTool with configuration.
Args:
config (dict): Configuration dictionary containing the access token.
"""
self.config = config
self.token = config.get("token", "")
def execute_action(self, action_name, **kwargs):
"""
Execute the specified action with given parameters.
Args:
action_name (str): Name of the action to execute.
**kwargs: Parameters for the action, including server_url.
Returns:
dict: Result of the action with status code and message.
Raises:
ValueError: If the action name is unknown.
"""
actions = {
"ntfy_send_message": self._send_message,
}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _send_message(self, server_url, message, topic, title=None, priority=None):
"""
Send a message to an ntfy topic on the specified server.
Args:
server_url (str): Base URL of the ntfy server (e.g., https://ntfy.sh).
message (str): The message text to send.
topic (str): The topic to send the message to.
title (str, optional): Title of the notification.
priority (int, optional): Priority of the notification (1-5).
Returns:
dict: Response with status code and a confirmation message.
Raises:
ValueError: If priority is not an integer between 1 and 5.
"""
url = f"{server_url.rstrip('/')}/{topic}"
headers = {}
if title:
headers["X-Title"] = title
if priority:
try:
priority = int(priority)
except (ValueError, TypeError):
raise ValueError("Priority must be convertible to an integer")
if priority < 1 or priority > 5:
raise ValueError("Priority must be an integer between 1 and 5")
headers["X-Priority"] = str(priority)
if self.token:
headers["Authorization"] = f"Basic {self.token}"
data = message.encode("utf-8")
response = requests.post(url, headers=headers, data=data)
return {"status_code": response.status_code, "message": "Message sent"}
def get_actions_metadata(self):
"""
Provide metadata about available actions.
Returns:
list: List of dictionaries describing each action.
"""
return [
{
"name": "ntfy_send_message",
"description": "Send a notification to an ntfy topic",
"parameters": {
"type": "object",
"properties": {
"server_url": {
"type": "string",
"description": "Base URL of the ntfy server",
},
"message": {
"type": "string",
"description": "Text to send in the notification",
},
"topic": {
"type": "string",
"description": "Topic to send the notification to",
},
"title": {
"type": "string",
"description": "Title of the notification (optional)",
},
"priority": {
"type": "integer",
"description": "Priority of the notification (1-5, optional)",
},
},
"required": ["server_url", "message", "topic"],
"additionalProperties": False,
},
},
]
def get_config_requirements(self):
"""
Specify the configuration requirements.
Returns:
dict: Dictionary describing required config parameters.
"""
return {
"token": {"type": "string", "description": "Access token for authentication"},
}

View File

@@ -1,163 +0,0 @@
import psycopg2
from application.agents.tools.base import Tool
class PostgresTool(Tool):
"""
PostgreSQL Database Tool
A tool for connecting to a PostgreSQL database using a connection string,
executing SQL queries, and retrieving schema information.
"""
def __init__(self, config):
self.config = config
self.connection_string = config.get("token", "")
def execute_action(self, action_name, **kwargs):
actions = {
"postgres_execute_sql": self._execute_sql,
"postgres_get_schema": self._get_schema,
}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _execute_sql(self, sql_query):
"""
Executes an SQL query against the PostgreSQL database using a connection string.
"""
conn = None # Initialize conn to None for error handling
try:
conn = psycopg2.connect(self.connection_string)
cur = conn.cursor()
cur.execute(sql_query)
conn.commit()
if sql_query.strip().lower().startswith("select"):
column_names = [desc[0] for desc in cur.description] if cur.description else []
results = []
rows = cur.fetchall()
for row in rows:
results.append(dict(zip(column_names, row)))
response_data = {"data": results, "column_names": column_names}
else:
row_count = cur.rowcount
response_data = {"message": f"Query executed successfully, {row_count} rows affected."}
cur.close()
return {
"status_code": 200,
"message": "SQL query executed successfully.",
"response_data": response_data,
}
except psycopg2.Error as e:
error_message = f"Database error: {e}"
print(f"Database error: {e}")
return {
"status_code": 500,
"message": "Failed to execute SQL query.",
"error": error_message,
}
finally:
if conn: # Ensure connection is closed even if errors occur
conn.close()
def _get_schema(self, db_name):
"""
Retrieves the schema of the PostgreSQL database using a connection string.
"""
conn = None # Initialize conn to None for error handling
try:
conn = psycopg2.connect(self.connection_string)
cur = conn.cursor()
cur.execute("""
SELECT
table_name,
column_name,
data_type,
column_default,
is_nullable
FROM
information_schema.columns
WHERE
table_schema = 'public'
ORDER BY
table_name,
ordinal_position;
""")
schema_data = {}
for row in cur.fetchall():
table_name, column_name, data_type, column_default, is_nullable = row
if table_name not in schema_data:
schema_data[table_name] = []
schema_data[table_name].append({
"column_name": column_name,
"data_type": data_type,
"column_default": column_default,
"is_nullable": is_nullable
})
cur.close()
return {
"status_code": 200,
"message": "Database schema retrieved successfully.",
"schema": schema_data,
}
except psycopg2.Error as e:
error_message = f"Database error: {e}"
print(f"Database error: {e}")
return {
"status_code": 500,
"message": "Failed to retrieve database schema.",
"error": error_message,
}
finally:
if conn: # Ensure connection is closed even if errors occur
conn.close()
def get_actions_metadata(self):
return [
{
"name": "postgres_execute_sql",
"description": "Execute an SQL query against the PostgreSQL database and return the results. Use this tool to interact with the database, e.g., retrieve specific data or perform updates. Only SELECT queries will return data, other queries will return execution status.",
"parameters": {
"type": "object",
"properties": {
"sql_query": {
"type": "string",
"description": "The SQL query to execute.",
},
},
"required": ["sql_query"],
"additionalProperties": False,
},
},
{
"name": "postgres_get_schema",
"description": "Retrieve the schema of the PostgreSQL database, including tables and their columns. Use this to understand the database structure before executing queries. db_name is 'default' if not provided.",
"parameters": {
"type": "object",
"properties": {
"db_name": {
"type": "string",
"description": "The name of the database to retrieve the schema for.",
},
},
"required": ["db_name"],
"additionalProperties": False,
},
},
]
def get_config_requirements(self):
return {
"token": {
"type": "string",
"description": "PostgreSQL database connection string (e.g., 'postgresql://user:password@host:port/dbname')",
},
}

View File

@@ -1,83 +0,0 @@
import requests
from markdownify import markdownify
from application.agents.tools.base import Tool
from urllib.parse import urlparse
class ReadWebpageTool(Tool):
"""
Read Webpage (browser)
A tool to fetch the HTML content of a URL and convert it to Markdown.
"""
def __init__(self, config=None):
"""
Initializes the tool.
:param config: Optional configuration dictionary. Not used by this tool.
"""
self.config = config
def execute_action(self, action_name: str, **kwargs) -> str:
"""
Executes the specified action. For this tool, the only action is 'read_webpage'.
:param action_name: The name of the action to execute. Should be 'read_webpage'.
:param kwargs: Keyword arguments, must include 'url'.
:return: The Markdown content of the webpage or an error message.
"""
if action_name != "read_webpage":
return f"Error: Unknown action '{action_name}'. This tool only supports 'read_webpage'."
url = kwargs.get("url")
if not url:
return "Error: URL parameter is missing."
# Ensure the URL has a scheme (if not, default to http)
parsed_url = urlparse(url)
if not parsed_url.scheme:
url = "http://" + url
try:
response = requests.get(url, timeout=10, headers={'User-Agent': 'DocsGPT-Agent/1.0'})
response.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
html_content = response.text
#soup = BeautifulSoup(html_content, 'html.parser')
markdown_content = markdownify(html_content, heading_style="ATX", newline_style="BACKSLASH")
return markdown_content
except requests.exceptions.RequestException as e:
return f"Error fetching URL {url}: {e}"
except Exception as e:
return f"Error processing URL {url}: {e}"
def get_actions_metadata(self):
"""
Returns metadata for the actions supported by this tool.
"""
return [
{
"name": "read_webpage",
"description": "Fetches the HTML content of a given URL and returns it as clean Markdown text. Input must be a valid URL.",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The fully qualified URL of the webpage to read (e.g., 'https://www.example.com').",
}
},
"required": ["url"],
"additionalProperties": False,
},
}
]
def get_config_requirements(self):
"""
Returns a dictionary describing the configuration requirements for the tool.
This tool does not require any specific configuration.
"""
return {}

View File

@@ -1,86 +0,0 @@
import requests
from application.agents.tools.base import Tool
class TelegramTool(Tool):
"""
Telegram Bot
A flexible Telegram tool for performing various actions (e.g., sending messages, images).
Requires a bot token and chat ID for configuration
"""
def __init__(self, config):
self.config = config
self.token = config.get("token", "")
def execute_action(self, action_name, **kwargs):
actions = {
"telegram_send_message": self._send_message,
"telegram_send_image": self._send_image,
}
if action_name in actions:
return actions[action_name](**kwargs)
else:
raise ValueError(f"Unknown action: {action_name}")
def _send_message(self, text, chat_id):
print(f"Sending message: {text}")
url = f"https://api.telegram.org/bot{self.token}/sendMessage"
payload = {"chat_id": chat_id, "text": text}
response = requests.post(url, data=payload)
return {"status_code": response.status_code, "message": "Message sent"}
def _send_image(self, image_url, chat_id):
print(f"Sending image: {image_url}")
url = f"https://api.telegram.org/bot{self.token}/sendPhoto"
payload = {"chat_id": chat_id, "photo": image_url}
response = requests.post(url, data=payload)
return {"status_code": response.status_code, "message": "Image sent"}
def get_actions_metadata(self):
return [
{
"name": "telegram_send_message",
"description": "Send a notification to Telegram chat",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "Text to send in the notification",
},
"chat_id": {
"type": "string",
"description": "Chat ID to send the notification to",
},
},
"required": ["text"],
"additionalProperties": False,
},
},
{
"name": "telegram_send_image",
"description": "Send an image to the Telegram chat",
"parameters": {
"type": "object",
"properties": {
"image_url": {
"type": "string",
"description": "URL of the image to send",
},
"chat_id": {
"type": "string",
"description": "Chat ID to send the image to",
},
},
"required": ["image_url"],
"additionalProperties": False,
},
},
]
def get_config_requirements(self):
return {
"token": {"type": "string", "description": "Bot token for authentication"},
}

View File

@@ -1,321 +0,0 @@
from datetime import datetime
from typing import Any, Dict, List, Optional
import uuid
from .base import Tool
from application.core.mongo_db import MongoDB
from application.core.settings import settings
class TodoListTool(Tool):
"""Todo List
Manages todo items for users. Supports creating, viewing, updating, and deleting todos.
"""
def __init__(self, tool_config: Optional[Dict[str, Any]] = None, user_id: Optional[str] = None) -> None:
"""Initialize the tool.
Args:
tool_config: Optional tool configuration. Should include:
- tool_id: Unique identifier for this todo list tool instance (from user_tools._id)
This ensures each user's tool configuration has isolated todos
user_id: The authenticated user's id (should come from decoded_token["sub"]).
"""
self.user_id: Optional[str] = user_id
# Get tool_id from configuration (passed from user_tools._id in production)
# In production, tool_id is the MongoDB ObjectId string from user_tools collection
if tool_config and "tool_id" in tool_config:
self.tool_id = tool_config["tool_id"]
elif user_id:
# Fallback for backward compatibility or testing
self.tool_id = f"default_{user_id}"
else:
# Last resort fallback (shouldn't happen in normal use)
self.tool_id = str(uuid.uuid4())
db = MongoDB.get_client()[settings.MONGO_DB_NAME]
self.collection = db["todos"]
# -----------------------------
# Action implementations
# -----------------------------
def execute_action(self, action_name: str, **kwargs: Any) -> str:
"""Execute an action by name.
Args:
action_name: One of list, create, get, update, complete, delete.
**kwargs: Parameters for the action.
Returns:
A human-readable string result.
"""
if not self.user_id:
return "Error: TodoListTool requires a valid user_id."
if action_name == "list":
return self._list()
if action_name == "create":
return self._create(kwargs.get("title", ""))
if action_name == "get":
return self._get(kwargs.get("todo_id"))
if action_name == "update":
return self._update(
kwargs.get("todo_id"),
kwargs.get("title", "")
)
if action_name == "complete":
return self._complete(kwargs.get("todo_id"))
if action_name == "delete":
return self._delete(kwargs.get("todo_id"))
return f"Unknown action: {action_name}"
def get_actions_metadata(self) -> List[Dict[str, Any]]:
"""Return JSON metadata describing supported actions for tool schemas."""
return [
{
"name": "list",
"description": "List all todos for the user.",
"parameters": {"type": "object", "properties": {}},
},
{
"name": "create",
"description": "Create a new todo item.",
"parameters": {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title of the todo item."
}
},
"required": ["title"],
},
},
{
"name": "get",
"description": "Get a specific todo by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to retrieve."
}
},
"required": ["todo_id"],
},
},
{
"name": "update",
"description": "Update a todo's title by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to update."
},
"title": {
"type": "string",
"description": "The new title for the todo."
}
},
"required": ["todo_id", "title"],
},
},
{
"name": "complete",
"description": "Mark a todo as completed.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to mark as completed."
}
},
"required": ["todo_id"],
},
},
{
"name": "delete",
"description": "Delete a specific todo by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to delete."
}
},
"required": ["todo_id"],
},
},
]
def get_config_requirements(self) -> Dict[str, Any]:
"""Return configuration requirements."""
return {}
# -----------------------------
# Internal helpers
# -----------------------------
def _coerce_todo_id(self, value: Optional[Any]) -> Optional[int]:
"""Convert todo identifiers to sequential integers."""
if value is None:
return None
if isinstance(value, int):
return value if value > 0 else None
if isinstance(value, str):
stripped = value.strip()
if stripped.isdigit():
numeric_value = int(stripped)
return numeric_value if numeric_value > 0 else None
return None
def _get_next_todo_id(self) -> int:
"""Get the next sequential todo_id for this user and tool.
Returns a simple integer (1, 2, 3, ...) scoped to this user/tool.
With 5-10 todos max, scanning is negligible.
"""
# Find all todos for this user/tool and get their IDs
todos = list(self.collection.find(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"todo_id": 1}
))
# Find the maximum todo_id
max_id = 0
for todo in todos:
todo_id = self._coerce_todo_id(todo.get("todo_id"))
if todo_id is not None:
max_id = max(max_id, todo_id)
return max_id + 1
def _list(self) -> str:
"""List all todos for the user."""
cursor = self.collection.find({"user_id": self.user_id, "tool_id": self.tool_id})
todos = list(cursor)
if not todos:
return "No todos found."
result_lines = ["Todos:"]
for doc in todos:
todo_id = doc.get("todo_id")
title = doc.get("title", "Untitled")
status = doc.get("status", "open")
line = f"[{todo_id}] {title} ({status})"
result_lines.append(line)
return "\n".join(result_lines)
def _create(self, title: str) -> str:
"""Create a new todo item."""
title = (title or "").strip()
if not title:
return "Error: Title is required."
now = datetime.now()
todo_id = self._get_next_todo_id()
doc = {
"todo_id": todo_id,
"user_id": self.user_id,
"tool_id": self.tool_id,
"title": title,
"status": "open",
"created_at": now,
"updated_at": now,
}
self.collection.insert_one(doc)
return f"Todo created with ID {todo_id}: {title}"
def _get(self, todo_id: Optional[Any]) -> str:
"""Get a specific todo by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
doc = self.collection.find_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"todo_id": parsed_todo_id
})
if not doc:
return f"Error: Todo with ID {parsed_todo_id} not found."
title = doc.get("title", "Untitled")
status = doc.get("status", "open")
result = f"Todo [{parsed_todo_id}]:\nTitle: {title}\nStatus: {status}"
return result
def _update(self, todo_id: Optional[Any], title: str) -> str:
"""Update a todo's title by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
title = (title or "").strip()
if not title:
return "Error: Title is required."
result = self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "todo_id": parsed_todo_id},
{"$set": {"title": title, "updated_at": datetime.now()}}
)
if result.matched_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} updated to: {title}"
def _complete(self, todo_id: Optional[Any]) -> str:
"""Mark a todo as completed."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
result = self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "todo_id": parsed_todo_id},
{"$set": {"status": "completed", "updated_at": datetime.now()}}
)
if result.matched_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} marked as completed."
def _delete(self, todo_id: Optional[Any]) -> str:
"""Delete a specific todo by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
result = self.collection.delete_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"todo_id": parsed_todo_id
})
if result.deleted_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} deleted."

View File

@@ -1,69 +0,0 @@
import json
import logging
logger = logging.getLogger(__name__)
class ToolActionParser:
def __init__(self, llm_type):
self.llm_type = llm_type
self.parsers = {
"OpenAILLM": self._parse_openai_llm,
"GoogleLLM": self._parse_google_llm,
}
def parse_args(self, call):
parser = self.parsers.get(self.llm_type, self._parse_openai_llm)
return parser(call)
def _parse_openai_llm(self, call):
try:
call_args = json.loads(call.arguments)
tool_parts = call.name.split("_")
# If the tool name doesn't contain an underscore, it's likely a hallucinated tool
if len(tool_parts) < 2:
logger.warning(
f"Invalid tool name format: {call.name}. Expected format: action_name_tool_id"
)
return None, None, None
tool_id = tool_parts[-1]
action_name = "_".join(tool_parts[:-1])
# Validate that tool_id looks like a numerical ID
if not tool_id.isdigit():
logger.warning(
f"Tool ID '{tool_id}' is not numerical. This might be a hallucinated tool call."
)
except (AttributeError, TypeError, json.JSONDecodeError) as e:
logger.error(f"Error parsing OpenAI LLM call: {e}")
return None, None, None
return tool_id, action_name, call_args
def _parse_google_llm(self, call):
try:
call_args = call.arguments
tool_parts = call.name.split("_")
# If the tool name doesn't contain an underscore, it's likely a hallucinated tool
if len(tool_parts) < 2:
logger.warning(
f"Invalid tool name format: {call.name}. Expected format: action_name_tool_id"
)
return None, None, None
tool_id = tool_parts[-1]
action_name = "_".join(tool_parts[:-1])
# Validate that tool_id looks like a numerical ID
if not tool_id.isdigit():
logger.warning(
f"Tool ID '{tool_id}' is not numerical. This might be a hallucinated tool call."
)
except (AttributeError, TypeError) as e:
logger.error(f"Error parsing Google LLM call: {e}")
return None, None, None
return tool_id, action_name, call_args

View File

@@ -1,49 +0,0 @@
import importlib
import inspect
import os
import pkgutil
from application.agents.tools.base import Tool
class ToolManager:
def __init__(self, config):
self.config = config
self.tools = {}
self.load_tools()
def load_tools(self):
tools_dir = os.path.join(os.path.dirname(__file__))
for finder, name, ispkg in pkgutil.iter_modules([tools_dir]):
if name == "base" or name.startswith("__"):
continue
module = importlib.import_module(f"application.agents.tools.{name}")
for member_name, obj in inspect.getmembers(module, inspect.isclass):
if issubclass(obj, Tool) and obj is not Tool:
tool_config = self.config.get(name, {})
self.tools[name] = obj(tool_config)
def load_tool(self, tool_name, tool_config, user_id=None):
self.config[tool_name] = tool_config
module = importlib.import_module(f"application.agents.tools.{tool_name}")
for member_name, obj in inspect.getmembers(module, inspect.isclass):
if issubclass(obj, Tool) and obj is not Tool:
if tool_name in {"mcp_tool", "notes", "memory", "todo_list"} and user_id:
return obj(tool_config, user_id)
else:
return obj(tool_config)
def execute_action(self, tool_name, action_name, user_id=None, **kwargs):
if tool_name not in self.tools:
raise ValueError(f"Tool '{tool_name}' not loaded")
if tool_name in {"mcp_tool", "memory", "todo_list"} and user_id:
tool_config = self.config.get(tool_name, {})
tool = self.load_tool(tool_name, tool_config, user_id)
return tool.execute_action(action_name, **kwargs)
return self.tools[tool_name].execute_action(action_name, **kwargs)
def get_all_actions_metadata(self):
metadata = []
for tool in self.tools.values():
metadata.extend(tool.get_actions_metadata())
return metadata

View File

@@ -1,7 +0,0 @@
from flask_restx import Api
api = Api(
version="1.0",
title="DocsGPT API",
description="API for DocsGPT",
)

View File

@@ -1,19 +0,0 @@
from flask import Blueprint
from application.api import api
from application.api.answer.routes.answer import AnswerResource
from application.api.answer.routes.base import answer_ns
from application.api.answer.routes.stream import StreamResource
answer = Blueprint("answer", __name__)
api.add_namespace(answer_ns)
def init_answer_routes():
api.add_resource(StreamResource, "/stream")
api.add_resource(AnswerResource, "/api/answer")
init_answer_routes()

View File

@@ -0,0 +1,619 @@
import asyncio
import datetime
import json
import logging
import os
import sys
import traceback
from bson.dbref import DBRef
from bson.objectid import ObjectId
from flask import Blueprint, current_app, make_response, request, Response
from flask_restx import fields, Namespace, Resource
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.error import bad_request
from application.extensions import api
from application.llm.llm_creator import LLMCreator
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import check_required_fields
logger = logging.getLogger(__name__)
mongo = MongoDB.get_client()
db = mongo["docsgpt"]
conversations_collection = db["conversations"]
sources_collection = db["sources"]
prompts_collection = db["prompts"]
api_key_collection = db["api_keys"]
user_logs_collection = db["user_logs"]
answer = Blueprint("answer", __name__)
answer_ns = Namespace("answer", description="Answer related operations", path="/")
api.add_namespace(answer_ns)
gpt_model = ""
# to have some kind of default behaviour
if settings.LLM_NAME == "openai":
gpt_model = "gpt-3.5-turbo"
elif settings.LLM_NAME == "anthropic":
gpt_model = "claude-2"
elif settings.LLM_NAME == "groq":
gpt_model = "llama3-8b-8192"
if settings.MODEL_NAME: # in case there is particular model name configured
gpt_model = settings.MODEL_NAME
# load the prompts
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
chat_combine_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
chat_reduce_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r") as f:
chat_combine_creative = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
chat_combine_strict = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
async def async_generate(chain, question, chat_history):
result = await chain.arun({"question": question, "chat_history": chat_history})
return result
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = {}
try:
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
finally:
loop.close()
result["answer"] = answer
return result
def get_data_from_api_key(api_key):
data = api_key_collection.find_one({"key": api_key})
# # Raise custom exception if the API key is not found
if data is None:
raise Exception("Invalid API Key, please generate new key", 401)
if "retriever" not in data:
data["retriever"] = None
if "source" in data and isinstance(data["source"], DBRef):
source_doc = db.dereference(data["source"])
data["source"] = str(source_doc["_id"])
if "retriever" in source_doc:
data["retriever"] = source_doc["retriever"]
else:
data["source"] = {}
return data
def get_retriever(source_id: str):
doc = sources_collection.find_one({"_id": ObjectId(source_id)})
if doc is None:
raise Exception("Source document does not exist", 404)
retriever_name = None if "retriever" not in doc else doc["retriever"]
return retriever_name
def is_azure_configured():
return (
settings.OPENAI_API_BASE
and settings.OPENAI_API_VERSION
and settings.AZURE_DEPLOYMENT_NAME
)
def save_conversation(conversation_id, question, response, source_log_docs, llm):
if conversation_id is not None and conversation_id != "None":
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{
"$push": {
"queries": {
"prompt": question,
"response": response,
"sources": source_log_docs,
}
}
},
)
else:
# create new conversation
# generate summary
messages_summary = [
{
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the system",
},
{
"role": "user",
"content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system \n\nUser: "
+ question
+ "\n\n"
+ "AI: "
+ response,
},
]
completion = llm.gen(model=gpt_model, messages=messages_summary, max_tokens=30)
conversation_id = conversations_collection.insert_one(
{
"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [
{
"prompt": question,
"response": response,
"sources": source_log_docs,
}
],
}
).inserted_id
return conversation_id
def get_prompt(prompt_id):
if prompt_id == "default":
prompt = chat_combine_template
elif prompt_id == "creative":
prompt = chat_combine_creative
elif prompt_id == "strict":
prompt = chat_combine_strict
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
return prompt
def complete_stream(
question, retriever, conversation_id, user_api_key, isNoneDoc=False
):
try:
response_full = ""
source_log_docs = []
answer = retriever.gen()
sources = retriever.search()
for source in sources:
if "text" in source:
source["text"] = source["text"][:100].strip() + "..."
if len(sources) > 0:
data = json.dumps({"type": "source", "source": sources})
yield f"data: {data}\n\n"
for line in answer:
if "answer" in line:
response_full += str(line["answer"])
data = json.dumps(line)
yield f"data: {data}\n\n"
elif "source" in line:
source_log_docs.append(line["source"])
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
if user_api_key is None:
conversation_id = save_conversation(
conversation_id, question, response_full, source_log_docs, llm
)
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
yield f"data: {data}\n\n"
retriever_params = retriever.get_params()
user_logs_collection.insert_one(
{
"action": "stream_answer",
"level": "info",
"user": "local",
"api_key": user_api_key,
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
)
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except Exception as e:
print("\033[91merr", str(e), file=sys.stderr)
traceback.print_exc()
data = json.dumps(
{
"type": "error",
"error": "Please try again later. We apologize for any inconvenience.",
"error_exception": str(e),
}
)
yield f"data: {data}\n\n"
return
@answer_ns.route("/stream")
class Stream(Resource):
stream_model = api.model(
"StreamModel",
{
"question": fields.String(
required=True, description="Question to be asked"
),
"history": fields.List(
fields.String, required=False, description="Chat history"
),
"conversation_id": fields.String(
required=False, description="Conversation ID"
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
},
)
@api.expect(stream_model)
@api.doc(description="Stream a response based on the question and retriever")
def post(self):
data = request.get_json()
required_fields = ["question"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
question = data["question"]
history = data.get("history", [])
history = json.loads(history)
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")
chunks = int(data.get("chunks", 2))
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key.get("chunks", 2))
prompt_id = data_key.get("prompt_id", "default")
source = {"active_docs": data_key.get("source")}
retriever_name = data_key.get("retriever", retriever_name)
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
retriever_name = get_retriever(data["active_docs"]) or retriever_name
user_api_key = None
else:
source = {}
user_api_key = None
current_app.logger.info(
f"/stream - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})},
)
prompt = get_prompt(prompt_id)
if "isNoneDoc" in data and data["isNoneDoc"] is True:
chunks = 0
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
return Response(
complete_stream(
question=question,
retriever=retriever,
conversation_id=conversation_id,
user_api_key=user_api_key,
isNoneDoc=data.get("isNoneDoc"),
),
mimetype="text/event-stream",
)
except ValueError:
message = "Malformed request body"
print("\033[91merr", str(message), file=sys.stderr)
return Response(
error_stream_generate(message),
status=400,
mimetype="text/event-stream",
)
except Exception as e:
current_app.logger.error(
f"/stream - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
message = e.args[0]
status_code = 400
# Custom exceptions with two arguments, index 1 as status code
if len(e.args) >= 2:
status_code = e.args[1]
return Response(
error_stream_generate(message),
status=status_code,
mimetype="text/event-stream",
)
def error_stream_generate(err_response):
data = json.dumps({"type": "error", "error": err_response})
yield f"data: {data}\n\n"
@answer_ns.route("/api/answer")
class Answer(Resource):
answer_model = api.model(
"AnswerModel",
{
"question": fields.String(
required=True, description="The question to answer"
),
"history": fields.List(
fields.String, required=False, description="Conversation history"
),
"conversation_id": fields.String(
required=False, description="Conversation ID"
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
},
)
@api.expect(answer_model)
@api.doc(description="Provide an answer based on the question and retriever")
def post(self):
data = request.get_json()
required_fields = ["question"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
question = data["question"]
history = data.get("history", [])
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")
chunks = int(data.get("chunks", 2))
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key.get("chunks", 2))
prompt_id = data_key.get("prompt_id", "default")
source = {"active_docs": data_key.get("source")}
retriever_name = data_key.get("retriever", retriever_name)
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
retriever_name = get_retriever(data["active_docs"]) or retriever_name
user_api_key = None
else:
source = {}
user_api_key = None
prompt = get_prompt(prompt_id)
current_app.logger.info(
f"/api/answer - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})},
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
source_log_docs = []
response_full = ""
for line in retriever.gen():
if "source" in line:
source_log_docs.append(line["source"])
elif "answer" in line:
response_full += line["answer"]
if data.get("isNoneDoc"):
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
result = {"answer": response_full, "sources": source_log_docs}
result["conversation_id"] = str(
save_conversation(
conversation_id, question, response_full, source_log_docs, llm
)
)
retriever_params = retriever.get_params()
user_logs_collection.insert_one(
{
"action": "api_answer",
"level": "info",
"user": "local",
"api_key": user_api_key,
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
)
except Exception as e:
current_app.logger.error(
f"/api/answer - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return bad_request(500, str(e))
return make_response(result, 200)
@answer_ns.route("/api/search")
class Search(Resource):
search_model = api.model(
"SearchModel",
{
"question": fields.String(
required=True, description="The question to search"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"api_key": fields.String(
required=False, description="API key for authentication"
),
"active_docs": fields.String(
required=False, description="Active documents for retrieval"
),
"retriever": fields.String(required=False, description="Retriever type"),
"token_limit": fields.Integer(
required=False, description="Limit for tokens"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
},
)
@api.expect(search_model)
@api.doc(
description="Search for relevant documents based on the question and retriever"
)
def post(self):
data = request.get_json()
required_fields = ["question"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
question = data["question"]
chunks = int(data.get("chunks", 2))
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key.get("chunks", 2))
source = {"active_docs": data_key.get("source")}
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
user_api_key = None
else:
source = {}
user_api_key = None
current_app.logger.info(
f"/api/answer - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})},
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=[],
prompt="default",
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
docs = retriever.search()
retriever_params = retriever.get_params()
user_logs_collection.insert_one(
{
"action": "api_search",
"level": "info",
"user": "local",
"api_key": user_api_key,
"question": question,
"sources": docs,
"retriever_params": retriever_params,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
)
if data.get("isNoneDoc"):
for doc in docs:
doc["source"] = "None"
except Exception as e:
current_app.logger.error(
f"/api/search - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return bad_request(500, str(e))
return make_response(docs, 200)

View File

@@ -1,142 +0,0 @@
import logging
import traceback
from flask import make_response, request
from flask_restx import fields, Resource
from application.api import api
from application.api.answer.routes.base import answer_ns, BaseAnswerResource
from application.api.answer.services.stream_processor import StreamProcessor
logger = logging.getLogger(__name__)
@answer_ns.route("/api/answer")
class AnswerResource(Resource, BaseAnswerResource):
def __init__(self, *args, **kwargs):
Resource.__init__(self, *args, **kwargs)
BaseAnswerResource.__init__(self)
answer_model = answer_ns.model(
"AnswerModel",
{
"question": fields.String(
required=True, description="Question to be asked"
),
"history": fields.List(
fields.String,
required=False,
description="Conversation history (only for new conversations)",
),
"conversation_id": fields.String(
required=False,
description="Existing conversation ID (loads history)",
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
"save_conversation": fields.Boolean(
required=False,
default=True,
description="Whether to save the conversation",
),
"model_id": fields.String(
required=False,
description="Model ID to use for this request",
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@api.expect(answer_model)
@api.doc(description="Provide a response based on the question and retriever")
def post(self):
data = request.get_json()
if error := self.validate_request(data):
return error
decoded_token = getattr(request, "decoded_token", None)
processor = StreamProcessor(data, decoded_token)
try:
processor.initialize()
if not processor.decoded_token:
return make_response({"error": "Unauthorized"}, 401)
docs_together, docs_list = processor.pre_fetch_docs(
data.get("question", "")
)
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together,
docs=docs_list,
tools_data=tools_data,
)
if error := self.check_usage(processor.agent_config):
return error
stream = self.complete_stream(
question=data["question"],
agent=agent,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=None,
should_save_conversation=data.get("save_conversation", True),
model_id=processor.model_id,
)
stream_result = self.process_response_stream(stream)
if len(stream_result) == 7:
(
conversation_id,
response,
sources,
tool_calls,
thought,
error,
structured_info,
) = stream_result
else:
conversation_id, response, sources, tool_calls, thought, error = (
stream_result
)
structured_info = None
if error:
return make_response({"error": error}, 400)
result = {
"conversation_id": conversation_id,
"answer": response,
"sources": sources,
"tool_calls": tool_calls,
"thought": thought,
}
if structured_info:
result.update(structured_info)
except Exception as e:
logger.error(
f"/api/answer - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return make_response({"error": str(e)}, 500)
return make_response(result, 200)

View File

@@ -1,442 +0,0 @@
import datetime
import json
import logging
from typing import Any, Dict, Generator, List, Optional
from flask import jsonify, make_response, Response
from flask_restx import Namespace
from application.api.answer.services.conversation_service import ConversationService
from application.core.model_utils import (
get_api_key_for_provider,
get_default_model_id,
get_provider_from_model_id,
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import check_required_fields
logger = logging.getLogger(__name__)
answer_ns = Namespace("answer", description="Answer related operations", path="/")
class BaseAnswerResource:
"""Shared base class for answer endpoints"""
def __init__(self):
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
self.db = db
self.user_logs_collection = db["user_logs"]
self.default_model_id = get_default_model_id()
self.conversation_service = ConversationService()
def validate_request(
self, data: Dict[str, Any], require_conversation_id: bool = False
) -> Optional[Response]:
"""Common request validation"""
required_fields = ["question"]
if require_conversation_id:
required_fields.append("conversation_id")
if missing_fields := check_required_fields(data, required_fields):
return missing_fields
return None
def check_usage(self, agent_config: Dict) -> Optional[Response]:
"""Check if there is a usage limit and if it is exceeded
Args:
agent_config: The config dict of agent instance
Returns:
None or Response if either of limits exceeded.
"""
api_key = agent_config.get("user_api_key")
if not api_key:
return None
agents_collection = self.db["agents"]
agent = agents_collection.find_one({"key": api_key})
if not agent:
return make_response(
jsonify({"success": False, "message": "Invalid API key."}), 401
)
limited_token_mode_raw = agent.get("limited_token_mode", False)
limited_request_mode_raw = agent.get("limited_request_mode", False)
limited_token_mode = (
limited_token_mode_raw
if isinstance(limited_token_mode_raw, bool)
else limited_token_mode_raw == "True"
)
limited_request_mode = (
limited_request_mode_raw
if isinstance(limited_request_mode_raw, bool)
else limited_request_mode_raw == "True"
)
token_limit = int(
agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"])
)
request_limit = int(
agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"])
)
token_usage_collection = self.db["token_usage"]
end_date = datetime.datetime.now()
start_date = end_date - datetime.timedelta(hours=24)
match_query = {
"timestamp": {"$gte": start_date, "$lte": end_date},
"api_key": api_key,
}
if limited_token_mode:
token_pipeline = [
{"$match": match_query},
{
"$group": {
"_id": None,
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
},
]
token_result = list(token_usage_collection.aggregate(token_pipeline))
daily_token_usage = token_result[0]["total_tokens"] if token_result else 0
else:
daily_token_usage = 0
if limited_request_mode:
daily_request_usage = token_usage_collection.count_documents(match_query)
else:
daily_request_usage = 0
if not limited_token_mode and not limited_request_mode:
return None
token_exceeded = (
limited_token_mode and token_limit > 0 and daily_token_usage >= token_limit
)
request_exceeded = (
limited_request_mode
and request_limit > 0
and daily_request_usage >= request_limit
)
if token_exceeded or request_exceeded:
return make_response(
jsonify(
{
"success": False,
"message": "Exceeding usage limit, please try again later.",
}
),
429,
)
return None
def complete_stream(
self,
question: str,
agent: Any,
conversation_id: Optional[str],
user_api_key: Optional[str],
decoded_token: Dict[str, Any],
isNoneDoc: bool = False,
index: Optional[int] = None,
should_save_conversation: bool = True,
attachment_ids: Optional[List[str]] = None,
agent_id: Optional[str] = None,
is_shared_usage: bool = False,
shared_token: Optional[str] = None,
model_id: Optional[str] = None,
) -> Generator[str, None, None]:
"""
Generator function that streams the complete conversation response.
Args:
question: The user's question
agent: The agent instance
retriever: The retriever instance
conversation_id: Existing conversation ID
user_api_key: User's API key if any
decoded_token: Decoded JWT token
isNoneDoc: Flag for document-less responses
index: Index of message to update
should_save_conversation: Whether to persist the conversation
attachment_ids: List of attachment IDs
agent_id: ID of agent used
is_shared_usage: Flag for shared agent usage
shared_token: Token for shared agent
model_id: Model ID used for the request
retrieved_docs: Pre-fetched documents for sources (optional)
Yields:
Server-sent event strings
"""
try:
response_full, thought, source_log_docs, tool_calls = "", "", [], []
is_structured = False
schema_info = None
structured_chunks = []
for line in agent.gen(query=question):
if "answer" in line:
response_full += str(line["answer"])
if line.get("structured"):
is_structured = True
schema_info = line.get("schema")
structured_chunks.append(line["answer"])
else:
data = json.dumps({"type": "answer", "answer": line["answer"]})
yield f"data: {data}\n\n"
elif "sources" in line:
truncated_sources = []
source_log_docs = line["sources"]
for source in line["sources"]:
truncated_source = source.copy()
if "text" in truncated_source:
truncated_source["text"] = (
truncated_source["text"][:100].strip() + "..."
)
truncated_sources.append(truncated_source)
if truncated_sources:
data = json.dumps(
{"type": "source", "source": truncated_sources}
)
yield f"data: {data}\n\n"
elif "tool_calls" in line:
tool_calls = line["tool_calls"]
data = json.dumps({"type": "tool_calls", "tool_calls": tool_calls})
yield f"data: {data}\n\n"
elif "thought" in line:
thought += line["thought"]
data = json.dumps({"type": "thought", "thought": line["thought"]})
yield f"data: {data}\n\n"
elif "type" in line:
data = json.dumps(line)
yield f"data: {data}\n\n"
if is_structured and structured_chunks:
structured_data = {
"type": "structured_answer",
"answer": response_full,
"structured": True,
"schema": schema_info,
}
data = json.dumps(structured_data)
yield f"data: {data}\n\n"
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
provider = (
get_provider_from_model_id(model_id)
if model_id
else settings.LLM_PROVIDER
)
system_api_key = get_api_key_for_provider(provider or settings.LLM_PROVIDER)
llm = LLMCreator.create_llm(
provider or settings.LLM_PROVIDER,
api_key=system_api_key,
user_api_key=user_api_key,
decoded_token=decoded_token,
model_id=model_id,
)
if should_save_conversation:
conversation_id = self.conversation_service.save_conversation(
conversation_id,
question,
response_full,
thought,
source_log_docs,
tool_calls,
llm,
model_id or self.default_model_id,
decoded_token,
index=index,
api_key=user_api_key,
agent_id=agent_id,
is_shared_usage=is_shared_usage,
shared_token=shared_token,
attachment_ids=attachment_ids,
)
# Persist compression metadata/summary if it exists and wasn't saved mid-execution
compression_meta = getattr(agent, "compression_metadata", None)
compression_saved = getattr(agent, "compression_saved", False)
if conversation_id and compression_meta and not compression_saved:
try:
self.conversation_service.update_compression_metadata(
conversation_id, compression_meta
)
self.conversation_service.append_compression_message(
conversation_id, compression_meta
)
agent.compression_saved = True
logger.info(
f"Persisted compression metadata for conversation {conversation_id}"
)
except Exception as e:
logger.error(
f"Failed to persist compression metadata: {str(e)}",
exc_info=True,
)
else:
conversation_id = None
id_data = {"type": "id", "id": str(conversation_id)}
data = json.dumps(id_data)
yield f"data: {data}\n\n"
log_data = {
"action": "stream_answer",
"level": "info",
"user": decoded_token.get("sub"),
"api_key": user_api_key,
"question": question,
"response": response_full,
"sources": source_log_docs,
"attachments": attachment_ids,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
if is_structured:
log_data["structured_output"] = True
if schema_info:
log_data["schema"] = schema_info
# Clean up text fields to be no longer than 10000 characters
for key, value in log_data.items():
if isinstance(value, str) and len(value) > 10000:
log_data[key] = value[:10000]
self.user_logs_collection.insert_one(log_data)
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except GeneratorExit:
logger.info(f"Stream aborted by client for question: {question[:50]}... ")
# Save partial response
if should_save_conversation and response_full:
try:
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_PROVIDER,
api_key=settings.API_KEY,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
self.conversation_service.save_conversation(
conversation_id,
question,
response_full,
thought,
source_log_docs,
tool_calls,
llm,
model_id or self.default_model_id,
decoded_token,
index=index,
api_key=user_api_key,
agent_id=agent_id,
is_shared_usage=is_shared_usage,
shared_token=shared_token,
attachment_ids=attachment_ids,
)
compression_meta = getattr(agent, "compression_metadata", None)
compression_saved = getattr(agent, "compression_saved", False)
if conversation_id and compression_meta and not compression_saved:
try:
self.conversation_service.update_compression_metadata(
conversation_id, compression_meta
)
self.conversation_service.append_compression_message(
conversation_id, compression_meta
)
agent.compression_saved = True
logger.info(
f"Persisted compression metadata for conversation {conversation_id} (partial stream)"
)
except Exception as e:
logger.error(
f"Failed to persist compression metadata (partial stream): {str(e)}",
exc_info=True,
)
except Exception as e:
logger.error(
f"Error saving partial response: {str(e)}", exc_info=True
)
raise
except Exception as e:
logger.error(f"Error in stream: {str(e)}", exc_info=True)
data = json.dumps(
{
"type": "error",
"error": "Please try again later. We apologize for any inconvenience.",
}
)
yield f"data: {data}\n\n"
return
def process_response_stream(self, stream):
"""Process the stream response for non-streaming endpoint"""
conversation_id = ""
response_full = ""
source_log_docs = []
tool_calls = []
thought = ""
stream_ended = False
is_structured = False
schema_info = None
for line in stream:
try:
event_data = line.replace("data: ", "").strip()
event = json.loads(event_data)
if event["type"] == "id":
conversation_id = event["id"]
elif event["type"] == "answer":
response_full += event["answer"]
elif event["type"] == "structured_answer":
response_full = event["answer"]
is_structured = True
schema_info = event.get("schema")
elif event["type"] == "source":
source_log_docs = event["source"]
elif event["type"] == "tool_calls":
tool_calls = event["tool_calls"]
elif event["type"] == "thought":
thought = event["thought"]
elif event["type"] == "error":
logger.error(f"Error from stream: {event['error']}")
return None, None, None, None, event["error"], None
elif event["type"] == "end":
stream_ended = True
except (json.JSONDecodeError, KeyError) as e:
logger.warning(f"Error parsing stream event: {e}, line: {line}")
continue
if not stream_ended:
logger.error("Stream ended unexpectedly without an 'end' event.")
return None, None, None, None, "Stream ended unexpectedly", None
result = (
conversation_id,
response_full,
source_log_docs,
tool_calls,
thought,
None,
)
if is_structured:
result = result + ({"structured": True, "schema": schema_info},)
return result
def error_stream_generate(self, err_response):
data = json.dumps({"type": "error", "error": err_response})
yield f"data: {data}\n\n"

View File

@@ -1,132 +0,0 @@
import logging
import traceback
from flask import request, Response
from flask_restx import fields, Resource
from application.api import api
from application.api.answer.routes.base import answer_ns, BaseAnswerResource
from application.api.answer.services.stream_processor import StreamProcessor
logger = logging.getLogger(__name__)
@answer_ns.route("/stream")
class StreamResource(Resource, BaseAnswerResource):
def __init__(self, *args, **kwargs):
Resource.__init__(self, *args, **kwargs)
BaseAnswerResource.__init__(self)
stream_model = answer_ns.model(
"StreamModel",
{
"question": fields.String(
required=True, description="Question to be asked"
),
"history": fields.List(
fields.String,
required=False,
description="Conversation history (only for new conversations)",
),
"conversation_id": fields.String(
required=False,
description="Existing conversation ID (loads history)",
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
"index": fields.Integer(
required=False, description="Index of the query to update"
),
"save_conversation": fields.Boolean(
required=False,
default=True,
description="Whether to save the conversation",
),
"model_id": fields.String(
required=False,
description="Model ID to use for this request",
),
"attachments": fields.List(
fields.String, required=False, description="List of attachment IDs"
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@api.expect(stream_model)
@api.doc(description="Stream a response based on the question and retriever")
def post(self):
data = request.get_json()
if error := self.validate_request(data, "index" in data):
return error
decoded_token = getattr(request, "decoded_token", None)
processor = StreamProcessor(data, decoded_token)
try:
processor.initialize()
docs_together, docs_list = processor.pre_fetch_docs(data["question"])
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together, docs=docs_list, tools_data=tools_data
)
if error := self.check_usage(processor.agent_config):
return error
return Response(
self.complete_stream(
question=data["question"],
agent=agent,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=data.get("index"),
should_save_conversation=data.get("save_conversation", True),
attachment_ids=data.get("attachments", []),
agent_id=data.get("agent_id"),
is_shared_usage=processor.is_shared_usage,
shared_token=processor.shared_token,
model_id=processor.model_id,
),
mimetype="text/event-stream",
)
except ValueError as e:
message = "Malformed request body"
logger.error(
f"/stream - error: {message} - specific error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return Response(
self.error_stream_generate(message),
status=400,
mimetype="text/event-stream",
)
except Exception as e:
logger.error(
f"/stream - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return Response(
self.error_stream_generate("Unknown error occurred"),
status=400,
mimetype="text/event-stream",
)

View File

@@ -1,20 +0,0 @@
"""
Compression module for managing conversation context compression.
"""
from application.api.answer.services.compression.orchestrator import (
CompressionOrchestrator,
)
from application.api.answer.services.compression.service import CompressionService
from application.api.answer.services.compression.types import (
CompressionResult,
CompressionMetadata,
)
__all__ = [
"CompressionOrchestrator",
"CompressionService",
"CompressionResult",
"CompressionMetadata",
]

View File

@@ -1,234 +0,0 @@
"""Message reconstruction utilities for compression."""
import logging
import uuid
from typing import Dict, List, Optional
logger = logging.getLogger(__name__)
class MessageBuilder:
"""Builds message arrays from compressed context."""
@staticmethod
def build_from_compressed_context(
system_prompt: str,
compressed_summary: Optional[str],
recent_queries: List[Dict],
include_tool_calls: bool = False,
context_type: str = "pre_request",
) -> List[Dict]:
"""
Build messages from compressed context.
Args:
system_prompt: Original system prompt
compressed_summary: Compressed summary (if any)
recent_queries: Recent uncompressed queries
include_tool_calls: Whether to include tool calls from history
context_type: Type of context ('pre_request' or 'mid_execution')
Returns:
List of message dicts ready for LLM
"""
# Append compression summary to system prompt if present
if compressed_summary:
system_prompt = MessageBuilder._append_compression_context(
system_prompt, compressed_summary, context_type
)
messages = [{"role": "system", "content": system_prompt}]
# Add recent history
for query in recent_queries:
if "prompt" in query and "response" in query:
messages.append({"role": "user", "content": query["prompt"]})
messages.append({"role": "assistant", "content": query["response"]})
# Add tool calls from history if present
if include_tool_calls and "tool_calls" in query:
for tool_call in query["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
function_call_dict = {
"function_call": {
"name": tool_call.get("action_name"),
"args": tool_call.get("arguments"),
"call_id": call_id,
}
}
function_response_dict = {
"function_response": {
"name": tool_call.get("action_name"),
"response": {"result": tool_call.get("result")},
"call_id": call_id,
}
}
messages.append(
{"role": "assistant", "content": [function_call_dict]}
)
messages.append(
{"role": "tool", "content": [function_response_dict]}
)
# If no recent queries (everything was compressed), add a continuation user message
if len(recent_queries) == 0 and compressed_summary:
messages.append({
"role": "user",
"content": "Please continue with the remaining tasks based on the context above."
})
logger.info("Added continuation user message to maintain proper turn-taking after full compression")
return messages
@staticmethod
def _append_compression_context(
system_prompt: str, compressed_summary: str, context_type: str = "pre_request"
) -> str:
"""
Append compression context to system prompt.
Args:
system_prompt: Original system prompt
compressed_summary: Summary to append
context_type: Type of compression context
Returns:
Updated system prompt
"""
# Remove existing compression context if present
if "This session is being continued" in system_prompt or "Context window limit reached" in system_prompt:
parts = system_prompt.split("\n\n---\n\n")
system_prompt = parts[0]
# Build appropriate context message based on type
if context_type == "mid_execution":
context_message = (
"\n\n---\n\n"
"Context window limit reached during execution. "
"Previous conversation has been compressed to fit within limits. "
"The conversation is summarized below:\n\n"
f"{compressed_summary}"
)
else: # pre_request
context_message = (
"\n\n---\n\n"
"This session is being continued from a previous conversation that "
"has been compressed to fit within context limits. "
"The conversation is summarized below:\n\n"
f"{compressed_summary}"
)
return system_prompt + context_message
@staticmethod
def rebuild_messages_after_compression(
messages: List[Dict],
compressed_summary: Optional[str],
recent_queries: List[Dict],
include_current_execution: bool = False,
include_tool_calls: bool = False,
) -> Optional[List[Dict]]:
"""
Rebuild the message list after compression so tool execution can continue.
Args:
messages: Original message list
compressed_summary: Compressed summary
recent_queries: Recent uncompressed queries
include_current_execution: Whether to preserve current execution messages
include_tool_calls: Whether to include tool calls from history
Returns:
Rebuilt message list or None if failed
"""
# Find the system message
system_message = next(
(msg for msg in messages if msg.get("role") == "system"), None
)
if not system_message:
logger.warning("No system message found in messages list")
return None
# Update system message with compressed summary
if compressed_summary:
content = system_message.get("content", "")
system_message["content"] = MessageBuilder._append_compression_context(
content, compressed_summary, "mid_execution"
)
logger.info(
"Appended compression summary to system prompt (truncated): %s",
(
compressed_summary[:500] + "..."
if len(compressed_summary) > 500
else compressed_summary
),
)
rebuilt_messages = [system_message]
# Add recent history from compressed context
for query in recent_queries:
if "prompt" in query and "response" in query:
rebuilt_messages.append({"role": "user", "content": query["prompt"]})
rebuilt_messages.append(
{"role": "assistant", "content": query["response"]}
)
# Add tool calls from history if present
if include_tool_calls and "tool_calls" in query:
for tool_call in query["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
function_call_dict = {
"function_call": {
"name": tool_call.get("action_name"),
"args": tool_call.get("arguments"),
"call_id": call_id,
}
}
function_response_dict = {
"function_response": {
"name": tool_call.get("action_name"),
"response": {"result": tool_call.get("result")},
"call_id": call_id,
}
}
rebuilt_messages.append(
{"role": "assistant", "content": [function_call_dict]}
)
rebuilt_messages.append(
{"role": "tool", "content": [function_response_dict]}
)
# If no recent queries (everything was compressed), add a continuation user message
if len(recent_queries) == 0 and compressed_summary:
rebuilt_messages.append({
"role": "user",
"content": "Please continue with the remaining tasks based on the context above."
})
logger.info("Added continuation user message to maintain proper turn-taking after full compression")
if include_current_execution:
# Preserve any messages that were added during the current execution cycle
recent_msg_count = 1 # system message
for query in recent_queries:
if "prompt" in query and "response" in query:
recent_msg_count += 2
if "tool_calls" in query:
recent_msg_count += len(query["tool_calls"]) * 2
if len(messages) > recent_msg_count:
current_execution_messages = messages[recent_msg_count:]
rebuilt_messages.extend(current_execution_messages)
logger.info(
f"Preserved {len(current_execution_messages)} messages from current execution cycle"
)
logger.info(
f"Messages rebuilt: {len(messages)}{len(rebuilt_messages)} messages. "
f"Ready to continue tool execution."
)
return rebuilt_messages

View File

@@ -1,232 +0,0 @@
"""High-level compression orchestration."""
import logging
from typing import Any, Dict, Optional
from application.api.answer.services.compression.service import CompressionService
from application.api.answer.services.compression.threshold_checker import (
CompressionThresholdChecker,
)
from application.api.answer.services.compression.types import CompressionResult
from application.api.answer.services.conversation_service import ConversationService
from application.core.model_utils import (
get_api_key_for_provider,
get_provider_from_model_id,
)
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
logger = logging.getLogger(__name__)
class CompressionOrchestrator:
"""
Facade for compression operations.
Coordinates between all compression components and provides
a simple interface for callers.
"""
def __init__(
self,
conversation_service: ConversationService,
threshold_checker: Optional[CompressionThresholdChecker] = None,
):
"""
Initialize orchestrator.
Args:
conversation_service: Service for DB operations
threshold_checker: Custom threshold checker (optional)
"""
self.conversation_service = conversation_service
self.threshold_checker = threshold_checker or CompressionThresholdChecker()
def compress_if_needed(
self,
conversation_id: str,
user_id: str,
model_id: str,
decoded_token: Dict[str, Any],
current_query_tokens: int = 500,
) -> CompressionResult:
"""
Check if compression is needed and perform it if so.
This is the main entry point for compression operations.
Args:
conversation_id: Conversation ID
user_id: User ID
model_id: Model being used for conversation
decoded_token: User's decoded JWT token
current_query_tokens: Estimated tokens for current query
Returns:
CompressionResult with summary and recent queries
"""
try:
# Load conversation
conversation = self.conversation_service.get_conversation(
conversation_id, user_id
)
if not conversation:
logger.warning(
f"Conversation {conversation_id} not found for user {user_id}"
)
return CompressionResult.failure("Conversation not found")
# Check if compression is needed
if not self.threshold_checker.should_compress(
conversation, model_id, current_query_tokens
):
# No compression needed, return full history
queries = conversation.get("queries", [])
return CompressionResult.success_no_compression(queries)
# Perform compression
return self._perform_compression(
conversation_id, conversation, model_id, decoded_token
)
except Exception as e:
logger.error(
f"Error in compress_if_needed: {str(e)}", exc_info=True
)
return CompressionResult.failure(str(e))
def _perform_compression(
self,
conversation_id: str,
conversation: Dict[str, Any],
model_id: str,
decoded_token: Dict[str, Any],
) -> CompressionResult:
"""
Perform the actual compression operation.
Args:
conversation_id: Conversation ID
conversation: Conversation document
model_id: Model ID for conversation
decoded_token: User token
Returns:
CompressionResult
"""
try:
# Determine which model to use for compression
compression_model = (
settings.COMPRESSION_MODEL_OVERRIDE
if settings.COMPRESSION_MODEL_OVERRIDE
else model_id
)
# Get provider and API key for compression model
provider = get_provider_from_model_id(compression_model)
api_key = get_api_key_for_provider(provider)
# Create compression LLM
compression_llm = LLMCreator.create_llm(
provider,
api_key=api_key,
user_api_key=None,
decoded_token=decoded_token,
model_id=compression_model,
)
# Create compression service with DB update capability
compression_service = CompressionService(
llm=compression_llm,
model_id=compression_model,
conversation_service=self.conversation_service,
)
# Compress all queries up to the latest
queries_count = len(conversation.get("queries", []))
compress_up_to = queries_count - 1
if compress_up_to < 0:
logger.warning("No queries to compress")
return CompressionResult.success_no_compression([])
logger.info(
f"Initiating compression for conversation {conversation_id}: "
f"compressing all {queries_count} queries (0-{compress_up_to})"
)
# Perform compression and save to DB
metadata = compression_service.compress_and_save(
conversation_id, conversation, compress_up_to
)
logger.info(
f"Compression successful - ratio: {metadata.compression_ratio:.1f}x, "
f"saved {metadata.original_token_count - metadata.compressed_token_count} tokens"
)
# Reload conversation with updated metadata
conversation = self.conversation_service.get_conversation(
conversation_id, user_id=decoded_token.get("sub")
)
# Get compressed context
compressed_summary, recent_queries = (
compression_service.get_compressed_context(conversation)
)
return CompressionResult.success_with_compression(
compressed_summary, recent_queries, metadata
)
except Exception as e:
logger.error(f"Error performing compression: {str(e)}", exc_info=True)
return CompressionResult.failure(str(e))
def compress_mid_execution(
self,
conversation_id: str,
user_id: str,
model_id: str,
decoded_token: Dict[str, Any],
current_conversation: Optional[Dict[str, Any]] = None,
) -> CompressionResult:
"""
Perform compression during tool execution.
Args:
conversation_id: Conversation ID
user_id: User ID
model_id: Model ID
decoded_token: User token
current_conversation: Pre-loaded conversation (optional)
Returns:
CompressionResult
"""
try:
# Load conversation if not provided
if current_conversation:
conversation = current_conversation
else:
conversation = self.conversation_service.get_conversation(
conversation_id, user_id
)
if not conversation:
logger.warning(
f"Could not load conversation {conversation_id} for mid-execution compression"
)
return CompressionResult.failure("Conversation not found")
# Perform compression
return self._perform_compression(
conversation_id, conversation, model_id, decoded_token
)
except Exception as e:
logger.error(
f"Error in mid-execution compression: {str(e)}", exc_info=True
)
return CompressionResult.failure(str(e))

View File

@@ -1,149 +0,0 @@
"""Compression prompt building logic."""
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional
logger = logging.getLogger(__name__)
class CompressionPromptBuilder:
"""Builds prompts for LLM compression calls."""
def __init__(self, version: str = "v1.0"):
"""
Initialize prompt builder.
Args:
version: Prompt template version to use
"""
self.version = version
self.system_prompt = self._load_prompt(version)
def _load_prompt(self, version: str) -> str:
"""
Load prompt template from file.
Args:
version: Version string (e.g., 'v1.0')
Returns:
Prompt template content
Raises:
FileNotFoundError: If prompt template file doesn't exist
"""
current_dir = Path(__file__).resolve().parents[4]
prompt_path = current_dir / "prompts" / "compression" / f"{version}.txt"
try:
with open(prompt_path, "r") as f:
return f.read()
except FileNotFoundError:
logger.error(f"Compression prompt template not found: {prompt_path}")
raise FileNotFoundError(
f"Compression prompt template '{version}' not found at {prompt_path}. "
f"Please ensure the template file exists."
)
def build_prompt(
self,
queries: List[Dict[str, Any]],
existing_compressions: Optional[List[Dict[str, Any]]] = None,
) -> List[Dict[str, str]]:
"""
Build messages for compression LLM call.
Args:
queries: List of query objects to compress
existing_compressions: List of previous compression points
Returns:
List of message dicts for LLM
"""
# Build conversation text
conversation_text = self._format_conversation(queries)
# Add existing compression context if present
existing_compression_context = ""
if existing_compressions and len(existing_compressions) > 0:
existing_compression_context = (
"\n\nIMPORTANT: This conversation has been compressed before. "
"Previous compression summaries:\n\n"
)
for i, comp in enumerate(existing_compressions):
existing_compression_context += (
f"--- Compression {i + 1} (up to message {comp.get('query_index', 'unknown')}) ---\n"
f"{comp.get('compressed_summary', '')}\n\n"
)
existing_compression_context += (
"Your task is to create a NEW summary that incorporates the context from "
"previous compressions AND the new messages below. The final summary should "
"be comprehensive and include all important information from both previous "
"compressions and new messages.\n\n"
)
user_prompt = (
f"{existing_compression_context}"
f"Here is the conversation to summarize:\n\n"
f"{conversation_text}"
)
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": user_prompt},
]
return messages
def _format_conversation(self, queries: List[Dict[str, Any]]) -> str:
"""
Format conversation queries into readable text for compression.
Args:
queries: List of query objects
Returns:
Formatted conversation text
"""
conversation_lines = []
for i, query in enumerate(queries):
conversation_lines.append(f"--- Message {i + 1} ---")
conversation_lines.append(f"User: {query.get('prompt', '')}")
# Add tool calls if present
tool_calls = query.get("tool_calls", [])
if tool_calls:
conversation_lines.append("\nTool Calls:")
for tc in tool_calls:
tool_name = tc.get("tool_name", "unknown")
action_name = tc.get("action_name", "unknown")
arguments = tc.get("arguments", {})
result = tc.get("result", "")
if result is None:
result = ""
status = tc.get("status", "unknown")
# Include full tool result for complete compression context
conversation_lines.append(
f" - {tool_name}.{action_name}({arguments}) "
f"[{status}] → {result}"
)
# Add agent thought if present
thought = query.get("thought", "")
if thought:
conversation_lines.append(f"\nAgent Thought: {thought}")
# Add assistant response
conversation_lines.append(f"\nAssistant: {query.get('response', '')}")
# Add sources if present
sources = query.get("sources", [])
if sources:
conversation_lines.append(f"\nSources Used: {len(sources)} documents")
conversation_lines.append("") # Empty line between messages
return "\n".join(conversation_lines)

View File

@@ -1,306 +0,0 @@
"""Core compression service with simplified responsibilities."""
import logging
import re
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional
from application.api.answer.services.compression.prompt_builder import (
CompressionPromptBuilder,
)
from application.api.answer.services.compression.token_counter import TokenCounter
from application.api.answer.services.compression.types import (
CompressionMetadata,
)
from application.core.settings import settings
logger = logging.getLogger(__name__)
class CompressionService:
"""
Service for compressing conversation history.
Handles DB updates.
"""
def __init__(
self,
llm,
model_id: str,
conversation_service=None,
prompt_builder: Optional[CompressionPromptBuilder] = None,
):
"""
Initialize compression service.
Args:
llm: LLM instance to use for compression
model_id: Model ID for compression
conversation_service: Service for DB operations (optional, for DB updates)
prompt_builder: Custom prompt builder (optional)
"""
self.llm = llm
self.model_id = model_id
self.conversation_service = conversation_service
self.prompt_builder = prompt_builder or CompressionPromptBuilder(
version=settings.COMPRESSION_PROMPT_VERSION
)
def compress_conversation(
self,
conversation: Dict[str, Any],
compress_up_to_index: int,
) -> CompressionMetadata:
"""
Compress conversation history up to specified index.
Args:
conversation: Full conversation document
compress_up_to_index: Last query index to include in compression
Returns:
CompressionMetadata with compression details
Raises:
ValueError: If compress_up_to_index is invalid
"""
try:
queries = conversation.get("queries", [])
if compress_up_to_index < 0 or compress_up_to_index >= len(queries):
raise ValueError(
f"Invalid compress_up_to_index: {compress_up_to_index} "
f"(conversation has {len(queries)} queries)"
)
# Get queries to compress
queries_to_compress = queries[: compress_up_to_index + 1]
# Check if there are existing compressions
existing_compressions = conversation.get("compression_metadata", {}).get(
"compression_points", []
)
if existing_compressions:
logger.info(
f"Found {len(existing_compressions)} previous compression(s) - "
f"will incorporate into new summary"
)
# Calculate original token count
original_tokens = TokenCounter.count_query_tokens(queries_to_compress)
# Log tool call stats
self._log_tool_call_stats(queries_to_compress)
# Build compression prompt
messages = self.prompt_builder.build_prompt(
queries_to_compress, existing_compressions
)
# Call LLM to generate compression
logger.info(
f"Starting compression: {len(queries_to_compress)} queries "
f"(messages 0-{compress_up_to_index}, {original_tokens} tokens) "
f"using model {self.model_id}"
)
response = self.llm.gen(
model=self.model_id, messages=messages, max_tokens=4000
)
# Extract summary from response
compressed_summary = self._extract_summary(response)
# Calculate compressed token count
compressed_tokens = TokenCounter.count_message_tokens(
[{"content": compressed_summary}]
)
# Calculate compression ratio
compression_ratio = (
original_tokens / compressed_tokens if compressed_tokens > 0 else 0
)
logger.info(
f"Compression complete: {original_tokens}{compressed_tokens} tokens "
f"({compression_ratio:.1f}x compression)"
)
# Build compression metadata
compression_metadata = CompressionMetadata(
timestamp=datetime.now(timezone.utc),
query_index=compress_up_to_index,
compressed_summary=compressed_summary,
original_token_count=original_tokens,
compressed_token_count=compressed_tokens,
compression_ratio=compression_ratio,
model_used=self.model_id,
compression_prompt_version=self.prompt_builder.version,
)
return compression_metadata
except Exception as e:
logger.error(f"Error compressing conversation: {str(e)}", exc_info=True)
raise
def compress_and_save(
self,
conversation_id: str,
conversation: Dict[str, Any],
compress_up_to_index: int,
) -> CompressionMetadata:
"""
Compress conversation and save to database.
Args:
conversation_id: Conversation ID
conversation: Full conversation document
compress_up_to_index: Last query index to include
Returns:
CompressionMetadata
Raises:
ValueError: If conversation_service not provided or invalid index
"""
if not self.conversation_service:
raise ValueError(
"conversation_service required for compress_and_save operation"
)
# Perform compression
metadata = self.compress_conversation(conversation, compress_up_to_index)
# Save to database
self.conversation_service.update_compression_metadata(
conversation_id, metadata.to_dict()
)
logger.info(f"Compression metadata saved to database for {conversation_id}")
return metadata
def get_compressed_context(
self, conversation: Dict[str, Any]
) -> tuple[Optional[str], List[Dict[str, Any]]]:
"""
Get compressed summary + recent uncompressed messages.
Args:
conversation: Full conversation document
Returns:
(compressed_summary, recent_messages)
"""
try:
compression_metadata = conversation.get("compression_metadata", {})
if not compression_metadata.get("is_compressed"):
logger.debug("No compression metadata found - using full history")
queries = conversation.get("queries", [])
if queries is None:
logger.error("Conversation queries is None - returning empty list")
return None, []
return None, queries
compression_points = compression_metadata.get("compression_points", [])
if not compression_points:
logger.debug("No compression points found - using full history")
queries = conversation.get("queries", [])
if queries is None:
logger.error("Conversation queries is None - returning empty list")
return None, []
return None, queries
# Get the most recent compression point
latest_compression = compression_points[-1]
compressed_summary = latest_compression.get("compressed_summary")
last_compressed_index = latest_compression.get("query_index")
compressed_tokens = latest_compression.get("compressed_token_count", 0)
original_tokens = latest_compression.get("original_token_count", 0)
# Get only messages after compression point
queries = conversation.get("queries", [])
total_queries = len(queries)
recent_queries = queries[last_compressed_index + 1 :]
logger.info(
f"Using compressed context: summary ({compressed_tokens} tokens, "
f"compressed from {original_tokens}) + {len(recent_queries)} recent messages "
f"(messages {last_compressed_index + 1}-{total_queries - 1})"
)
return compressed_summary, recent_queries
except Exception as e:
logger.error(
f"Error getting compressed context: {str(e)}", exc_info=True
)
queries = conversation.get("queries", [])
if queries is None:
return None, []
return None, queries
def _extract_summary(self, llm_response: str) -> str:
"""
Extract clean summary from LLM response.
Args:
llm_response: Raw LLM response
Returns:
Cleaned summary text
"""
try:
# Try to extract content within <summary> tags
summary_match = re.search(
r"<summary>(.*?)</summary>", llm_response, re.DOTALL
)
if summary_match:
summary = summary_match.group(1).strip()
else:
# If no summary tags, remove analysis tags and use the rest
summary = re.sub(
r"<analysis>.*?</analysis>", "", llm_response, flags=re.DOTALL
).strip()
return summary
except Exception as e:
logger.warning(f"Error extracting summary: {str(e)}, using full response")
return llm_response
def _log_tool_call_stats(self, queries: List[Dict[str, Any]]) -> None:
"""Log statistics about tool calls in queries."""
total_tool_calls = 0
total_tool_result_chars = 0
tool_call_breakdown = {}
for q in queries:
for tc in q.get("tool_calls", []):
total_tool_calls += 1
tool_name = tc.get("tool_name", "unknown")
action_name = tc.get("action_name", "unknown")
key = f"{tool_name}.{action_name}"
tool_call_breakdown[key] = tool_call_breakdown.get(key, 0) + 1
# Track total tool result size
result = tc.get("result", "")
if result:
total_tool_result_chars += len(str(result))
if total_tool_calls > 0:
tool_breakdown_str = ", ".join(
f"{tool}({count})"
for tool, count in sorted(tool_call_breakdown.items())
)
tool_result_kb = total_tool_result_chars / 1024
logger.info(
f"Tool call breakdown: {tool_breakdown_str} "
f"(total result size: {tool_result_kb:.1f} KB, {total_tool_result_chars:,} chars)"
)

View File

@@ -1,103 +0,0 @@
"""Compression threshold checking logic."""
import logging
from typing import Any, Dict
from application.core.model_utils import get_token_limit
from application.core.settings import settings
from application.api.answer.services.compression.token_counter import TokenCounter
logger = logging.getLogger(__name__)
class CompressionThresholdChecker:
"""Determines if compression is needed based on token thresholds."""
def __init__(self, threshold_percentage: float = None):
"""
Initialize threshold checker.
Args:
threshold_percentage: Percentage of context to use as threshold
(defaults to settings.COMPRESSION_THRESHOLD_PERCENTAGE)
"""
self.threshold_percentage = (
threshold_percentage or settings.COMPRESSION_THRESHOLD_PERCENTAGE
)
def should_compress(
self,
conversation: Dict[str, Any],
model_id: str,
current_query_tokens: int = 500,
) -> bool:
"""
Determine if compression is needed.
Args:
conversation: Full conversation document
model_id: Target model for this request
current_query_tokens: Estimated tokens for current query
Returns:
True if tokens >= threshold% of context window
"""
try:
# Calculate total tokens in conversation
total_tokens = TokenCounter.count_conversation_tokens(conversation)
total_tokens += current_query_tokens
# Get context window limit for model
context_limit = get_token_limit(model_id)
# Calculate threshold
threshold = int(context_limit * self.threshold_percentage)
compression_needed = total_tokens >= threshold
percentage_used = (total_tokens / context_limit) * 100
if compression_needed:
logger.warning(
f"COMPRESSION TRIGGERED: {total_tokens} tokens / {context_limit} limit "
f"({percentage_used:.1f}% used, threshold: {self.threshold_percentage * 100:.0f}%)"
)
else:
logger.info(
f"Compression check: {total_tokens}/{context_limit} tokens "
f"({percentage_used:.1f}% used, threshold: {self.threshold_percentage * 100:.0f}%) - No compression needed"
)
return compression_needed
except Exception as e:
logger.error(f"Error checking compression need: {str(e)}", exc_info=True)
return False
def check_message_tokens(self, messages: list, model_id: str) -> bool:
"""
Check if message list exceeds threshold.
Args:
messages: List of message dicts
model_id: Target model
Returns:
True if at or above threshold
"""
try:
current_tokens = TokenCounter.count_message_tokens(messages)
context_limit = get_token_limit(model_id)
threshold = int(context_limit * self.threshold_percentage)
if current_tokens >= threshold:
logger.warning(
f"Message context limit approaching: {current_tokens}/{context_limit} tokens "
f"({(current_tokens/context_limit)*100:.1f}%)"
)
return True
return False
except Exception as e:
logger.error(f"Error checking message tokens: {str(e)}", exc_info=True)
return False

View File

@@ -1,103 +0,0 @@
"""Token counting utilities for compression."""
import logging
from typing import Any, Dict, List
from application.utils import num_tokens_from_string
from application.core.settings import settings
logger = logging.getLogger(__name__)
class TokenCounter:
"""Centralized token counting for conversations and messages."""
@staticmethod
def count_message_tokens(messages: List[Dict]) -> int:
"""
Calculate total tokens in a list of messages.
Args:
messages: List of message dicts with 'content' field
Returns:
Total token count
"""
total_tokens = 0
for message in messages:
content = message.get("content", "")
if isinstance(content, str):
total_tokens += num_tokens_from_string(content)
elif isinstance(content, list):
# Handle structured content (tool calls, etc.)
for item in content:
if isinstance(item, dict):
total_tokens += num_tokens_from_string(str(item))
return total_tokens
@staticmethod
def count_query_tokens(
queries: List[Dict[str, Any]], include_tool_calls: bool = True
) -> int:
"""
Count tokens across multiple query objects.
Args:
queries: List of query objects from conversation
include_tool_calls: Whether to count tool call tokens
Returns:
Total token count
"""
total_tokens = 0
for query in queries:
# Count prompt and response tokens
if "prompt" in query:
total_tokens += num_tokens_from_string(query["prompt"])
if "response" in query:
total_tokens += num_tokens_from_string(query["response"])
if "thought" in query:
total_tokens += num_tokens_from_string(query.get("thought", ""))
# Count tool call tokens
if include_tool_calls and "tool_calls" in query:
for tool_call in query["tool_calls"]:
tool_call_string = (
f"Tool: {tool_call.get('tool_name')} | "
f"Action: {tool_call.get('action_name')} | "
f"Args: {tool_call.get('arguments')} | "
f"Response: {tool_call.get('result')}"
)
total_tokens += num_tokens_from_string(tool_call_string)
return total_tokens
@staticmethod
def count_conversation_tokens(
conversation: Dict[str, Any], include_system_prompt: bool = False
) -> int:
"""
Calculate total tokens in a conversation.
Args:
conversation: Conversation document
include_system_prompt: Whether to include system prompt in count
Returns:
Total token count
"""
try:
queries = conversation.get("queries", [])
total_tokens = TokenCounter.count_query_tokens(queries)
# Add system prompt tokens if requested
if include_system_prompt:
# Rough estimate for system prompt
total_tokens += settings.RESERVED_TOKENS.get("system_prompt", 500)
return total_tokens
except Exception as e:
logger.error(f"Error calculating conversation tokens: {str(e)}")
return 0

View File

@@ -1,83 +0,0 @@
"""Type definitions for compression module."""
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Dict, List, Optional
@dataclass
class CompressionMetadata:
"""Metadata about a compression operation."""
timestamp: datetime
query_index: int
compressed_summary: str
original_token_count: int
compressed_token_count: int
compression_ratio: float
model_used: str
compression_prompt_version: str
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for DB storage."""
return {
"timestamp": self.timestamp,
"query_index": self.query_index,
"compressed_summary": self.compressed_summary,
"original_token_count": self.original_token_count,
"compressed_token_count": self.compressed_token_count,
"compression_ratio": self.compression_ratio,
"model_used": self.model_used,
"compression_prompt_version": self.compression_prompt_version,
}
@dataclass
class CompressionResult:
"""Result of a compression operation."""
success: bool
compressed_summary: Optional[str] = None
recent_queries: List[Dict[str, Any]] = field(default_factory=list)
metadata: Optional[CompressionMetadata] = None
error: Optional[str] = None
compression_performed: bool = False
@classmethod
def success_with_compression(
cls, summary: str, queries: List[Dict], metadata: CompressionMetadata
) -> "CompressionResult":
"""Create a successful result with compression."""
return cls(
success=True,
compressed_summary=summary,
recent_queries=queries,
metadata=metadata,
compression_performed=True,
)
@classmethod
def success_no_compression(cls, queries: List[Dict]) -> "CompressionResult":
"""Create a successful result without compression needed."""
return cls(
success=True,
recent_queries=queries,
compression_performed=False,
)
@classmethod
def failure(cls, error: str) -> "CompressionResult":
"""Create a failure result."""
return cls(success=False, error=error, compression_performed=False)
def as_history(self) -> List[Dict[str, str]]:
"""
Convert recent queries to history format.
Returns:
List of prompt/response dicts
"""
return [
{"prompt": q["prompt"], "response": q["response"]}
for q in self.recent_queries
]

View File

@@ -1,282 +0,0 @@
import logging
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from bson import ObjectId
logger = logging.getLogger(__name__)
class ConversationService:
def __init__(self):
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
self.conversations_collection = db["conversations"]
self.agents_collection = db["agents"]
def get_conversation(
self, conversation_id: str, user_id: str
) -> Optional[Dict[str, Any]]:
"""Retrieve a conversation with proper access control"""
if not conversation_id or not user_id:
return None
try:
conversation = self.conversations_collection.find_one(
{
"_id": ObjectId(conversation_id),
"$or": [{"user": user_id}, {"shared_with": user_id}],
}
)
if not conversation:
logger.warning(
f"Conversation not found or unauthorized - ID: {conversation_id}, User: {user_id}"
)
return None
conversation["_id"] = str(conversation["_id"])
return conversation
except Exception as e:
logger.error(f"Error fetching conversation: {str(e)}", exc_info=True)
return None
def save_conversation(
self,
conversation_id: Optional[str],
question: str,
response: str,
thought: str,
sources: List[Dict[str, Any]],
tool_calls: List[Dict[str, Any]],
llm: Any,
model_id: str,
decoded_token: Dict[str, Any],
index: Optional[int] = None,
api_key: Optional[str] = None,
agent_id: Optional[str] = None,
is_shared_usage: bool = False,
shared_token: Optional[str] = None,
attachment_ids: Optional[List[str]] = None,
) -> str:
"""Save or update a conversation in the database"""
user_id = decoded_token.get("sub")
if not user_id:
raise ValueError("User ID not found in token")
current_time = datetime.now(timezone.utc)
# clean up in sources array such that we save max 1k characters for text part
for source in sources:
if "text" in source and isinstance(source["text"], str):
source["text"] = source["text"][:1000]
if conversation_id is not None and index is not None:
# Update existing conversation with new query
result = self.conversations_collection.update_one(
{
"_id": ObjectId(conversation_id),
"user": user_id,
f"queries.{index}": {"$exists": True},
},
{
"$set": {
f"queries.{index}.prompt": question,
f"queries.{index}.response": response,
f"queries.{index}.thought": thought,
f"queries.{index}.sources": sources,
f"queries.{index}.tool_calls": tool_calls,
f"queries.{index}.timestamp": current_time,
f"queries.{index}.attachments": attachment_ids,
f"queries.{index}.model_id": model_id,
}
},
)
if result.matched_count == 0:
raise ValueError("Conversation not found or unauthorized")
self.conversations_collection.update_one(
{
"_id": ObjectId(conversation_id),
"user": user_id,
f"queries.{index}": {"$exists": True},
},
{"$push": {"queries": {"$each": [], "$slice": index + 1}}},
)
return conversation_id
elif conversation_id:
# Append new message to existing conversation
result = self.conversations_collection.update_one(
{"_id": ObjectId(conversation_id), "user": user_id},
{
"$push": {
"queries": {
"prompt": question,
"response": response,
"thought": thought,
"sources": sources,
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
"model_id": model_id,
}
}
},
)
if result.matched_count == 0:
raise ValueError("Conversation not found or unauthorized")
return conversation_id
else:
# Create new conversation
messages_summary = [
{
"role": "system",
"content": "You are a helpful assistant that creates concise conversation titles. "
"Summarize conversations in 3 words or less using the same language as the user.",
},
{
"role": "user",
"content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"user query \n\nUser: " + question + "\n\n" + "AI: " + response,
},
]
completion = llm.gen(
model=model_id, messages=messages_summary, max_tokens=30
)
conversation_data = {
"user": user_id,
"date": current_time,
"name": completion,
"queries": [
{
"prompt": question,
"response": response,
"thought": thought,
"sources": sources,
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
"model_id": model_id,
}
],
}
if api_key:
if agent_id:
conversation_data["agent_id"] = agent_id
if is_shared_usage:
conversation_data["is_shared_usage"] = is_shared_usage
conversation_data["shared_token"] = shared_token
agent = self.agents_collection.find_one({"key": api_key})
if agent:
conversation_data["api_key"] = agent["key"]
result = self.conversations_collection.insert_one(conversation_data)
return str(result.inserted_id)
def update_compression_metadata(
self, conversation_id: str, compression_metadata: Dict[str, Any]
) -> None:
"""
Update conversation with compression metadata.
Uses $push with $slice to keep only the most recent compression points,
preventing unbounded array growth. Since each compression incorporates
previous compressions, older points become redundant.
Args:
conversation_id: Conversation ID
compression_metadata: Compression point data
"""
try:
self.conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{
"$set": {
"compression_metadata.is_compressed": True,
"compression_metadata.last_compression_at": compression_metadata.get(
"timestamp"
),
},
"$push": {
"compression_metadata.compression_points": {
"$each": [compression_metadata],
"$slice": -settings.COMPRESSION_MAX_HISTORY_POINTS,
}
},
},
)
logger.info(
f"Updated compression metadata for conversation {conversation_id}"
)
except Exception as e:
logger.error(
f"Error updating compression metadata: {str(e)}", exc_info=True
)
raise
def append_compression_message(
self, conversation_id: str, compression_metadata: Dict[str, Any]
) -> None:
"""
Append a synthetic compression summary entry into the conversation history.
This makes the summary visible in the DB alongside normal queries.
"""
try:
summary = compression_metadata.get("compressed_summary", "")
if not summary:
return
timestamp = compression_metadata.get("timestamp", datetime.now(timezone.utc))
self.conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{
"$push": {
"queries": {
"prompt": "[Context Compression Summary]",
"response": summary,
"thought": "",
"sources": [],
"tool_calls": [],
"timestamp": timestamp,
"attachments": [],
"model_id": compression_metadata.get("model_used"),
}
}
},
)
logger.info(f"Appended compression summary to conversation {conversation_id}")
except Exception as e:
logger.error(
f"Error appending compression summary: {str(e)}", exc_info=True
)
def get_compression_metadata(
self, conversation_id: str
) -> Optional[Dict[str, Any]]:
"""
Get compression metadata for a conversation.
Args:
conversation_id: Conversation ID
Returns:
Compression metadata dict or None
"""
try:
conversation = self.conversations_collection.find_one(
{"_id": ObjectId(conversation_id)}, {"compression_metadata": 1}
)
return conversation.get("compression_metadata") if conversation else None
except Exception as e:
logger.error(
f"Error getting compression metadata: {str(e)}", exc_info=True
)
return None

View File

@@ -1,97 +0,0 @@
import logging
from typing import Any, Dict, Optional
from application.templates.namespaces import NamespaceManager
from application.templates.template_engine import TemplateEngine, TemplateRenderError
logger = logging.getLogger(__name__)
class PromptRenderer:
"""Service for rendering prompts with dynamic context using namespaces"""
def __init__(self):
self.template_engine = TemplateEngine()
self.namespace_manager = NamespaceManager()
def render_prompt(
self,
prompt_content: str,
user_id: Optional[str] = None,
request_id: Optional[str] = None,
passthrough_data: Optional[Dict[str, Any]] = None,
docs: Optional[list] = None,
docs_together: Optional[str] = None,
tools_data: Optional[Dict[str, Any]] = None,
**kwargs,
) -> str:
"""
Render prompt with full context from all namespaces.
Args:
prompt_content: Raw prompt template string
user_id: Current user identifier
request_id: Unique request identifier
passthrough_data: Parameters from web request
docs: RAG retrieved documents
docs_together: Concatenated document content
tools_data: Pre-fetched tool results organized by tool name
**kwargs: Additional parameters for namespace builders
Returns:
Rendered prompt string with all variables substituted
Raises:
TemplateRenderError: If template rendering fails
"""
if not prompt_content:
return ""
uses_template = self._uses_template_syntax(prompt_content)
if not uses_template:
return self._apply_legacy_substitutions(prompt_content, docs_together)
try:
context = self.namespace_manager.build_context(
user_id=user_id,
request_id=request_id,
passthrough_data=passthrough_data,
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
**kwargs,
)
return self.template_engine.render(prompt_content, context)
except TemplateRenderError:
raise
except Exception as e:
error_msg = f"Prompt rendering failed: {str(e)}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
def _uses_template_syntax(self, prompt_content: str) -> bool:
"""Check if prompt uses Jinja2 template syntax"""
return "{{" in prompt_content and "}}" in prompt_content
def _apply_legacy_substitutions(
self, prompt_content: str, docs_together: Optional[str] = None
) -> str:
"""
Apply backward-compatible substitutions for old prompt format.
Handles legacy {summaries} and {query} placeholders during transition period.
"""
if docs_together:
prompt_content = prompt_content.replace("{summaries}", docs_together)
return prompt_content
def validate_template(self, prompt_content: str) -> bool:
"""Validate prompt template syntax"""
return self.template_engine.validate_template(prompt_content)
def extract_variables(self, prompt_content: str) -> set[str]:
"""Extract all variable names from prompt template"""
return self.template_engine.extract_variables(prompt_content)

View File

@@ -1,755 +0,0 @@
import datetime
import json
import logging
import os
from pathlib import Path
from typing import Any, Dict, Optional, Set
from bson.dbref import DBRef
from bson.objectid import ObjectId
from application.agents.agent_creator import AgentCreator
from application.api.answer.services.compression import CompressionOrchestrator
from application.api.answer.services.compression.token_counter import TokenCounter
from application.api.answer.services.conversation_service import ConversationService
from application.api.answer.services.prompt_renderer import PromptRenderer
from application.core.model_utils import (
get_api_key_for_provider,
get_default_model_id,
get_provider_from_model_id,
validate_model_id,
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import (
calculate_doc_token_budget,
limit_chat_history,
)
logger = logging.getLogger(__name__)
def get_prompt(prompt_id: str, prompts_collection=None) -> str:
"""
Get a prompt by preset name or MongoDB ID
"""
current_dir = Path(__file__).resolve().parents[3]
prompts_dir = current_dir / "prompts"
preset_mapping = {
"default": "chat_combine_default.txt",
"creative": "chat_combine_creative.txt",
"strict": "chat_combine_strict.txt",
"reduce": "chat_reduce_prompt.txt",
}
if prompt_id in preset_mapping:
file_path = os.path.join(prompts_dir, preset_mapping[prompt_id])
try:
with open(file_path, "r") as f:
return f.read()
except FileNotFoundError:
raise FileNotFoundError(f"Prompt file not found: {file_path}")
try:
if prompts_collection is None:
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
prompts_collection = db["prompts"]
prompt_doc = prompts_collection.find_one({"_id": ObjectId(prompt_id)})
if not prompt_doc:
raise ValueError(f"Prompt with ID {prompt_id} not found")
return prompt_doc["content"]
except Exception as e:
raise ValueError(f"Invalid prompt ID: {prompt_id}") from e
class StreamProcessor:
def __init__(
self, request_data: Dict[str, Any], decoded_token: Optional[Dict[str, Any]]
):
mongo = MongoDB.get_client()
self.db = mongo[settings.MONGO_DB_NAME]
self.agents_collection = self.db["agents"]
self.attachments_collection = self.db["attachments"]
self.prompts_collection = self.db["prompts"]
self.data = request_data
self.decoded_token = decoded_token
self.initial_user_id = (
self.decoded_token.get("sub") if self.decoded_token is not None else None
)
self.conversation_id = self.data.get("conversation_id")
self.source = {}
self.all_sources = []
self.attachments = []
self.history = []
self.retrieved_docs = []
self.agent_config = {}
self.retriever_config = {}
self.is_shared_usage = False
self.shared_token = None
self.model_id: Optional[str] = None
self.conversation_service = ConversationService()
self.compression_orchestrator = CompressionOrchestrator(
self.conversation_service
)
self.prompt_renderer = PromptRenderer()
self._prompt_content: Optional[str] = None
self._required_tool_actions: Optional[Dict[str, Set[Optional[str]]]] = None
self.compressed_summary: Optional[str] = None
self.compressed_summary_tokens: int = 0
def initialize(self):
"""Initialize all required components for processing"""
self._configure_agent()
self._validate_and_set_model()
self._configure_source()
self._configure_retriever()
self._load_conversation_history()
self._process_attachments()
def _load_conversation_history(self):
"""Load conversation history either from DB or request"""
if self.conversation_id and self.initial_user_id:
conversation = self.conversation_service.get_conversation(
self.conversation_id, self.initial_user_id
)
if not conversation:
raise ValueError("Conversation not found or unauthorized")
# Check if compression is enabled and needed
if settings.ENABLE_CONVERSATION_COMPRESSION:
self._handle_compression(conversation)
else:
# Original behavior - load all history
self.history = [
{"prompt": query["prompt"], "response": query["response"]}
for query in conversation.get("queries", [])
]
else:
self.history = limit_chat_history(
json.loads(self.data.get("history", "[]")), model_id=self.model_id
)
def _handle_compression(self, conversation: Dict[str, Any]):
"""
Handle conversation compression logic using orchestrator.
Args:
conversation: Full conversation document
"""
try:
# Use orchestrator to handle all compression logic
result = self.compression_orchestrator.compress_if_needed(
conversation_id=self.conversation_id,
user_id=self.initial_user_id,
model_id=self.model_id,
decoded_token=self.decoded_token,
)
if not result.success:
logger.error(
f"Compression failed: {result.error}, using full history"
)
self.history = [
{"prompt": query["prompt"], "response": query["response"]}
for query in conversation.get("queries", [])
]
return
# Set compressed summary if compression was performed
if result.compression_performed and result.compressed_summary:
self.compressed_summary = result.compressed_summary
self.compressed_summary_tokens = TokenCounter.count_message_tokens(
[{"content": result.compressed_summary}]
)
logger.info(
f"Using compressed summary ({self.compressed_summary_tokens} tokens) "
f"+ {len(result.recent_queries)} recent messages"
)
# Build history from recent queries
self.history = result.as_history()
except Exception as e:
logger.error(
f"Error handling compression, falling back to standard history: {str(e)}",
exc_info=True,
)
# Fallback to original behavior
self.history = [
{"prompt": query["prompt"], "response": query["response"]}
for query in conversation.get("queries", [])
]
def _process_attachments(self):
"""Process any attachments in the request"""
attachment_ids = self.data.get("attachments", [])
self.attachments = self._get_attachments_content(
attachment_ids, self.initial_user_id
)
def _get_attachments_content(self, attachment_ids, user_id):
"""
Retrieve content from attachment documents based on their IDs.
"""
if not attachment_ids:
return []
attachments = []
for attachment_id in attachment_ids:
try:
attachment_doc = self.attachments_collection.find_one(
{"_id": ObjectId(attachment_id), "user": user_id}
)
if attachment_doc:
attachments.append(attachment_doc)
except Exception as e:
logger.error(
f"Error retrieving attachment {attachment_id}: {e}", exc_info=True
)
return attachments
def _validate_and_set_model(self):
"""Validate and set model_id from request"""
from application.core.model_settings import ModelRegistry
requested_model = self.data.get("model_id")
if requested_model:
if not validate_model_id(requested_model):
registry = ModelRegistry.get_instance()
available_models = [m.id for m in registry.get_enabled_models()]
raise ValueError(
f"Invalid model_id '{requested_model}'. "
f"Available models: {', '.join(available_models[:5])}"
+ (f" and {len(available_models) - 5} more" if len(available_models) > 5 else "")
)
self.model_id = requested_model
else:
# Check if agent has a default model configured
agent_default_model = self.agent_config.get("default_model_id", "")
if agent_default_model and validate_model_id(agent_default_model):
self.model_id = agent_default_model
else:
self.model_id = get_default_model_id()
def _get_agent_key(self, agent_id: Optional[str], user_id: Optional[str]) -> tuple:
"""Get API key for agent with access control"""
if not agent_id:
return None, False, None
try:
agent = self.agents_collection.find_one({"_id": ObjectId(agent_id)})
if agent is None:
raise Exception("Agent not found")
is_owner = agent.get("user") == user_id
is_shared_with_user = agent.get(
"shared_publicly", False
) or user_id in agent.get("shared_with", [])
if not (is_owner or is_shared_with_user):
raise Exception("Unauthorized access to the agent")
if is_owner:
self.agents_collection.update_one(
{"_id": ObjectId(agent_id)},
{
"$set": {
"lastUsedAt": datetime.datetime.now(datetime.timezone.utc)
}
},
)
return str(agent["key"]), not is_owner, agent.get("shared_token")
except Exception as e:
logger.error(f"Error in get_agent_key: {str(e)}", exc_info=True)
raise
def _get_data_from_api_key(self, api_key: str) -> Dict[str, Any]:
data = self.agents_collection.find_one({"key": api_key})
if not data:
raise Exception("Invalid API Key, please generate a new key", 401)
source = data.get("source")
if isinstance(source, DBRef):
source_doc = self.db.dereference(source)
if source_doc:
data["source"] = str(source_doc["_id"])
data["retriever"] = source_doc.get("retriever", data.get("retriever"))
data["chunks"] = source_doc.get("chunks", data.get("chunks"))
else:
data["source"] = None
elif source == "default":
data["source"] = "default"
else:
data["source"] = None
# Handle multiple sources
sources = data.get("sources", [])
if sources and isinstance(sources, list):
sources_list = []
for i, source_ref in enumerate(sources):
if source_ref == "default":
processed_source = {
"id": "default",
"retriever": "classic",
"chunks": data.get("chunks", "2"),
}
sources_list.append(processed_source)
elif isinstance(source_ref, DBRef):
source_doc = self.db.dereference(source_ref)
if source_doc:
processed_source = {
"id": str(source_doc["_id"]),
"retriever": source_doc.get("retriever", "classic"),
"chunks": source_doc.get("chunks", data.get("chunks", "2")),
}
sources_list.append(processed_source)
data["sources"] = sources_list
else:
data["sources"] = []
# Preserve model configuration from agent
data["default_model_id"] = data.get("default_model_id", "")
return data
def _configure_source(self):
"""Configure the source based on agent data"""
api_key = self.data.get("api_key") or self.agent_key
if api_key:
agent_data = self._get_data_from_api_key(api_key)
if agent_data.get("sources") and len(agent_data["sources"]) > 0:
source_ids = [
source["id"] for source in agent_data["sources"] if source.get("id")
]
if source_ids:
self.source = {"active_docs": source_ids}
else:
self.source = {}
self.all_sources = agent_data["sources"]
elif agent_data.get("source"):
self.source = {"active_docs": agent_data["source"]}
self.all_sources = [
{
"id": agent_data["source"],
"retriever": agent_data.get("retriever", "classic"),
}
]
else:
self.source = {}
self.all_sources = []
return
if "active_docs" in self.data:
self.source = {"active_docs": self.data["active_docs"]}
return
self.source = {}
self.all_sources = []
def _configure_agent(self):
"""Configure the agent based on request data"""
agent_id = self.data.get("agent_id")
self.agent_key, self.is_shared_usage, self.shared_token = self._get_agent_key(
agent_id, self.initial_user_id
)
api_key = self.data.get("api_key")
if api_key:
data_key = self._get_data_from_api_key(api_key)
self.agent_config.update(
{
"prompt_id": data_key.get("prompt_id", "default"),
"agent_type": data_key.get("agent_type", settings.AGENT_NAME),
"user_api_key": api_key,
"json_schema": data_key.get("json_schema"),
"default_model_id": data_key.get("default_model_id", ""),
}
)
self.initial_user_id = data_key.get("user")
self.decoded_token = {"sub": data_key.get("user")}
if data_key.get("source"):
self.source = {"active_docs": data_key["source"]}
if data_key.get("retriever"):
self.retriever_config["retriever_name"] = data_key["retriever"]
if data_key.get("chunks") is not None:
try:
self.retriever_config["chunks"] = int(data_key["chunks"])
except (ValueError, TypeError):
logger.warning(
f"Invalid chunks value: {data_key['chunks']}, using default value 2"
)
self.retriever_config["chunks"] = 2
elif self.agent_key:
data_key = self._get_data_from_api_key(self.agent_key)
self.agent_config.update(
{
"prompt_id": data_key.get("prompt_id", "default"),
"agent_type": data_key.get("agent_type", settings.AGENT_NAME),
"user_api_key": self.agent_key,
"json_schema": data_key.get("json_schema"),
"default_model_id": data_key.get("default_model_id", ""),
}
)
self.decoded_token = (
self.decoded_token
if self.is_shared_usage
else {"sub": data_key.get("user")}
)
if data_key.get("source"):
self.source = {"active_docs": data_key["source"]}
if data_key.get("retriever"):
self.retriever_config["retriever_name"] = data_key["retriever"]
if data_key.get("chunks") is not None:
try:
self.retriever_config["chunks"] = int(data_key["chunks"])
except (ValueError, TypeError):
logger.warning(
f"Invalid chunks value: {data_key['chunks']}, using default value 2"
)
self.retriever_config["chunks"] = 2
else:
self.agent_config.update(
{
"prompt_id": self.data.get("prompt_id", "default"),
"agent_type": settings.AGENT_NAME,
"user_api_key": None,
"json_schema": None,
"default_model_id": "",
}
)
def _configure_retriever(self):
history_token_limit = int(self.data.get("token_limit", 2000))
doc_token_limit = calculate_doc_token_budget(
model_id=self.model_id, history_token_limit=history_token_limit
)
self.retriever_config = {
"retriever_name": self.data.get("retriever", "classic"),
"chunks": int(self.data.get("chunks", 2)),
"doc_token_limit": doc_token_limit,
"history_token_limit": history_token_limit,
}
api_key = self.data.get("api_key") or self.agent_key
if not api_key and "isNoneDoc" in self.data and self.data["isNoneDoc"]:
self.retriever_config["chunks"] = 0
def create_retriever(self):
return RetrieverCreator.create_retriever(
self.retriever_config["retriever_name"],
source=self.source,
chat_history=self.history,
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chunks=self.retriever_config["chunks"],
doc_token_limit=self.retriever_config.get("doc_token_limit", 50000),
model_id=self.model_id,
user_api_key=self.agent_config["user_api_key"],
decoded_token=self.decoded_token,
)
def pre_fetch_docs(self, question: str) -> tuple[Optional[str], Optional[list]]:
"""Pre-fetch documents for template rendering before agent creation"""
if self.data.get("isNoneDoc", False):
logger.info("Pre-fetch skipped: isNoneDoc=True")
return None, None
try:
retriever = self.create_retriever()
logger.info(
f"Pre-fetching docs with chunks={retriever.chunks}, doc_token_limit={retriever.doc_token_limit}"
)
docs = retriever.search(question)
logger.info(f"Pre-fetch retrieved {len(docs) if docs else 0} documents")
if not docs:
logger.info("Pre-fetch: No documents returned from search")
return None, None
self.retrieved_docs = docs
docs_with_filenames = []
for doc in docs:
filename = doc.get("filename") or doc.get("title") or doc.get("source")
if filename:
chunk_header = str(filename)
docs_with_filenames.append(f"{chunk_header}\n{doc['text']}")
else:
docs_with_filenames.append(doc["text"])
docs_together = "\n\n".join(docs_with_filenames)
logger.info(f"Pre-fetch docs_together size: {len(docs_together)} chars")
return docs_together, docs
except Exception as e:
logger.error(f"Failed to pre-fetch docs: {str(e)}", exc_info=True)
return None, None
def pre_fetch_tools(self) -> Optional[Dict[str, Any]]:
"""Pre-fetch tool data for template rendering before agent creation
Can be controlled via:
1. Global setting: ENABLE_TOOL_PREFETCH in .env
2. Per-request: disable_tool_prefetch in request data
"""
if not settings.ENABLE_TOOL_PREFETCH:
logger.info(
"Tool pre-fetching disabled globally via ENABLE_TOOL_PREFETCH setting"
)
return None
if self.data.get("disable_tool_prefetch", False):
logger.info("Tool pre-fetching disabled for this request")
return None
required_tool_actions = self._get_required_tool_actions()
filtering_enabled = required_tool_actions is not None
try:
user_tools_collection = self.db["user_tools"]
user_id = self.initial_user_id or "local"
user_tools = list(
user_tools_collection.find({"user": user_id, "status": True})
)
if not user_tools:
return None
tools_data = {}
for tool_doc in user_tools:
tool_name = tool_doc.get("name")
tool_id = str(tool_doc.get("_id"))
if filtering_enabled:
required_actions_by_name = required_tool_actions.get(
tool_name, set()
)
required_actions_by_id = required_tool_actions.get(tool_id, set())
required_actions = required_actions_by_name | required_actions_by_id
if not required_actions:
continue
else:
required_actions = None
tool_data = self._fetch_tool_data(tool_doc, required_actions)
if tool_data:
tools_data[tool_name] = tool_data
tools_data[tool_id] = tool_data
return tools_data if tools_data else None
except Exception as e:
logger.warning(f"Failed to pre-fetch tools: {type(e).__name__}")
return None
def _fetch_tool_data(
self,
tool_doc: Dict[str, Any],
required_actions: Optional[Set[Optional[str]]],
) -> Optional[Dict[str, Any]]:
"""Fetch and execute tool actions with saved parameters"""
try:
from application.agents.tools.tool_manager import ToolManager
tool_name = tool_doc.get("name")
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
tool_manager = ToolManager(config={tool_name: tool_config})
user_id = self.initial_user_id or "local"
tool = tool_manager.load_tool(tool_name, tool_config, user_id=user_id)
if not tool:
logger.debug(f"Tool '{tool_name}' failed to load")
return None
tool_actions = tool.get_actions_metadata()
if not tool_actions:
logger.debug(f"Tool '{tool_name}' has no actions")
return None
saved_actions = tool_doc.get("actions", [])
include_all_actions = required_actions is None or (
required_actions and None in required_actions
)
allowed_actions: Set[str] = (
{action for action in required_actions if isinstance(action, str)}
if required_actions
else set()
)
action_results = {}
for action_meta in tool_actions:
action_name = action_meta.get("name")
if action_name is None:
continue
if (
not include_all_actions
and allowed_actions
and action_name not in allowed_actions
):
continue
try:
saved_action = None
for sa in saved_actions:
if sa.get("name") == action_name:
saved_action = sa
break
action_params = action_meta.get("parameters", {})
properties = action_params.get("properties", {})
kwargs = {}
for param_name, param_spec in properties.items():
if saved_action:
saved_props = saved_action.get("parameters", {}).get(
"properties", {}
)
if param_name in saved_props:
param_value = saved_props[param_name].get("value")
if param_value is not None:
kwargs[param_name] = param_value
continue
if param_name in tool_config:
kwargs[param_name] = tool_config[param_name]
elif "default" in param_spec:
kwargs[param_name] = param_spec["default"]
result = tool.execute_action(action_name, **kwargs)
action_results[action_name] = result
except Exception as e:
logger.debug(
f"Action '{action_name}' execution failed: {type(e).__name__}"
)
continue
return action_results if action_results else None
except Exception as e:
logger.debug(f"Tool pre-fetch failed for '{tool_name}': {type(e).__name__}")
return None
def _get_prompt_content(self) -> Optional[str]:
"""Retrieve and cache the raw prompt content for the current agent configuration."""
if self._prompt_content is not None:
return self._prompt_content
prompt_id = (
self.agent_config.get("prompt_id")
if isinstance(self.agent_config, dict)
else None
)
if not prompt_id:
return None
try:
self._prompt_content = get_prompt(prompt_id, self.prompts_collection)
except ValueError as e:
logger.debug(f"Invalid prompt ID '{prompt_id}': {str(e)}")
self._prompt_content = None
except Exception as e:
logger.debug(f"Failed to fetch prompt '{prompt_id}': {type(e).__name__}")
self._prompt_content = None
return self._prompt_content
def _get_required_tool_actions(self) -> Optional[Dict[str, Set[Optional[str]]]]:
"""Determine which tool actions are referenced in the prompt template"""
if self._required_tool_actions is not None:
return self._required_tool_actions
prompt_content = self._get_prompt_content()
if prompt_content is None:
return None
if "{{" not in prompt_content or "}}" not in prompt_content:
self._required_tool_actions = {}
return self._required_tool_actions
try:
from application.templates.template_engine import TemplateEngine
template_engine = TemplateEngine()
usages = template_engine.extract_tool_usages(prompt_content)
self._required_tool_actions = usages
return self._required_tool_actions
except Exception as e:
logger.debug(f"Failed to extract tool usages: {type(e).__name__}")
self._required_tool_actions = {}
return self._required_tool_actions
def _fetch_memory_tool_data(
self, tool_doc: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""Fetch memory tool data for pre-injection into prompt"""
try:
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
from application.agents.tools.memory import MemoryTool
memory_tool = MemoryTool(tool_config, self.initial_user_id)
root_view = memory_tool.execute_action("view", path="/")
if "Error:" in root_view or not root_view.strip():
return None
return {"root": root_view, "available": True}
except Exception as e:
logger.warning(f"Failed to fetch memory tool data: {str(e)}")
return None
def create_agent(
self,
docs_together: Optional[str] = None,
docs: Optional[list] = None,
tools_data: Optional[Dict[str, Any]] = None,
):
"""Create and return the configured agent with rendered prompt"""
raw_prompt = self._get_prompt_content()
if raw_prompt is None:
raw_prompt = get_prompt(
self.agent_config["prompt_id"], self.prompts_collection
)
self._prompt_content = raw_prompt
rendered_prompt = self.prompt_renderer.render_prompt(
prompt_content=raw_prompt,
user_id=self.initial_user_id,
request_id=self.data.get("request_id"),
passthrough_data=self.data.get("passthrough"),
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
)
provider = (
get_provider_from_model_id(self.model_id)
if self.model_id
else settings.LLM_PROVIDER
)
system_api_key = get_api_key_for_provider(provider or settings.LLM_PROVIDER)
agent = AgentCreator.create_agent(
self.agent_config["agent_type"],
endpoint="stream",
llm_name=provider or settings.LLM_PROVIDER,
model_id=self.model_id,
api_key=system_api_key,
user_api_key=self.agent_config["user_api_key"],
prompt=rendered_prompt,
chat_history=self.history,
retrieved_docs=self.retrieved_docs,
decoded_token=self.decoded_token,
attachments=self.attachments,
json_schema=self.agent_config.get("json_schema"),
compressed_summary=self.compressed_summary,
)
agent.conversation_id = self.conversation_id
agent.initial_user_id = self.initial_user_id
return agent

View File

@@ -1,489 +0,0 @@
import base64
import datetime
import json
import uuid
from bson.objectid import ObjectId
from flask import (
Blueprint,
current_app,
jsonify,
make_response,
request
)
from flask_restx import fields, Namespace, Resource
from application.api.user.tasks import (
ingest_connector_task,
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.api import api
from application.parser.connectors.connector_creator import ConnectorCreator
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
sources_collection = db["sources"]
sessions_collection = db["connector_sessions"]
connector = Blueprint("connector", __name__)
connectors_ns = Namespace("connectors", description="Connector operations", path="/")
api.add_namespace(connectors_ns)
@connectors_ns.route("/api/connectors/auth")
class ConnectorAuth(Resource):
@api.doc(description="Get connector OAuth authorization URL", params={"provider": "Connector provider (e.g., google_drive)"})
def get(self):
try:
provider = request.args.get('provider') or request.args.get('source')
if not provider:
return make_response(jsonify({"success": False, "error": "Missing provider"}), 400)
if not ConnectorCreator.is_supported(provider):
return make_response(jsonify({"success": False, "error": f"Unsupported provider: {provider}"}), 400)
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False, "error": "Unauthorized"}), 401)
user_id = decoded_token.get('sub')
now = datetime.datetime.now(datetime.timezone.utc)
result = sessions_collection.insert_one({
"provider": provider,
"user": user_id,
"status": "pending",
"created_at": now
})
state_dict = {
"provider": provider,
"object_id": str(result.inserted_id)
}
state = base64.urlsafe_b64encode(json.dumps(state_dict).encode()).decode()
auth = ConnectorCreator.create_auth(provider)
authorization_url = auth.get_authorization_url(state=state)
return make_response(jsonify({
"success": True,
"authorization_url": authorization_url,
"state": state
}), 200)
except Exception as e:
current_app.logger.error(f"Error generating connector auth URL: {e}")
return make_response(jsonify({"success": False, "error": str(e)}), 500)
@connectors_ns.route("/api/connectors/callback")
class ConnectorsCallback(Resource):
@api.doc(description="Handle OAuth callback for external connectors")
def get(self):
"""Handle OAuth callback for external connectors"""
try:
from application.parser.connectors.connector_creator import ConnectorCreator
from flask import request, redirect
authorization_code = request.args.get('code')
state = request.args.get('state')
error = request.args.get('error')
state_dict = json.loads(base64.urlsafe_b64decode(state.encode()).decode())
provider = state_dict["provider"]
state_object_id = state_dict["object_id"]
if error:
if error == "access_denied":
return redirect(f"/api/connectors/callback-status?status=cancelled&message=Authentication+was+cancelled.+You+can+try+again+if+you'd+like+to+connect+your+account.&provider={provider}")
else:
current_app.logger.warning(f"OAuth error in callback: {error}")
return redirect(f"/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.&provider={provider}")
if not authorization_code:
return redirect(f"/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.&provider={provider}")
try:
auth = ConnectorCreator.create_auth(provider)
token_info = auth.exchange_code_for_tokens(authorization_code)
session_token = str(uuid.uuid4())
try:
credentials = auth.create_credentials_from_token_info(token_info)
service = auth.build_drive_service(credentials)
user_info = service.about().get(fields="user").execute()
user_email = user_info.get('user', {}).get('emailAddress', 'Connected User')
except Exception as e:
current_app.logger.warning(f"Could not get user info: {e}")
user_email = 'Connected User'
sanitized_token_info = {
"access_token": token_info.get("access_token"),
"refresh_token": token_info.get("refresh_token"),
"token_uri": token_info.get("token_uri"),
"expiry": token_info.get("expiry")
}
sessions_collection.find_one_and_update(
{"_id": ObjectId(state_object_id), "provider": provider},
{
"$set": {
"session_token": session_token,
"token_info": sanitized_token_info,
"user_email": user_email,
"status": "authorized"
}
}
)
# Redirect to success page with session token and user email
return redirect(f"/api/connectors/callback-status?status=success&message=Authentication+successful&provider={provider}&session_token={session_token}&user_email={user_email}")
except Exception as e:
current_app.logger.error(f"Error exchanging code for tokens: {str(e)}", exc_info=True)
return redirect(f"/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.&provider={provider}")
except Exception as e:
current_app.logger.error(f"Error handling connector callback: {e}")
return redirect("/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.")
@connectors_ns.route("/api/connectors/files")
class ConnectorFiles(Resource):
@api.expect(api.model("ConnectorFilesModel", {
"provider": fields.String(required=True),
"session_token": fields.String(required=True),
"folder_id": fields.String(required=False),
"limit": fields.Integer(required=False),
"page_token": fields.String(required=False),
"search_query": fields.String(required=False)
}))
@api.doc(description="List files from a connector provider (supports pagination and search)")
def post(self):
try:
data = request.get_json()
provider = data.get('provider')
session_token = data.get('session_token')
folder_id = data.get('folder_id')
limit = data.get('limit', 10)
page_token = data.get('page_token')
search_query = data.get('search_query')
if not provider or not session_token:
return make_response(jsonify({"success": False, "error": "provider and session_token are required"}), 400)
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False, "error": "Unauthorized"}), 401)
user = decoded_token.get('sub')
session = sessions_collection.find_one({"session_token": session_token, "user": user})
if not session:
return make_response(jsonify({"success": False, "error": "Invalid or unauthorized session"}), 401)
loader = ConnectorCreator.create_connector(provider, session_token)
input_config = {
'limit': limit,
'list_only': True,
'session_token': session_token,
'folder_id': folder_id,
'page_token': page_token
}
if search_query:
input_config['search_query'] = search_query
documents = loader.load_data(input_config)
files = []
for doc in documents[:limit]:
metadata = doc.extra_info
modified_time = metadata.get('modified_time')
if modified_time:
date_part = modified_time.split('T')[0]
time_part = modified_time.split('T')[1].split('.')[0].split('Z')[0]
formatted_time = f"{date_part} {time_part}"
else:
formatted_time = None
files.append({
'id': doc.doc_id,
'name': metadata.get('file_name', 'Unknown File'),
'type': metadata.get('mime_type', 'unknown'),
'size': metadata.get('size', None),
'modifiedTime': formatted_time,
'isFolder': metadata.get('is_folder', False)
})
next_token = getattr(loader, 'next_page_token', None)
has_more = bool(next_token)
return make_response(jsonify({
"success": True,
"files": files,
"total": len(files),
"next_page_token": next_token,
"has_more": has_more
}), 200)
except Exception as e:
current_app.logger.error(f"Error loading connector files: {e}")
return make_response(jsonify({"success": False, "error": f"Failed to load files: {str(e)}"}), 500)
@connectors_ns.route("/api/connectors/validate-session")
class ConnectorValidateSession(Resource):
@api.expect(api.model("ConnectorValidateSessionModel", {"provider": fields.String(required=True), "session_token": fields.String(required=True)}))
@api.doc(description="Validate connector session token and return user info and access token")
def post(self):
try:
data = request.get_json()
provider = data.get('provider')
session_token = data.get('session_token')
if not provider or not session_token:
return make_response(jsonify({"success": False, "error": "provider and session_token are required"}), 400)
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False, "error": "Unauthorized"}), 401)
user = decoded_token.get('sub')
session = sessions_collection.find_one({"session_token": session_token, "user": user})
if not session or "token_info" not in session:
return make_response(jsonify({"success": False, "error": "Invalid or expired session"}), 401)
token_info = session["token_info"]
auth = ConnectorCreator.create_auth(provider)
is_expired = auth.is_token_expired(token_info)
if is_expired and token_info.get('refresh_token'):
try:
refreshed_token_info = auth.refresh_access_token(token_info.get('refresh_token'))
sanitized_token_info = {
"access_token": refreshed_token_info.get("access_token"),
"refresh_token": refreshed_token_info.get("refresh_token"),
"token_uri": refreshed_token_info.get("token_uri"),
"expiry": refreshed_token_info.get("expiry")
}
sessions_collection.update_one(
{"session_token": session_token},
{"$set": {"token_info": sanitized_token_info}}
)
token_info = sanitized_token_info
is_expired = False
except Exception as refresh_error:
current_app.logger.error(f"Failed to refresh token: {refresh_error}")
if is_expired:
return make_response(jsonify({
"success": False,
"expired": True,
"error": "Session token has expired. Please reconnect."
}), 401)
return make_response(jsonify({
"success": True,
"expired": False,
"user_email": session.get('user_email', 'Connected User'),
"access_token": token_info.get('access_token')
}), 200)
except Exception as e:
current_app.logger.error(f"Error validating connector session: {e}")
return make_response(jsonify({"success": False, "error": str(e)}), 500)
@connectors_ns.route("/api/connectors/disconnect")
class ConnectorDisconnect(Resource):
@api.expect(api.model("ConnectorDisconnectModel", {"provider": fields.String(required=True), "session_token": fields.String(required=False)}))
@api.doc(description="Disconnect a connector session")
def post(self):
try:
data = request.get_json()
provider = data.get('provider')
session_token = data.get('session_token')
if not provider:
return make_response(jsonify({"success": False, "error": "provider is required"}), 400)
if session_token:
sessions_collection.delete_one({"session_token": session_token})
return make_response(jsonify({"success": True}), 200)
except Exception as e:
current_app.logger.error(f"Error disconnecting connector session: {e}")
return make_response(jsonify({"success": False, "error": str(e)}), 500)
@connectors_ns.route("/api/connectors/sync")
class ConnectorSync(Resource):
@api.expect(
api.model(
"ConnectorSyncModel",
{
"source_id": fields.String(required=True, description="Source ID to sync"),
"session_token": fields.String(required=True, description="Authentication token")
},
)
)
@api.doc(description="Sync connector source to check for modifications")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
try:
data = request.get_json()
source_id = data.get('source_id')
session_token = data.get('session_token')
if not all([source_id, session_token]):
return make_response(
jsonify({
"success": False,
"error": "source_id and session_token are required"
}),
400
)
source = sources_collection.find_one({"_id": ObjectId(source_id)})
if not source:
return make_response(
jsonify({
"success": False,
"error": "Source not found"
}),
404
)
if source.get('user') != decoded_token.get('sub'):
return make_response(
jsonify({
"success": False,
"error": "Unauthorized access to source"
}),
403
)
remote_data = {}
try:
if source.get('remote_data'):
remote_data = json.loads(source.get('remote_data'))
except json.JSONDecodeError:
current_app.logger.error(f"Invalid remote_data format for source {source_id}")
remote_data = {}
source_type = remote_data.get('provider')
if not source_type:
return make_response(
jsonify({
"success": False,
"error": "Source provider not found in remote_data"
}),
400
)
# Extract configuration from remote_data
file_ids = remote_data.get('file_ids', [])
folder_ids = remote_data.get('folder_ids', [])
recursive = remote_data.get('recursive', True)
# Start the sync task
task = ingest_connector_task.delay(
job_name=source.get('name'),
user=decoded_token.get('sub'),
source_type=source_type,
session_token=session_token,
file_ids=file_ids,
folder_ids=folder_ids,
recursive=recursive,
retriever=source.get('retriever', 'classic'),
operation_mode="sync",
doc_id=source_id,
sync_frequency=source.get('sync_frequency', 'never')
)
return make_response(
jsonify({
"success": True,
"task_id": task.id
}),
200
)
except Exception as err:
current_app.logger.error(
f"Error syncing connector source: {err}",
exc_info=True
)
return make_response(
jsonify({
"success": False,
"error": str(err)
}),
400
)
@connectors_ns.route("/api/connectors/callback-status")
class ConnectorCallbackStatus(Resource):
@api.doc(description="Return HTML page with connector authentication status")
def get(self):
"""Return HTML page with connector authentication status"""
try:
status = request.args.get('status', 'error')
message = request.args.get('message', '')
provider = request.args.get('provider', 'connector')
session_token = request.args.get('session_token', '')
user_email = request.args.get('user_email', '')
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<title>{provider.replace('_', ' ').title()} Authentication</title>
<style>
body {{ font-family: Arial, sans-serif; text-align: center; padding: 40px; }}
.container {{ max-width: 600px; margin: 0 auto; }}
.success {{ color: #4CAF50; }}
.error {{ color: #F44336; }}
.cancelled {{ color: #FF9800; }}
</style>
<script>
window.onload = function() {{
const status = "{status}";
const sessionToken = "{session_token}";
const userEmail = "{user_email}";
if (status === "success" && window.opener) {{
window.opener.postMessage({{
type: '{provider}_auth_success',
session_token: sessionToken,
user_email: userEmail
}}, '*');
setTimeout(() => window.close(), 3000);
}} else if (status === "cancelled" || status === "error") {{
setTimeout(() => window.close(), 3000);
}}
}};
</script>
</head>
<body>
<div class="container">
<h2>{provider.replace('_', ' ').title()} Authentication</h2>
<div class="{status}">
<p>{message}</p>
{f'<p>Connected as: {user_email}</p>' if status == 'success' else ''}
</div>
<p><small>You can close this window. {f"Your {provider.replace('_', ' ').title()} is now connected and ready to use." if status == 'success' else "Feel free to close this window."}</small></p>
</div>
</body>
</html>
"""
return make_response(html_content, 200, {'Content-Type': 'text/html'})
except Exception as e:
current_app.logger.error(f"Error rendering callback status page: {e}")
return make_response("Authentication error occurred", 500, {'Content-Type': 'text/html'})

View File

@@ -1,18 +1,14 @@
import os
import datetime
import json
from flask import Blueprint, request, send_from_directory
from werkzeug.utils import secure_filename
from bson.objectid import ObjectId
import logging
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.storage.storage_creator import StorageCreator
logger = logging.getLogger(__name__)
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
db = mongo["docsgpt"]
conversations_collection = db["conversations"]
sources_collection = db["sources"]
@@ -38,52 +34,37 @@ def upload_index_files():
"""Upload two files(index.faiss, index.pkl) to the user's folder."""
if "user" not in request.form:
return {"status": "no user"}
user = request.form["user"]
user = secure_filename(request.form["user"])
if "name" not in request.form:
return {"status": "no name"}
job_name = request.form["name"]
tokens = request.form["tokens"]
retriever = request.form["retriever"]
id = request.form["id"]
type = request.form["type"]
job_name = secure_filename(request.form["name"])
tokens = secure_filename(request.form["tokens"])
retriever = secure_filename(request.form["retriever"])
id = secure_filename(request.form["id"])
type = secure_filename(request.form["type"])
remote_data = request.form["remote_data"] if "remote_data" in request.form else None
sync_frequency = request.form["sync_frequency"] if "sync_frequency" in request.form else None
file_path = request.form.get("file_path")
directory_structure = request.form.get("directory_structure")
if directory_structure:
try:
directory_structure = json.loads(directory_structure)
except Exception:
logger.error("Error parsing directory_structure")
directory_structure = {}
else:
directory_structure = {}
sync_frequency = secure_filename(request.form["sync_frequency"]) if "sync_frequency" in request.form else None
storage = StorageCreator.get_storage()
index_base_path = f"indexes/{id}"
save_dir = os.path.join(current_dir, "indexes", str(id))
if settings.VECTOR_STORE == "faiss":
if "file_faiss" not in request.files:
logger.error("No file_faiss part")
print("No file part")
return {"status": "no file"}
file_faiss = request.files["file_faiss"]
if file_faiss.filename == "":
return {"status": "no file name"}
if "file_pkl" not in request.files:
logger.error("No file_pkl part")
print("No file part")
return {"status": "no file"}
file_pkl = request.files["file_pkl"]
if file_pkl.filename == "":
return {"status": "no file name"}
# saves index files
# Save index files to storage
faiss_storage_path = f"{index_base_path}/index.faiss"
pkl_storage_path = f"{index_base_path}/index.pkl"
storage.save_file(file_faiss, faiss_storage_path)
storage.save_file(file_pkl, pkl_storage_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_faiss.save(os.path.join(save_dir, "index.faiss"))
file_pkl.save(os.path.join(save_dir, "index.pkl"))
existing_entry = sources_collection.find_one({"_id": ObjectId(id)})
if existing_entry:
@@ -101,8 +82,6 @@ def upload_index_files():
"retriever": retriever,
"remote_data": remote_data,
"sync_frequency": sync_frequency,
"file_path": file_path,
"directory_structure": directory_structure,
}
},
)
@@ -120,8 +99,6 @@ def upload_index_files():
"retriever": retriever,
"remote_data": remote_data,
"sync_frequency": sync_frequency,
"file_path": file_path,
"directory_structure": directory_structure,
}
)
return {"status": "ok"}

View File

@@ -1,5 +0,0 @@
"""User API module - provides all user-related API endpoints"""
from .routes import user
__all__ = ["user"]

View File

@@ -1,7 +0,0 @@
"""Agents module."""
from .routes import agents_ns
from .sharing import agents_sharing_ns
from .webhooks import agents_webhooks_ns
__all__ = ["agents_ns", "agents_sharing_ns", "agents_webhooks_ns"]

File diff suppressed because it is too large Load Diff

View File

@@ -1,263 +0,0 @@
"""Agent management sharing functionality."""
import datetime
import secrets
from bson import DBRef
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.core.settings import settings
from application.api.user.base import (
agents_collection,
db,
ensure_user_doc,
resolve_tool_details,
user_tools_collection,
users_collection,
)
from application.utils import generate_image_url
agents_sharing_ns = Namespace(
"agents", description="Agent management operations", path="/api"
)
@agents_sharing_ns.route("/shared_agent")
class SharedAgent(Resource):
@api.doc(
params={
"token": "Shared token of the agent",
},
description="Get a shared agent by token or ID",
)
def get(self):
shared_token = request.args.get("token")
if not shared_token:
return make_response(
jsonify({"success": False, "message": "Token or ID is required"}), 400
)
try:
query = {
"shared_publicly": True,
"shared_token": shared_token,
}
shared_agent = agents_collection.find_one(query)
if not shared_agent:
return make_response(
jsonify({"success": False, "message": "Shared agent not found"}),
404,
)
agent_id = str(shared_agent["_id"])
data = {
"id": agent_id,
"user": shared_agent.get("user", ""),
"name": shared_agent.get("name", ""),
"image": (
generate_image_url(shared_agent["image"])
if shared_agent.get("image")
else ""
),
"description": shared_agent.get("description", ""),
"source": (
str(source_doc["_id"])
if isinstance(shared_agent.get("source"), DBRef)
and (source_doc := db.dereference(shared_agent.get("source")))
else ""
),
"chunks": shared_agent.get("chunks", "0"),
"retriever": shared_agent.get("retriever", "classic"),
"prompt_id": shared_agent.get("prompt_id", "default"),
"tools": shared_agent.get("tools", []),
"tool_details": resolve_tool_details(shared_agent.get("tools", [])),
"agent_type": shared_agent.get("agent_type", ""),
"status": shared_agent.get("status", ""),
"json_schema": shared_agent.get("json_schema"),
"limited_token_mode": shared_agent.get("limited_token_mode", False),
"token_limit": shared_agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": shared_agent.get("limited_request_mode", False),
"request_limit": shared_agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"created_at": shared_agent.get("createdAt", ""),
"updated_at": shared_agent.get("updatedAt", ""),
"shared": shared_agent.get("shared_publicly", False),
"shared_token": shared_agent.get("shared_token", ""),
"shared_metadata": shared_agent.get("shared_metadata", {}),
}
if data["tools"]:
enriched_tools = []
for tool in data["tools"]:
tool_data = user_tools_collection.find_one({"_id": ObjectId(tool)})
if tool_data:
enriched_tools.append(tool_data.get("name", ""))
data["tools"] = enriched_tools
decoded_token = getattr(request, "decoded_token", None)
if decoded_token:
user_id = decoded_token.get("sub")
owner_id = shared_agent.get("user")
if user_id != owner_id:
ensure_user_doc(user_id)
users_collection.update_one(
{"user_id": user_id},
{"$addToSet": {"agent_preferences.shared_with_me": agent_id}},
)
return make_response(jsonify(data), 200)
except Exception as err:
current_app.logger.error(f"Error retrieving shared agent: {err}")
return make_response(jsonify({"success": False}), 400)
@agents_sharing_ns.route("/shared_agents")
class SharedAgents(Resource):
@api.doc(description="Get shared agents explicitly shared with the user")
def get(self):
try:
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user_id = decoded_token.get("sub")
user_doc = ensure_user_doc(user_id)
shared_with_ids = user_doc.get("agent_preferences", {}).get(
"shared_with_me", []
)
shared_object_ids = [ObjectId(id) for id in shared_with_ids]
shared_agents_cursor = agents_collection.find(
{"_id": {"$in": shared_object_ids}, "shared_publicly": True}
)
shared_agents = list(shared_agents_cursor)
found_ids_set = {str(agent["_id"]) for agent in shared_agents}
stale_ids = [id for id in shared_with_ids if id not in found_ids_set]
if stale_ids:
users_collection.update_one(
{"user_id": user_id},
{"$pullAll": {"agent_preferences.shared_with_me": stale_ids}},
)
pinned_ids = set(user_doc.get("agent_preferences", {}).get("pinned", []))
list_shared_agents = [
{
"id": str(agent["_id"]),
"name": agent.get("name", ""),
"description": agent.get("description", ""),
"image": (
generate_image_url(agent["image"]) if agent.get("image") else ""
),
"tools": agent.get("tools", []),
"tool_details": resolve_tool_details(agent.get("tools", [])),
"agent_type": agent.get("agent_type", ""),
"status": agent.get("status", ""),
"json_schema": agent.get("json_schema"),
"limited_token_mode": agent.get("limited_token_mode", False),
"token_limit": agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": agent.get("limited_request_mode", False),
"request_limit": agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"created_at": agent.get("createdAt", ""),
"updated_at": agent.get("updatedAt", ""),
"pinned": str(agent["_id"]) in pinned_ids,
"shared": agent.get("shared_publicly", False),
"shared_token": agent.get("shared_token", ""),
"shared_metadata": agent.get("shared_metadata", {}),
}
for agent in shared_agents
]
return make_response(jsonify(list_shared_agents), 200)
except Exception as err:
current_app.logger.error(f"Error retrieving shared agents: {err}")
return make_response(jsonify({"success": False}), 400)
@agents_sharing_ns.route("/share_agent")
class ShareAgent(Resource):
@api.expect(
api.model(
"ShareAgentModel",
{
"id": fields.String(required=True, description="ID of the agent"),
"shared": fields.Boolean(
required=True, description="Share or unshare the agent"
),
"username": fields.String(
required=False, description="Name of the user"
),
},
)
)
@api.doc(description="Share or unshare an agent")
def put(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
if not data:
return make_response(
jsonify({"success": False, "message": "Missing JSON body"}), 400
)
agent_id = data.get("id")
shared = data.get("shared")
username = data.get("username", "")
if not agent_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
if shared is None:
return make_response(
jsonify(
{
"success": False,
"message": "Shared parameter is required and must be true or false",
}
),
400,
)
try:
try:
agent_oid = ObjectId(agent_id)
except Exception:
return make_response(
jsonify({"success": False, "message": "Invalid agent ID"}), 400
)
agent = agents_collection.find_one({"_id": agent_oid, "user": user})
if not agent:
return make_response(
jsonify({"success": False, "message": "Agent not found"}), 404
)
if shared:
shared_metadata = {
"shared_by": username,
"shared_at": datetime.datetime.now(datetime.timezone.utc),
}
shared_token = secrets.token_urlsafe(32)
agents_collection.update_one(
{"_id": agent_oid, "user": user},
{
"$set": {
"shared_publicly": shared,
"shared_metadata": shared_metadata,
"shared_token": shared_token,
}
},
)
else:
agents_collection.update_one(
{"_id": agent_oid, "user": user},
{"$set": {"shared_publicly": shared, "shared_token": None}},
{"$unset": {"shared_metadata": ""}},
)
except Exception as err:
current_app.logger.error(f"Error sharing/unsharing agent: {err}")
return make_response(jsonify({"success": False, "error": str(err)}), 400)
shared_token = shared_token if shared else None
return make_response(
jsonify({"success": True, "shared_token": shared_token}), 200
)

View File

@@ -1,119 +0,0 @@
"""Agent management webhook handlers."""
import secrets
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import Namespace, Resource
from application.api import api
from application.api.user.base import agents_collection, require_agent
from application.api.user.tasks import process_agent_webhook
from application.core.settings import settings
agents_webhooks_ns = Namespace(
"agents", description="Agent management operations", path="/api"
)
@agents_webhooks_ns.route("/agent_webhook")
class AgentWebhook(Resource):
@api.doc(
params={"id": "ID of the agent"},
description="Generate webhook URL for the agent",
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
agent_id = request.args.get("id")
if not agent_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
agent = agents_collection.find_one(
{"_id": ObjectId(agent_id), "user": user}
)
if not agent:
return make_response(
jsonify({"success": False, "message": "Agent not found"}), 404
)
webhook_token = agent.get("incoming_webhook_token")
if not webhook_token:
webhook_token = secrets.token_urlsafe(32)
agents_collection.update_one(
{"_id": ObjectId(agent_id), "user": user},
{"$set": {"incoming_webhook_token": webhook_token}},
)
base_url = settings.API_URL.rstrip("/")
full_webhook_url = f"{base_url}/api/webhooks/agents/{webhook_token}"
except Exception as err:
current_app.logger.error(
f"Error generating webhook URL: {err}", exc_info=True
)
return make_response(
jsonify({"success": False, "message": "Error generating webhook URL"}),
400,
)
return make_response(
jsonify({"success": True, "webhook_url": full_webhook_url}), 200
)
@agents_webhooks_ns.route("/webhooks/agents/<string:webhook_token>")
class AgentWebhookListener(Resource):
method_decorators = [require_agent]
def _enqueue_webhook_task(self, agent_id_str, payload, source_method):
if not payload:
current_app.logger.warning(
f"Webhook ({source_method}) received for agent {agent_id_str} with empty payload."
)
current_app.logger.info(
f"Incoming {source_method} webhook for agent {agent_id_str}. Enqueuing task with payload: {payload}"
)
try:
task = process_agent_webhook.delay(
agent_id=agent_id_str,
payload=payload,
)
current_app.logger.info(
f"Task {task.id} enqueued for agent {agent_id_str} ({source_method})."
)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
except Exception as err:
current_app.logger.error(
f"Error enqueuing webhook task ({source_method}) for agent {agent_id_str}: {err}",
exc_info=True,
)
return make_response(
jsonify({"success": False, "message": "Error processing webhook"}), 500
)
@api.doc(
description="Webhook listener for agent events (POST). Expects JSON payload, which is used to trigger processing.",
)
def post(self, webhook_token, agent, agent_id_str):
payload = request.get_json()
if payload is None:
return make_response(
jsonify(
{
"success": False,
"message": "Invalid or missing JSON data in request body",
}
),
400,
)
return self._enqueue_webhook_task(agent_id_str, payload, source_method="POST")
@api.doc(
description="Webhook listener for agent events (GET). Uses URL query parameters as payload to trigger processing.",
)
def get(self, webhook_token, agent, agent_id_str):
payload = request.args.to_dict(flat=True)
return self._enqueue_webhook_task(agent_id_str, payload, source_method="GET")

View File

@@ -1,5 +0,0 @@
"""Analytics module."""
from .routes import analytics_ns
__all__ = ["analytics_ns"]

View File

@@ -1,540 +0,0 @@
"""Analytics and reporting routes."""
import datetime
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import (
agents_collection,
conversations_collection,
generate_date_range,
generate_hourly_range,
generate_minute_range,
token_usage_collection,
user_logs_collection,
)
analytics_ns = Namespace(
"analytics", description="Analytics and reporting operations", path="/api"
)
@analytics_ns.route("/get_message_analytics")
class GetMessageAnalytics(Resource):
get_message_analytics_model = api.model(
"GetMessageAnalyticsModel",
{
"api_key_id": fields.String(required=False, description="API Key ID"),
"filter_option": fields.String(
required=False,
description="Filter option for analytics",
default="last_30_days",
enum=[
"last_hour",
"last_24_hour",
"last_7_days",
"last_15_days",
"last_30_days",
],
),
},
)
@api.expect(get_message_analytics_model)
@api.doc(description="Get message analytics based on filter option")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
api_key_id = data.get("api_key_id")
filter_option = data.get("filter_option", "last_30_days")
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id), "user": user})[
"key"
]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
end_date = datetime.datetime.now(datetime.timezone.utc)
if filter_option == "last_hour":
start_date = end_date - datetime.timedelta(hours=1)
group_format = "%Y-%m-%d %H:%M:00"
elif filter_option == "last_24_hour":
start_date = end_date - datetime.timedelta(hours=24)
group_format = "%Y-%m-%d %H:00"
else:
if filter_option in ["last_7_days", "last_15_days", "last_30_days"]:
filter_days = (
6
if filter_option == "last_7_days"
else 14 if filter_option == "last_15_days" else 29
)
else:
return make_response(
jsonify({"success": False, "message": "Invalid option"}), 400
)
start_date = end_date - datetime.timedelta(days=filter_days)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_date = end_date.replace(
hour=23, minute=59, second=59, microsecond=999999
)
group_format = "%Y-%m-%d"
try:
match_stage = {
"$match": {
"user": user,
}
}
if api_key:
match_stage["$match"]["api_key"] = api_key
pipeline = [
match_stage,
{"$unwind": "$queries"},
{
"$match": {
"queries.timestamp": {"$gte": start_date, "$lte": end_date}
}
},
{
"$group": {
"_id": {
"$dateToString": {
"format": group_format,
"date": "$queries.timestamp",
}
},
"count": {"$sum": 1},
}
},
{"$sort": {"_id": 1}},
]
message_data = conversations_collection.aggregate(pipeline)
if filter_option == "last_hour":
intervals = generate_minute_range(start_date, end_date)
elif filter_option == "last_24_hour":
intervals = generate_hourly_range(start_date, end_date)
else:
intervals = generate_date_range(start_date, end_date)
daily_messages = {interval: 0 for interval in intervals}
for entry in message_data:
daily_messages[entry["_id"]] = entry["count"]
except Exception as err:
current_app.logger.error(
f"Error getting message analytics: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(
jsonify({"success": True, "messages": daily_messages}), 200
)
@analytics_ns.route("/get_token_analytics")
class GetTokenAnalytics(Resource):
get_token_analytics_model = api.model(
"GetTokenAnalyticsModel",
{
"api_key_id": fields.String(required=False, description="API Key ID"),
"filter_option": fields.String(
required=False,
description="Filter option for analytics",
default="last_30_days",
enum=[
"last_hour",
"last_24_hour",
"last_7_days",
"last_15_days",
"last_30_days",
],
),
},
)
@api.expect(get_token_analytics_model)
@api.doc(description="Get token analytics data")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
api_key_id = data.get("api_key_id")
filter_option = data.get("filter_option", "last_30_days")
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id), "user": user})[
"key"
]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
end_date = datetime.datetime.now(datetime.timezone.utc)
if filter_option == "last_hour":
start_date = end_date - datetime.timedelta(hours=1)
group_format = "%Y-%m-%d %H:%M:00"
group_stage = {
"$group": {
"_id": {
"minute": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
}
},
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
}
elif filter_option == "last_24_hour":
start_date = end_date - datetime.timedelta(hours=24)
group_format = "%Y-%m-%d %H:00"
group_stage = {
"$group": {
"_id": {
"hour": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
}
},
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
}
else:
if filter_option in ["last_7_days", "last_15_days", "last_30_days"]:
filter_days = (
6
if filter_option == "last_7_days"
else (14 if filter_option == "last_15_days" else 29)
)
else:
return make_response(
jsonify({"success": False, "message": "Invalid option"}), 400
)
start_date = end_date - datetime.timedelta(days=filter_days)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_date = end_date.replace(
hour=23, minute=59, second=59, microsecond=999999
)
group_format = "%Y-%m-%d"
group_stage = {
"$group": {
"_id": {
"day": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
}
},
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
}
try:
match_stage = {
"$match": {
"user_id": user,
"timestamp": {"$gte": start_date, "$lte": end_date},
}
}
if api_key:
match_stage["$match"]["api_key"] = api_key
token_usage_data = token_usage_collection.aggregate(
[
match_stage,
group_stage,
{"$sort": {"_id": 1}},
]
)
if filter_option == "last_hour":
intervals = generate_minute_range(start_date, end_date)
elif filter_option == "last_24_hour":
intervals = generate_hourly_range(start_date, end_date)
else:
intervals = generate_date_range(start_date, end_date)
daily_token_usage = {interval: 0 for interval in intervals}
for entry in token_usage_data:
if filter_option == "last_hour":
daily_token_usage[entry["_id"]["minute"]] = entry["total_tokens"]
elif filter_option == "last_24_hour":
daily_token_usage[entry["_id"]["hour"]] = entry["total_tokens"]
else:
daily_token_usage[entry["_id"]["day"]] = entry["total_tokens"]
except Exception as err:
current_app.logger.error(
f"Error getting token analytics: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(
jsonify({"success": True, "token_usage": daily_token_usage}), 200
)
@analytics_ns.route("/get_feedback_analytics")
class GetFeedbackAnalytics(Resource):
get_feedback_analytics_model = api.model(
"GetFeedbackAnalyticsModel",
{
"api_key_id": fields.String(required=False, description="API Key ID"),
"filter_option": fields.String(
required=False,
description="Filter option for analytics",
default="last_30_days",
enum=[
"last_hour",
"last_24_hour",
"last_7_days",
"last_15_days",
"last_30_days",
],
),
},
)
@api.expect(get_feedback_analytics_model)
@api.doc(description="Get feedback analytics data")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
api_key_id = data.get("api_key_id")
filter_option = data.get("filter_option", "last_30_days")
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id), "user": user})[
"key"
]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
end_date = datetime.datetime.now(datetime.timezone.utc)
if filter_option == "last_hour":
start_date = end_date - datetime.timedelta(hours=1)
group_format = "%Y-%m-%d %H:%M:00"
date_field = {
"$dateToString": {
"format": group_format,
"date": "$queries.feedback_timestamp",
}
}
elif filter_option == "last_24_hour":
start_date = end_date - datetime.timedelta(hours=24)
group_format = "%Y-%m-%d %H:00"
date_field = {
"$dateToString": {
"format": group_format,
"date": "$queries.feedback_timestamp",
}
}
else:
if filter_option in ["last_7_days", "last_15_days", "last_30_days"]:
filter_days = (
6
if filter_option == "last_7_days"
else (14 if filter_option == "last_15_days" else 29)
)
else:
return make_response(
jsonify({"success": False, "message": "Invalid option"}), 400
)
start_date = end_date - datetime.timedelta(days=filter_days)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_date = end_date.replace(
hour=23, minute=59, second=59, microsecond=999999
)
group_format = "%Y-%m-%d"
date_field = {
"$dateToString": {
"format": group_format,
"date": "$queries.feedback_timestamp",
}
}
try:
match_stage = {
"$match": {
"queries.feedback_timestamp": {
"$gte": start_date,
"$lte": end_date,
},
"queries.feedback": {"$exists": True},
}
}
if api_key:
match_stage["$match"]["api_key"] = api_key
pipeline = [
match_stage,
{"$unwind": "$queries"},
{"$match": {"queries.feedback": {"$exists": True}}},
{
"$group": {
"_id": {"time": date_field, "feedback": "$queries.feedback"},
"count": {"$sum": 1},
}
},
{
"$group": {
"_id": "$_id.time",
"positive": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "LIKE"]},
"$count",
0,
]
}
},
"negative": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "DISLIKE"]},
"$count",
0,
]
}
},
}
},
{"$sort": {"_id": 1}},
]
feedback_data = conversations_collection.aggregate(pipeline)
if filter_option == "last_hour":
intervals = generate_minute_range(start_date, end_date)
elif filter_option == "last_24_hour":
intervals = generate_hourly_range(start_date, end_date)
else:
intervals = generate_date_range(start_date, end_date)
daily_feedback = {
interval: {"positive": 0, "negative": 0} for interval in intervals
}
for entry in feedback_data:
daily_feedback[entry["_id"]] = {
"positive": entry["positive"],
"negative": entry["negative"],
}
except Exception as err:
current_app.logger.error(
f"Error getting feedback analytics: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(
jsonify({"success": True, "feedback": daily_feedback}), 200
)
@analytics_ns.route("/get_user_logs")
class GetUserLogs(Resource):
get_user_logs_model = api.model(
"GetUserLogsModel",
{
"page": fields.Integer(
required=False,
description="Page number for pagination",
default=1,
),
"api_key_id": fields.String(required=False, description="API Key ID"),
"page_size": fields.Integer(
required=False,
description="Number of logs per page",
default=10,
),
},
)
@api.expect(get_user_logs_model)
@api.doc(description="Get user logs with pagination")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
page = int(data.get("page", 1))
api_key_id = data.get("api_key_id")
page_size = int(data.get("page_size", 10))
skip = (page - 1) * page_size
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id)})["key"]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
query = {"user": user}
if api_key:
query = {"api_key": api_key}
items_cursor = (
user_logs_collection.find(query)
.sort("timestamp", -1)
.skip(skip)
.limit(page_size + 1)
)
items = list(items_cursor)
results = [
{
"id": str(item.get("_id")),
"action": item.get("action"),
"level": item.get("level"),
"user": item.get("user"),
"question": item.get("question"),
"sources": item.get("sources"),
"retriever_params": item.get("retriever_params"),
"timestamp": item.get("timestamp"),
}
for item in items[:page_size]
]
has_more = len(items) > page_size
return make_response(
jsonify(
{
"success": True,
"logs": results,
"page": page,
"page_size": page_size,
"has_more": has_more,
}
),
200,
)

View File

@@ -1,5 +0,0 @@
"""Attachments module."""
from .routes import attachments_ns
__all__ = ["attachments_ns"]

View File

@@ -1,198 +0,0 @@
"""File attachments and media routes."""
import os
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import agents_collection, storage
from application.api.user.tasks import store_attachment
from application.core.settings import settings
from application.tts.tts_creator import TTSCreator
from application.utils import safe_filename
attachments_ns = Namespace(
"attachments", description="File attachments and media operations", path="/api"
)
@attachments_ns.route("/store_attachment")
class StoreAttachment(Resource):
@api.expect(
api.model(
"AttachmentModel",
{
"file": fields.Raw(required=True, description="File(s) to upload"),
"api_key": fields.String(
required=False, description="API key (optional)"
),
},
)
)
@api.doc(
description="Stores one or multiple attachments without vectorization or training. Supports user or API key authentication."
)
def post(self):
decoded_token = getattr(request, "decoded_token", None)
api_key = request.form.get("api_key") or request.args.get("api_key")
files = request.files.getlist("file")
if not files:
single_file = request.files.get("file")
if single_file:
files = [single_file]
if not files or all(f.filename == "" for f in files):
return make_response(
jsonify({"status": "error", "message": "Missing file(s)"}),
400,
)
user = None
if decoded_token:
user = safe_filename(decoded_token.get("sub"))
elif api_key:
agent = agents_collection.find_one({"key": api_key})
if not agent:
return make_response(
jsonify({"success": False, "message": "Invalid API key"}), 401
)
user = safe_filename(agent.get("user"))
else:
return make_response(
jsonify({"success": False, "message": "Authentication required"}), 401
)
try:
tasks = []
errors = []
original_file_count = len(files)
for idx, file in enumerate(files):
try:
attachment_id = ObjectId()
original_filename = safe_filename(os.path.basename(file.filename))
relative_path = f"{settings.UPLOAD_FOLDER}/{user}/attachments/{str(attachment_id)}/{original_filename}"
metadata = storage.save_file(file, relative_path)
file_info = {
"filename": original_filename,
"attachment_id": str(attachment_id),
"path": relative_path,
"metadata": metadata,
}
task = store_attachment.delay(file_info, user)
tasks.append({
"task_id": task.id,
"filename": original_filename,
"attachment_id": str(attachment_id),
})
except Exception as file_err:
current_app.logger.error(f"Error processing file {idx} ({file.filename}): {file_err}", exc_info=True)
errors.append({
"filename": file.filename,
"error": str(file_err)
})
if not tasks:
error_msg = "No valid files to upload"
if errors:
error_msg += f". Errors: {errors}"
return make_response(
jsonify({"status": "error", "message": error_msg, "errors": errors}),
400,
)
if original_file_count == 1 and len(tasks) == 1:
current_app.logger.info("Returning single task_id response")
return make_response(
jsonify(
{
"success": True,
"task_id": tasks[0]["task_id"],
"message": "File uploaded successfully. Processing started.",
}
),
200,
)
else:
response_data = {
"success": True,
"tasks": tasks,
"message": f"{len(tasks)} file(s) uploaded successfully. Processing started.",
}
if errors:
response_data["errors"] = errors
response_data["message"] += f" {len(errors)} file(s) failed."
return make_response(
jsonify(response_data),
200,
)
except Exception as err:
current_app.logger.error(f"Error storing attachment: {err}", exc_info=True)
return make_response(jsonify({"success": False, "error": str(err)}), 400)
@attachments_ns.route("/images/<path:image_path>")
class ServeImage(Resource):
@api.doc(description="Serve an image from storage")
def get(self, image_path):
try:
file_obj = storage.get_file(image_path)
extension = image_path.split(".")[-1].lower()
content_type = f"image/{extension}"
if extension == "jpg":
content_type = "image/jpeg"
response = make_response(file_obj.read())
response.headers.set("Content-Type", content_type)
response.headers.set("Cache-Control", "max-age=86400")
return response
except FileNotFoundError:
return make_response(
jsonify({"success": False, "message": "Image not found"}), 404
)
except Exception as e:
current_app.logger.error(f"Error serving image: {e}")
return make_response(
jsonify({"success": False, "message": "Error retrieving image"}), 500
)
@attachments_ns.route("/tts")
class TextToSpeech(Resource):
tts_model = api.model(
"TextToSpeechModel",
{
"text": fields.String(
required=True, description="Text to be synthesized as audio"
),
},
)
@api.expect(tts_model)
@api.doc(description="Synthesize audio speech from text")
def post(self):
data = request.get_json()
text = data["text"]
try:
tts_instance = TTSCreator.create_tts(settings.TTS_PROVIDER)
audio_base64, detected_language = tts_instance.text_to_speech(text)
return make_response(
jsonify(
{
"success": True,
"audio_base64": audio_base64,
"lang": detected_language,
}
),
200,
)
except Exception as err:
current_app.logger.error(f"Error synthesizing audio: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)

View File

@@ -1,222 +0,0 @@
"""
Shared utilities, database connections, and helper functions for user API routes.
"""
import datetime
import os
import uuid
from functools import wraps
from typing import Optional, Tuple
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, Response
from pymongo import ReturnDocument
from werkzeug.utils import secure_filename
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.storage.storage_creator import StorageCreator
from application.vectorstore.vector_creator import VectorCreator
storage = StorageCreator.get_storage()
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
conversations_collection = db["conversations"]
sources_collection = db["sources"]
prompts_collection = db["prompts"]
feedback_collection = db["feedback"]
agents_collection = db["agents"]
token_usage_collection = db["token_usage"]
shared_conversations_collections = db["shared_conversations"]
users_collection = db["users"]
user_logs_collection = db["user_logs"]
user_tools_collection = db["user_tools"]
attachments_collection = db["attachments"]
try:
agents_collection.create_index(
[("shared", 1)],
name="shared_index",
background=True,
)
users_collection.create_index("user_id", unique=True)
except Exception as e:
print("Error creating indexes:", e)
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
def generate_minute_range(start_date, end_date):
"""Generate a dictionary with minute-level time ranges."""
return {
(start_date + datetime.timedelta(minutes=i)).strftime("%Y-%m-%d %H:%M:00"): 0
for i in range(int((end_date - start_date).total_seconds() // 60) + 1)
}
def generate_hourly_range(start_date, end_date):
"""Generate a dictionary with hourly time ranges."""
return {
(start_date + datetime.timedelta(hours=i)).strftime("%Y-%m-%d %H:00"): 0
for i in range(int((end_date - start_date).total_seconds() // 3600) + 1)
}
def generate_date_range(start_date, end_date):
"""Generate a dictionary with daily date ranges."""
return {
(start_date + datetime.timedelta(days=i)).strftime("%Y-%m-%d"): 0
for i in range((end_date - start_date).days + 1)
}
def ensure_user_doc(user_id):
"""
Ensure user document exists with proper agent preferences structure.
Args:
user_id: The user ID to ensure
Returns:
The user document
"""
default_prefs = {
"pinned": [],
"shared_with_me": [],
}
user_doc = users_collection.find_one_and_update(
{"user_id": user_id},
{"$setOnInsert": {"agent_preferences": default_prefs}},
upsert=True,
return_document=ReturnDocument.AFTER,
)
prefs = user_doc.get("agent_preferences", {})
updates = {}
if "pinned" not in prefs:
updates["agent_preferences.pinned"] = []
if "shared_with_me" not in prefs:
updates["agent_preferences.shared_with_me"] = []
if updates:
users_collection.update_one({"user_id": user_id}, {"$set": updates})
user_doc = users_collection.find_one({"user_id": user_id})
return user_doc
def resolve_tool_details(tool_ids):
"""
Resolve tool IDs to their details.
Args:
tool_ids: List of tool IDs
Returns:
List of tool details with id, name, and display_name
"""
tools = user_tools_collection.find(
{"_id": {"$in": [ObjectId(tid) for tid in tool_ids]}}
)
return [
{
"id": str(tool["_id"]),
"name": tool.get("name", ""),
"display_name": tool.get("displayName", tool.get("name", "")),
}
for tool in tools
]
def get_vector_store(source_id):
"""
Get the Vector Store for a given source ID.
Args:
source_id (str): source id of the document
Returns:
Vector store instance
"""
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
source_id=source_id,
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
return store
def handle_image_upload(
request, existing_url: str, user: str, storage, base_path: str = "attachments/"
) -> Tuple[str, Optional[Response]]:
"""
Handle image file upload from request.
Args:
request: Flask request object
existing_url: Existing image URL (fallback)
user: User ID
storage: Storage instance
base_path: Base path for upload
Returns:
Tuple of (image_url, error_response)
"""
image_url = existing_url
if "image" in request.files:
file = request.files["image"]
if file.filename != "":
filename = secure_filename(file.filename)
upload_path = f"{settings.UPLOAD_FOLDER.rstrip('/')}/{user}/{base_path.rstrip('/')}/{uuid.uuid4()}_{filename}"
try:
storage.save_file(file, upload_path, storage_class="STANDARD")
image_url = upload_path
except Exception as e:
current_app.logger.error(f"Error uploading image: {e}")
return None, make_response(
jsonify({"success": False, "message": "Image upload failed"}),
400,
)
return image_url, None
def require_agent(func):
"""
Decorator to require valid agent webhook token.
Args:
func: Function to decorate
Returns:
Wrapped function
"""
@wraps(func)
def wrapper(*args, **kwargs):
webhook_token = kwargs.get("webhook_token")
if not webhook_token:
return make_response(
jsonify({"success": False, "message": "Webhook token missing"}), 400
)
agent = agents_collection.find_one(
{"incoming_webhook_token": webhook_token}, {"_id": 1}
)
if not agent:
current_app.logger.warning(
f"Webhook attempt with invalid token: {webhook_token}"
)
return make_response(
jsonify({"success": False, "message": "Agent not found"}), 404
)
kwargs["agent"] = agent
kwargs["agent_id_str"] = str(agent["_id"])
return func(*args, **kwargs)
return wrapper

View File

@@ -1,5 +0,0 @@
"""Conversation management module."""
from .routes import conversations_ns
__all__ = ["conversations_ns"]

View File

@@ -1,280 +0,0 @@
"""Conversation management routes."""
import datetime
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import attachments_collection, conversations_collection
from application.utils import check_required_fields
conversations_ns = Namespace(
"conversations", description="Conversation management operations", path="/api"
)
@conversations_ns.route("/delete_conversation")
class DeleteConversation(Resource):
@api.doc(
description="Deletes a conversation by ID",
params={"id": "The ID of the conversation to delete"},
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
conversation_id = request.args.get("id")
if not conversation_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
conversations_collection.delete_one(
{"_id": ObjectId(conversation_id), "user": decoded_token["sub"]}
)
except Exception as err:
current_app.logger.error(
f"Error deleting conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@conversations_ns.route("/delete_all_conversations")
class DeleteAllConversations(Resource):
@api.doc(
description="Deletes all conversations for a specific user",
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user_id = decoded_token.get("sub")
try:
conversations_collection.delete_many({"user": user_id})
except Exception as err:
current_app.logger.error(
f"Error deleting all conversations: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@conversations_ns.route("/get_conversations")
class GetConversations(Resource):
@api.doc(
description="Retrieve a list of the latest 30 conversations (excluding API key conversations)",
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
try:
conversations = (
conversations_collection.find(
{
"$or": [
{"api_key": {"$exists": False}},
{"agent_id": {"$exists": True}},
],
"user": decoded_token.get("sub"),
}
)
.sort("date", -1)
.limit(30)
)
list_conversations = [
{
"id": str(conversation["_id"]),
"name": conversation["name"],
"agent_id": conversation.get("agent_id", None),
"is_shared_usage": conversation.get("is_shared_usage", False),
"shared_token": conversation.get("shared_token", None),
}
for conversation in conversations
]
except Exception as err:
current_app.logger.error(
f"Error retrieving conversations: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify(list_conversations), 200)
@conversations_ns.route("/get_single_conversation")
class GetSingleConversation(Resource):
@api.doc(
description="Retrieve a single conversation by ID",
params={"id": "The conversation ID"},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
conversation_id = request.args.get("id")
if not conversation_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
conversation = conversations_collection.find_one(
{"_id": ObjectId(conversation_id), "user": decoded_token.get("sub")}
)
if not conversation:
return make_response(jsonify({"status": "not found"}), 404)
# Process queries to include attachment names
queries = conversation["queries"]
for query in queries:
if "attachments" in query and query["attachments"]:
attachment_details = []
for attachment_id in query["attachments"]:
try:
attachment = attachments_collection.find_one(
{"_id": ObjectId(attachment_id)}
)
if attachment:
attachment_details.append(
{
"id": str(attachment["_id"]),
"fileName": attachment.get(
"filename", "Unknown file"
),
}
)
except Exception as e:
current_app.logger.error(
f"Error retrieving attachment {attachment_id}: {e}",
exc_info=True,
)
query["attachments"] = attachment_details
except Exception as err:
current_app.logger.error(
f"Error retrieving conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
data = {
"queries": queries,
"agent_id": conversation.get("agent_id"),
"is_shared_usage": conversation.get("is_shared_usage", False),
"shared_token": conversation.get("shared_token", None),
}
return make_response(jsonify(data), 200)
@conversations_ns.route("/update_conversation_name")
class UpdateConversationName(Resource):
@api.expect(
api.model(
"UpdateConversationModel",
{
"id": fields.String(required=True, description="Conversation ID"),
"name": fields.String(
required=True, description="New name of the conversation"
),
},
)
)
@api.doc(
description="Updates the name of a conversation",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.get_json()
required_fields = ["id", "name"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
conversations_collection.update_one(
{"_id": ObjectId(data["id"]), "user": decoded_token.get("sub")},
{"$set": {"name": data["name"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating conversation name: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@conversations_ns.route("/feedback")
class SubmitFeedback(Resource):
@api.expect(
api.model(
"FeedbackModel",
{
"question": fields.String(
required=False, description="The user question"
),
"answer": fields.String(required=False, description="The AI answer"),
"feedback": fields.String(required=True, description="User feedback"),
"question_index": fields.Integer(
required=True,
description="The question number in that particular conversation",
),
"conversation_id": fields.String(
required=True, description="id of the particular conversation"
),
"api_key": fields.String(description="Optional API key"),
},
)
)
@api.doc(
description="Submit feedback for a conversation",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.get_json()
required_fields = ["feedback", "conversation_id", "question_index"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
if data["feedback"] is None:
# Remove feedback and feedback_timestamp if feedback is null
conversations_collection.update_one(
{
"_id": ObjectId(data["conversation_id"]),
"user": decoded_token.get("sub"),
f"queries.{data['question_index']}": {"$exists": True},
},
{
"$unset": {
f"queries.{data['question_index']}.feedback": "",
f"queries.{data['question_index']}.feedback_timestamp": "",
}
},
)
else:
# Set feedback and feedback_timestamp if feedback has a value
conversations_collection.update_one(
{
"_id": ObjectId(data["conversation_id"]),
"user": decoded_token.get("sub"),
f"queries.{data['question_index']}": {"$exists": True},
},
{
"$set": {
f"queries.{data['question_index']}.feedback": data[
"feedback"
],
f"queries.{data['question_index']}.feedback_timestamp": datetime.datetime.now(
datetime.timezone.utc
),
}
},
)
except Exception as err:
current_app.logger.error(f"Error submitting feedback: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)

View File

@@ -1,3 +0,0 @@
from .routes import models_ns
__all__ = ["models_ns"]

View File

@@ -1,25 +0,0 @@
from flask import current_app, jsonify, make_response
from flask_restx import Namespace, Resource
from application.core.model_settings import ModelRegistry
models_ns = Namespace("models", description="Available models", path="/api")
@models_ns.route("/models")
class ModelsListResource(Resource):
def get(self):
"""Get list of available models with their capabilities."""
try:
registry = ModelRegistry.get_instance()
models = registry.get_enabled_models()
response = {
"models": [model.to_dict() for model in models],
"default_model_id": registry.default_model_id,
"count": len(models),
}
except Exception as err:
current_app.logger.error(f"Error fetching models: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
return make_response(jsonify(response), 200)

View File

@@ -1,5 +0,0 @@
"""Prompts module."""
from .routes import prompts_ns
__all__ = ["prompts_ns"]

View File

@@ -1,191 +0,0 @@
"""Prompt management routes."""
import os
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import current_dir, prompts_collection
from application.utils import check_required_fields
prompts_ns = Namespace(
"prompts", description="Prompt management operations", path="/api"
)
@prompts_ns.route("/create_prompt")
class CreatePrompt(Resource):
create_prompt_model = api.model(
"CreatePromptModel",
{
"content": fields.String(
required=True, description="Content of the prompt"
),
"name": fields.String(required=True, description="Name of the prompt"),
},
)
@api.expect(create_prompt_model)
@api.doc(description="Create a new prompt")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.get_json()
required_fields = ["content", "name"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
user = decoded_token.get("sub")
try:
resp = prompts_collection.insert_one(
{
"name": data["name"],
"content": data["content"],
"user": user,
}
)
new_id = str(resp.inserted_id)
except Exception as err:
current_app.logger.error(f"Error creating prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"id": new_id}), 200)
@prompts_ns.route("/get_prompts")
class GetPrompts(Resource):
@api.doc(description="Get all prompts for the user")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
try:
prompts = prompts_collection.find({"user": user})
list_prompts = [
{"id": "default", "name": "default", "type": "public"},
{"id": "creative", "name": "creative", "type": "public"},
{"id": "strict", "name": "strict", "type": "public"},
]
for prompt in prompts:
list_prompts.append(
{
"id": str(prompt["_id"]),
"name": prompt["name"],
"type": "private",
}
)
except Exception as err:
current_app.logger.error(f"Error retrieving prompts: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify(list_prompts), 200)
@prompts_ns.route("/get_single_prompt")
class GetSinglePrompt(Resource):
@api.doc(params={"id": "ID of the prompt"}, description="Get a single prompt by ID")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
prompt_id = request.args.get("id")
if not prompt_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
if prompt_id == "default":
with open(
os.path.join(current_dir, "prompts", "chat_combine_default.txt"),
"r",
) as f:
chat_combine_template = f.read()
return make_response(jsonify({"content": chat_combine_template}), 200)
elif prompt_id == "creative":
with open(
os.path.join(current_dir, "prompts", "chat_combine_creative.txt"),
"r",
) as f:
chat_reduce_creative = f.read()
return make_response(jsonify({"content": chat_reduce_creative}), 200)
elif prompt_id == "strict":
with open(
os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r"
) as f:
chat_reduce_strict = f.read()
return make_response(jsonify({"content": chat_reduce_strict}), 200)
prompt = prompts_collection.find_one(
{"_id": ObjectId(prompt_id), "user": user}
)
except Exception as err:
current_app.logger.error(f"Error retrieving prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"content": prompt["content"]}), 200)
@prompts_ns.route("/delete_prompt")
class DeletePrompt(Resource):
delete_prompt_model = api.model(
"DeletePromptModel",
{"id": fields.String(required=True, description="Prompt ID to delete")},
)
@api.expect(delete_prompt_model)
@api.doc(description="Delete a prompt by ID")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
prompts_collection.delete_one({"_id": ObjectId(data["id"]), "user": user})
except Exception as err:
current_app.logger.error(f"Error deleting prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@prompts_ns.route("/update_prompt")
class UpdatePrompt(Resource):
update_prompt_model = api.model(
"UpdatePromptModel",
{
"id": fields.String(required=True, description="Prompt ID to update"),
"name": fields.String(required=True, description="New name of the prompt"),
"content": fields.String(
required=True, description="New content of the prompt"
),
},
)
@api.expect(update_prompt_model)
@api.doc(description="Update an existing prompt")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "name", "content"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
prompts_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"name": data["name"], "content": data["content"]}},
)
except Exception as err:
current_app.logger.error(f"Error updating prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +0,0 @@
"""Sharing module."""
from .routes import sharing_ns
__all__ = ["sharing_ns"]

View File

@@ -1,289 +0,0 @@
"""Conversation sharing routes."""
import uuid
from bson.binary import Binary, UuidRepresentation
from bson.dbref import DBRef
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, inputs, Namespace, Resource
from application.api import api
from application.api.user.base import (
agents_collection,
attachments_collection,
conversations_collection,
shared_conversations_collections,
)
from application.utils import check_required_fields
sharing_ns = Namespace(
"sharing", description="Conversation sharing operations", path="/api"
)
@sharing_ns.route("/share")
class ShareConversation(Resource):
share_conversation_model = api.model(
"ShareConversationModel",
{
"conversation_id": fields.String(
required=True, description="Conversation ID"
),
"user": fields.String(description="User ID (optional)"),
"prompt_id": fields.String(description="Prompt ID (optional)"),
"chunks": fields.Integer(description="Chunks count (optional)"),
},
)
@api.expect(share_conversation_model)
@api.doc(description="Share a conversation")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["conversation_id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
is_promptable = request.args.get("isPromptable", type=inputs.boolean)
if is_promptable is None:
return make_response(
jsonify({"success": False, "message": "isPromptable is required"}), 400
)
conversation_id = data["conversation_id"]
try:
conversation = conversations_collection.find_one(
{"_id": ObjectId(conversation_id)}
)
if conversation is None:
return make_response(
jsonify(
{
"status": "error",
"message": "Conversation does not exist",
}
),
404,
)
current_n_queries = len(conversation["queries"])
explicit_binary = Binary.from_uuid(
uuid.uuid4(), UuidRepresentation.STANDARD
)
if is_promptable:
prompt_id = data.get("prompt_id", "default")
chunks = data.get("chunks", "2")
name = conversation["name"] + "(shared)"
new_api_key_data = {
"prompt_id": prompt_id,
"chunks": chunks,
"user": user,
}
if "source" in data and ObjectId.is_valid(data["source"]):
new_api_key_data["source"] = DBRef(
"sources", ObjectId(data["source"])
)
if "retriever" in data:
new_api_key_data["retriever"] = data["retriever"]
pre_existing_api_document = agents_collection.find_one(new_api_key_data)
if pre_existing_api_document:
api_uuid = pre_existing_api_document["key"]
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
if pre_existing is not None:
return make_response(
jsonify(
{
"success": True,
"identifier": str(pre_existing["uuid"].as_uuid()),
}
),
200,
)
else:
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
return make_response(
jsonify(
{
"success": True,
"identifier": str(explicit_binary.as_uuid()),
}
),
201,
)
else:
api_uuid = str(uuid.uuid4())
new_api_key_data["key"] = api_uuid
new_api_key_data["name"] = name
if "source" in data and ObjectId.is_valid(data["source"]):
new_api_key_data["source"] = DBRef(
"sources", ObjectId(data["source"])
)
if "retriever" in data:
new_api_key_data["retriever"] = data["retriever"]
agents_collection.insert_one(new_api_key_data)
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
return make_response(
jsonify(
{
"success": True,
"identifier": str(explicit_binary.as_uuid()),
}
),
201,
)
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
}
)
if pre_existing is not None:
return make_response(
jsonify(
{
"success": True,
"identifier": str(pre_existing["uuid"].as_uuid()),
}
),
200,
)
else:
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
}
)
return make_response(
jsonify(
{"success": True, "identifier": str(explicit_binary.as_uuid())}
),
201,
)
except Exception as err:
current_app.logger.error(
f"Error sharing conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
@sharing_ns.route("/shared_conversation/<string:identifier>")
class GetPubliclySharedConversations(Resource):
@api.doc(description="Get publicly shared conversations by identifier")
def get(self, identifier: str):
try:
query_uuid = Binary.from_uuid(
uuid.UUID(identifier), UuidRepresentation.STANDARD
)
shared = shared_conversations_collections.find_one({"uuid": query_uuid})
conversation_queries = []
if (
shared
and "conversation_id" in shared
):
# conversation_id is now stored as an ObjectId, not a DBRef
conversation_id = shared["conversation_id"]
conversation = conversations_collection.find_one(
{"_id": conversation_id}
)
if conversation is None:
return make_response(
jsonify(
{
"success": False,
"error": "might have broken url or the conversation does not exist",
}
),
404,
)
conversation_queries = conversation["queries"][
: (shared["first_n_queries"])
]
for query in conversation_queries:
if "attachments" in query and query["attachments"]:
attachment_details = []
for attachment_id in query["attachments"]:
try:
attachment = attachments_collection.find_one(
{"_id": ObjectId(attachment_id)}
)
if attachment:
attachment_details.append(
{
"id": str(attachment["_id"]),
"fileName": attachment.get(
"filename", "Unknown file"
),
}
)
except Exception as e:
current_app.logger.error(
f"Error retrieving attachment {attachment_id}: {e}",
exc_info=True,
)
query["attachments"] = attachment_details
else:
return make_response(
jsonify(
{
"success": False,
"error": "might have broken url or the conversation does not exist",
}
),
404,
)
date = conversation["_id"].generation_time.isoformat()
res = {
"success": True,
"queries": conversation_queries,
"title": conversation["name"],
"timestamp": date,
}
if shared["isPromptable"] and "api_key" in shared:
res["api_key"] = shared["api_key"]
return make_response(jsonify(res), 200)
except Exception as err:
current_app.logger.error(
f"Error getting shared conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)

View File

@@ -1,7 +0,0 @@
"""Sources module."""
from .chunks import sources_chunks_ns
from .routes import sources_ns
from .upload import sources_upload_ns
__all__ = ["sources_ns", "sources_chunks_ns", "sources_upload_ns"]

View File

@@ -1,278 +0,0 @@
"""Source document management chunk management."""
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import get_vector_store, sources_collection
from application.utils import check_required_fields, num_tokens_from_string
sources_chunks_ns = Namespace(
"sources", description="Source document management operations", path="/api"
)
@sources_chunks_ns.route("/get_chunks")
class GetChunks(Resource):
@api.doc(
description="Retrieves chunks from a document, optionally filtered by file path and search term",
params={
"id": "The document ID",
"page": "Page number for pagination",
"per_page": "Number of chunks per page",
"path": "Optional: Filter chunks by relative file path",
"search": "Optional: Search term to filter chunks by title or content",
},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
doc_id = request.args.get("id")
page = int(request.args.get("page", 1))
per_page = int(request.args.get("per_page", 10))
path = request.args.get("path")
search_term = request.args.get("search", "").strip().lower()
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
chunks = store.get_chunks()
filtered_chunks = []
for chunk in chunks:
metadata = chunk.get("metadata", {})
# Filter by path if provided
if path:
chunk_source = metadata.get("source", "")
# Check if the chunk's source matches the requested path
if not chunk_source or not chunk_source.endswith(path):
continue
# Filter by search term if provided
if search_term:
text_match = search_term in chunk.get("text", "").lower()
title_match = search_term in metadata.get("title", "").lower()
if not (text_match or title_match):
continue
filtered_chunks.append(chunk)
chunks = filtered_chunks
total_chunks = len(chunks)
start = (page - 1) * per_page
end = start + per_page
paginated_chunks = chunks[start:end]
return make_response(
jsonify(
{
"page": page,
"per_page": per_page,
"total": total_chunks,
"chunks": paginated_chunks,
"path": path if path else None,
"search": search_term if search_term else None,
}
),
200,
)
except Exception as e:
current_app.logger.error(f"Error getting chunks: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
@sources_chunks_ns.route("/add_chunk")
class AddChunk(Resource):
@api.expect(
api.model(
"AddChunkModel",
{
"id": fields.String(required=True, description="Document ID"),
"text": fields.String(required=True, description="Text of the chunk"),
"metadata": fields.Raw(
required=False,
description="Metadata associated with the chunk",
),
},
)
)
@api.doc(
description="Adds a new chunk to the document",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "text"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
doc_id = data.get("id")
text = data.get("text")
metadata = data.get("metadata", {})
token_count = num_tokens_from_string(text)
metadata["token_count"] = token_count
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
chunk_id = store.add_chunk(text, metadata)
return make_response(
jsonify({"message": "Chunk added successfully", "chunk_id": chunk_id}),
201,
)
except Exception as e:
current_app.logger.error(f"Error adding chunk: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
@sources_chunks_ns.route("/delete_chunk")
class DeleteChunk(Resource):
@api.doc(
description="Deletes a specific chunk from the document.",
params={"id": "The document ID", "chunk_id": "The ID of the chunk to delete"},
)
def delete(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
doc_id = request.args.get("id")
chunk_id = request.args.get("chunk_id")
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
deleted = store.delete_chunk(chunk_id)
if deleted:
return make_response(
jsonify({"message": "Chunk deleted successfully"}), 200
)
else:
return make_response(
jsonify({"message": "Chunk not found or could not be deleted"}),
404,
)
except Exception as e:
current_app.logger.error(f"Error deleting chunk: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
@sources_chunks_ns.route("/update_chunk")
class UpdateChunk(Resource):
@api.expect(
api.model(
"UpdateChunkModel",
{
"id": fields.String(required=True, description="Document ID"),
"chunk_id": fields.String(
required=True, description="Chunk ID to update"
),
"text": fields.String(
required=False, description="New text of the chunk"
),
"metadata": fields.Raw(
required=False,
description="Updated metadata associated with the chunk",
),
},
)
)
@api.doc(
description="Updates an existing chunk in the document.",
)
def put(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "chunk_id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
doc_id = data.get("id")
chunk_id = data.get("chunk_id")
text = data.get("text")
metadata = data.get("metadata")
if text is not None:
token_count = num_tokens_from_string(text)
if metadata is None:
metadata = {}
metadata["token_count"] = token_count
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
chunks = store.get_chunks()
existing_chunk = next((c for c in chunks if c["doc_id"] == chunk_id), None)
if not existing_chunk:
return make_response(jsonify({"error": "Chunk not found"}), 404)
new_text = text if text is not None else existing_chunk["text"]
if metadata is not None:
new_metadata = existing_chunk["metadata"].copy()
new_metadata.update(metadata)
else:
new_metadata = existing_chunk["metadata"].copy()
if text is not None:
new_metadata["token_count"] = num_tokens_from_string(new_text)
try:
new_chunk_id = store.add_chunk(new_text, new_metadata)
deleted = store.delete_chunk(chunk_id)
if not deleted:
current_app.logger.warning(
f"Failed to delete old chunk {chunk_id}, but new chunk {new_chunk_id} was created"
)
return make_response(
jsonify(
{
"message": "Chunk updated successfully",
"chunk_id": new_chunk_id,
"original_chunk_id": chunk_id,
}
),
200,
)
except Exception as add_error:
current_app.logger.error(f"Failed to add updated chunk: {add_error}")
return make_response(
jsonify({"error": "Failed to update chunk - addition failed"}), 500
)
except Exception as e:
current_app.logger.error(f"Error updating chunk: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)

View File

@@ -1,323 +0,0 @@
"""Source document management routes."""
import json
import math
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, redirect, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import sources_collection
from application.core.settings import settings
from application.storage.storage_creator import StorageCreator
from application.utils import check_required_fields
from application.vectorstore.vector_creator import VectorCreator
sources_ns = Namespace(
"sources", description="Source document management operations", path="/api"
)
@sources_ns.route("/sources")
class CombinedJson(Resource):
@api.doc(description="Provide JSON file with combined available indexes")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = [
{
"name": "Default",
"date": "default",
"model": settings.EMBEDDINGS_NAME,
"location": "remote",
"tokens": "",
"retriever": "classic",
}
]
try:
for index in sources_collection.find({"user": user}).sort("date", -1):
data.append(
{
"id": str(index["_id"]),
"name": index.get("name"),
"date": index.get("date"),
"model": settings.EMBEDDINGS_NAME,
"location": "local",
"tokens": index.get("tokens", ""),
"retriever": index.get("retriever", "classic"),
"syncFrequency": index.get("sync_frequency", ""),
"is_nested": bool(index.get("directory_structure")),
"type": index.get(
"type", "file"
), # Add type field with default "file"
}
)
except Exception as err:
current_app.logger.error(f"Error retrieving sources: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify(data), 200)
@sources_ns.route("/sources/paginated")
class PaginatedSources(Resource):
@api.doc(description="Get document with pagination, sorting and filtering")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
sort_field = request.args.get("sort", "date") # Default to 'date'
sort_order = request.args.get("order", "desc") # Default to 'desc'
page = int(request.args.get("page", 1)) # Default to 1
rows_per_page = int(request.args.get("rows", 10)) # Default to 10
# add .strip() to remove leading and trailing whitespaces
search_term = request.args.get(
"search", ""
).strip() # add search for filter documents
# Prepare query for filtering
query = {"user": user}
if search_term:
query["name"] = {
"$regex": search_term,
"$options": "i", # using case-insensitive search
}
total_documents = sources_collection.count_documents(query)
total_pages = max(1, math.ceil(total_documents / rows_per_page))
page = min(
max(1, page), total_pages
) # add this to make sure page inbound is within the range
sort_order = 1 if sort_order == "asc" else -1
skip = (page - 1) * rows_per_page
try:
documents = (
sources_collection.find(query)
.sort(sort_field, sort_order)
.skip(skip)
.limit(rows_per_page)
)
paginated_docs = []
for doc in documents:
doc_data = {
"id": str(doc["_id"]),
"name": doc.get("name", ""),
"date": doc.get("date", ""),
"model": settings.EMBEDDINGS_NAME,
"location": "local",
"tokens": doc.get("tokens", ""),
"retriever": doc.get("retriever", "classic"),
"syncFrequency": doc.get("sync_frequency", ""),
"isNested": bool(doc.get("directory_structure")),
"type": doc.get("type", "file"),
}
paginated_docs.append(doc_data)
response = {
"total": total_documents,
"totalPages": total_pages,
"currentPage": page,
"paginated": paginated_docs,
}
return make_response(jsonify(response), 200)
except Exception as err:
current_app.logger.error(
f"Error retrieving paginated sources: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
@sources_ns.route("/delete_by_ids")
class DeleteByIds(Resource):
@api.doc(
description="Deletes documents from the vector store by IDs",
params={"path": "Comma-separated list of IDs"},
)
def get(self):
ids = request.args.get("path")
if not ids:
return make_response(
jsonify({"success": False, "message": "Missing required fields"}), 400
)
try:
result = sources_collection.delete_index(ids=ids)
if result:
return make_response(jsonify({"success": True}), 200)
except Exception as err:
current_app.logger.error(f"Error deleting indexes: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": False}), 400)
@sources_ns.route("/delete_old")
class DeleteOldIndexes(Resource):
@api.doc(
description="Deletes old indexes and associated files",
params={"source_id": "The source ID to delete"},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
source_id = request.args.get("source_id")
if not source_id:
return make_response(
jsonify({"success": False, "message": "Missing required fields"}), 400
)
doc = sources_collection.find_one(
{"_id": ObjectId(source_id), "user": decoded_token.get("sub")}
)
if not doc:
return make_response(jsonify({"status": "not found"}), 404)
storage = StorageCreator.get_storage()
try:
# Delete vector index
if settings.VECTOR_STORE == "faiss":
index_path = f"indexes/{str(doc['_id'])}"
if storage.file_exists(f"{index_path}/index.faiss"):
storage.delete_file(f"{index_path}/index.faiss")
if storage.file_exists(f"{index_path}/index.pkl"):
storage.delete_file(f"{index_path}/index.pkl")
else:
vectorstore = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, source_id=str(doc["_id"])
)
vectorstore.delete_index()
if "file_path" in doc and doc["file_path"]:
file_path = doc["file_path"]
if storage.is_directory(file_path):
files = storage.list_files(file_path)
for f in files:
storage.delete_file(f)
else:
storage.delete_file(file_path)
except FileNotFoundError:
pass
except Exception as err:
current_app.logger.error(
f"Error deleting files and indexes: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
sources_collection.delete_one({"_id": ObjectId(source_id)})
return make_response(jsonify({"success": True}), 200)
@sources_ns.route("/combine")
class RedirectToSources(Resource):
@api.doc(
description="Redirects /api/combine to /api/sources for backward compatibility"
)
def get(self):
return redirect("/api/sources", code=301)
@sources_ns.route("/manage_sync")
class ManageSync(Resource):
manage_sync_model = api.model(
"ManageSyncModel",
{
"source_id": fields.String(required=True, description="Source ID"),
"sync_frequency": fields.String(
required=True,
description="Sync frequency (never, daily, weekly, monthly)",
),
},
)
@api.expect(manage_sync_model)
@api.doc(description="Manage sync frequency for sources")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["source_id", "sync_frequency"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
source_id = data["source_id"]
sync_frequency = data["sync_frequency"]
if sync_frequency not in ["never", "daily", "weekly", "monthly"]:
return make_response(
jsonify({"success": False, "message": "Invalid frequency"}), 400
)
update_data = {"$set": {"sync_frequency": sync_frequency}}
try:
sources_collection.update_one(
{
"_id": ObjectId(source_id),
"user": user,
},
update_data,
)
except Exception as err:
current_app.logger.error(
f"Error updating sync frequency: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@sources_ns.route("/directory_structure")
class DirectoryStructure(Resource):
@api.doc(
description="Get the directory structure for a document",
params={"id": "The document ID"},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
doc_id = request.args.get("id")
if not doc_id:
return make_response(jsonify({"error": "Document ID is required"}), 400)
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid document ID"}), 400)
try:
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
directory_structure = doc.get("directory_structure", {})
base_path = doc.get("file_path", "")
provider = None
remote_data = doc.get("remote_data")
try:
if isinstance(remote_data, str) and remote_data:
remote_data_obj = json.loads(remote_data)
provider = remote_data_obj.get("provider")
except Exception as e:
current_app.logger.warning(
f"Failed to parse remote_data for doc {doc_id}: {e}"
)
return make_response(
jsonify(
{
"success": True,
"directory_structure": directory_structure,
"base_path": base_path,
"provider": provider,
}
),
200,
)
except Exception as e:
current_app.logger.error(
f"Error retrieving directory structure: {e}", exc_info=True
)
return make_response(jsonify({"success": False, "error": str(e)}), 500)

View File

@@ -1,583 +0,0 @@
"""Source document management upload functionality."""
import json
import os
import tempfile
import zipfile
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import sources_collection
from application.api.user.tasks import ingest, ingest_connector_task, ingest_remote
from application.core.settings import settings
from application.parser.connectors.connector_creator import ConnectorCreator
from application.storage.storage_creator import StorageCreator
from application.utils import check_required_fields, safe_filename
sources_upload_ns = Namespace(
"sources", description="Source document management operations", path="/api"
)
@sources_upload_ns.route("/upload")
class UploadFile(Resource):
@api.expect(
api.model(
"UploadModel",
{
"user": fields.String(required=True, description="User ID"),
"name": fields.String(required=True, description="Job name"),
"file": fields.Raw(required=True, description="File(s) to upload"),
},
)
)
@api.doc(
description="Uploads a file to be vectorized and indexed",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.form
files = request.files.getlist("file")
required_fields = ["user", "name"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields or not files or all(file.filename == "" for file in files):
return make_response(
jsonify(
{
"status": "error",
"message": "Missing required fields or files",
}
),
400,
)
user = decoded_token.get("sub")
job_name = request.form["name"]
# Create safe versions for filesystem operations
safe_user = safe_filename(user)
dir_name = safe_filename(job_name)
base_path = f"{settings.UPLOAD_FOLDER}/{safe_user}/{dir_name}"
try:
storage = StorageCreator.get_storage()
for file in files:
original_filename = file.filename
safe_file = safe_filename(original_filename)
with tempfile.TemporaryDirectory() as temp_dir:
temp_file_path = os.path.join(temp_dir, safe_file)
file.save(temp_file_path)
if zipfile.is_zipfile(temp_file_path):
try:
with zipfile.ZipFile(temp_file_path, "r") as zip_ref:
zip_ref.extractall(path=temp_dir)
# Walk through extracted files and upload them
for root, _, files in os.walk(temp_dir):
for extracted_file in files:
if (
os.path.join(root, extracted_file)
== temp_file_path
):
continue
rel_path = os.path.relpath(
os.path.join(root, extracted_file), temp_dir
)
storage_path = f"{base_path}/{rel_path}"
with open(
os.path.join(root, extracted_file), "rb"
) as f:
storage.save_file(f, storage_path)
except Exception as e:
current_app.logger.error(
f"Error extracting zip: {e}", exc_info=True
)
# If zip extraction fails, save the original zip file
file_path = f"{base_path}/{safe_file}"
with open(temp_file_path, "rb") as f:
storage.save_file(f, file_path)
else:
# For non-zip files, save directly
file_path = f"{base_path}/{safe_file}"
with open(temp_file_path, "rb") as f:
storage.save_file(f, file_path)
task = ingest.delay(
settings.UPLOAD_FOLDER,
[
".rst",
".md",
".pdf",
".txt",
".docx",
".csv",
".epub",
".html",
".mdx",
".json",
".xlsx",
".pptx",
".png",
".jpg",
".jpeg",
],
job_name,
user,
file_path=base_path,
filename=dir_name,
)
except Exception as err:
current_app.logger.error(f"Error uploading file: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
@sources_upload_ns.route("/remote")
class UploadRemote(Resource):
@api.expect(
api.model(
"RemoteUploadModel",
{
"user": fields.String(required=True, description="User ID"),
"source": fields.String(
required=True, description="Source of the data"
),
"name": fields.String(required=True, description="Job name"),
"data": fields.String(required=True, description="Data to process"),
"repo_url": fields.String(description="GitHub repository URL"),
},
)
)
@api.doc(
description="Uploads remote source for vectorization",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.form
required_fields = ["user", "source", "name", "data"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
config = json.loads(data["data"])
source_data = None
if data["source"] == "github":
source_data = config.get("repo_url")
elif data["source"] in ["crawler", "url"]:
source_data = config.get("url")
elif data["source"] == "reddit":
source_data = config
elif data["source"] in ConnectorCreator.get_supported_connectors():
session_token = config.get("session_token")
if not session_token:
return make_response(
jsonify(
{
"success": False,
"error": f"Missing session_token in {data['source']} configuration",
}
),
400,
)
# Process file_ids
file_ids = config.get("file_ids", [])
if isinstance(file_ids, str):
file_ids = [id.strip() for id in file_ids.split(",") if id.strip()]
elif not isinstance(file_ids, list):
file_ids = []
# Process folder_ids
folder_ids = config.get("folder_ids", [])
if isinstance(folder_ids, str):
folder_ids = [
id.strip() for id in folder_ids.split(",") if id.strip()
]
elif not isinstance(folder_ids, list):
folder_ids = []
config["file_ids"] = file_ids
config["folder_ids"] = folder_ids
task = ingest_connector_task.delay(
job_name=data["name"],
user=decoded_token.get("sub"),
source_type=data["source"],
session_token=session_token,
file_ids=file_ids,
folder_ids=folder_ids,
recursive=config.get("recursive", False),
retriever=config.get("retriever", "classic"),
)
return make_response(
jsonify({"success": True, "task_id": task.id}), 200
)
task = ingest_remote.delay(
source_data=source_data,
job_name=data["name"],
user=decoded_token.get("sub"),
loader=data["source"],
)
except Exception as err:
current_app.logger.error(
f"Error uploading remote source: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
@sources_upload_ns.route("/manage_source_files")
class ManageSourceFiles(Resource):
@api.expect(
api.model(
"ManageSourceFilesModel",
{
"source_id": fields.String(
required=True, description="Source ID to modify"
),
"operation": fields.String(
required=True,
description="Operation: 'add', 'remove', or 'remove_directory'",
),
"file_paths": fields.List(
fields.String,
required=False,
description="File paths to remove (for remove operation)",
),
"directory_path": fields.String(
required=False,
description="Directory path to remove (for remove_directory operation)",
),
"file": fields.Raw(
required=False, description="Files to add (for add operation)"
),
"parent_dir": fields.String(
required=False,
description="Parent directory path relative to source root",
),
},
)
)
@api.doc(
description="Add files, remove files, or remove directories from an existing source",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(
jsonify({"success": False, "message": "Unauthorized"}), 401
)
user = decoded_token.get("sub")
source_id = request.form.get("source_id")
operation = request.form.get("operation")
if not source_id or not operation:
return make_response(
jsonify(
{
"success": False,
"message": "source_id and operation are required",
}
),
400,
)
if operation not in ["add", "remove", "remove_directory"]:
return make_response(
jsonify(
{
"success": False,
"message": "operation must be 'add', 'remove', or 'remove_directory'",
}
),
400,
)
try:
ObjectId(source_id)
except Exception:
return make_response(
jsonify({"success": False, "message": "Invalid source ID format"}), 400
)
try:
source = sources_collection.find_one(
{"_id": ObjectId(source_id), "user": user}
)
if not source:
return make_response(
jsonify(
{
"success": False,
"message": "Source not found or access denied",
}
),
404,
)
except Exception as err:
current_app.logger.error(f"Error finding source: {err}", exc_info=True)
return make_response(
jsonify({"success": False, "message": "Database error"}), 500
)
try:
storage = StorageCreator.get_storage()
source_file_path = source.get("file_path", "")
parent_dir = request.form.get("parent_dir", "")
if parent_dir and (parent_dir.startswith("/") or ".." in parent_dir):
return make_response(
jsonify(
{"success": False, "message": "Invalid parent directory path"}
),
400,
)
if operation == "add":
files = request.files.getlist("file")
if not files or all(file.filename == "" for file in files):
return make_response(
jsonify(
{
"success": False,
"message": "No files provided for add operation",
}
),
400,
)
added_files = []
target_dir = source_file_path
if parent_dir:
target_dir = f"{source_file_path}/{parent_dir}"
for file in files:
if file.filename:
safe_filename_str = safe_filename(file.filename)
file_path = f"{target_dir}/{safe_filename_str}"
# Save file to storage
storage.save_file(file, file_path)
added_files.append(safe_filename_str)
# Trigger re-ingestion pipeline
from application.api.user.tasks import reingest_source_task
task = reingest_source_task.delay(source_id=source_id, user=user)
return make_response(
jsonify(
{
"success": True,
"message": f"Added {len(added_files)} files",
"added_files": added_files,
"parent_dir": parent_dir,
"reingest_task_id": task.id,
}
),
200,
)
elif operation == "remove":
file_paths_str = request.form.get("file_paths")
if not file_paths_str:
return make_response(
jsonify(
{
"success": False,
"message": "file_paths required for remove operation",
}
),
400,
)
try:
file_paths = (
json.loads(file_paths_str)
if isinstance(file_paths_str, str)
else file_paths_str
)
except Exception:
return make_response(
jsonify(
{"success": False, "message": "Invalid file_paths format"}
),
400,
)
# Remove files from storage and directory structure
removed_files = []
for file_path in file_paths:
full_path = f"{source_file_path}/{file_path}"
# Remove from storage
if storage.file_exists(full_path):
storage.delete_file(full_path)
removed_files.append(file_path)
# Trigger re-ingestion pipeline
from application.api.user.tasks import reingest_source_task
task = reingest_source_task.delay(source_id=source_id, user=user)
return make_response(
jsonify(
{
"success": True,
"message": f"Removed {len(removed_files)} files",
"removed_files": removed_files,
"reingest_task_id": task.id,
}
),
200,
)
elif operation == "remove_directory":
directory_path = request.form.get("directory_path")
if not directory_path:
return make_response(
jsonify(
{
"success": False,
"message": "directory_path required for remove_directory operation",
}
),
400,
)
# Validate directory path (prevent path traversal)
if directory_path.startswith("/") or ".." in directory_path:
current_app.logger.warning(
f"Invalid directory path attempted for removal. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}"
)
return make_response(
jsonify(
{"success": False, "message": "Invalid directory path"}
),
400,
)
full_directory_path = (
f"{source_file_path}/{directory_path}"
if directory_path
else source_file_path
)
if not storage.is_directory(full_directory_path):
current_app.logger.warning(
f"Directory not found or is not a directory for removal. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}, "
f"Full path: {full_directory_path}"
)
return make_response(
jsonify(
{
"success": False,
"message": "Directory not found or is not a directory",
}
),
404,
)
success = storage.remove_directory(full_directory_path)
if not success:
current_app.logger.error(
f"Failed to remove directory from storage. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}, "
f"Full path: {full_directory_path}"
)
return make_response(
jsonify(
{"success": False, "message": "Failed to remove directory"}
),
500,
)
current_app.logger.info(
f"Successfully removed directory. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}, "
f"Full path: {full_directory_path}"
)
# Trigger re-ingestion pipeline
from application.api.user.tasks import reingest_source_task
task = reingest_source_task.delay(source_id=source_id, user=user)
return make_response(
jsonify(
{
"success": True,
"message": f"Successfully removed directory: {directory_path}",
"removed_directory": directory_path,
"reingest_task_id": task.id,
}
),
200,
)
except Exception as err:
error_context = f"operation={operation}, user={user}, source_id={source_id}"
if operation == "remove_directory":
directory_path = request.form.get("directory_path", "")
error_context += f", directory_path={directory_path}"
elif operation == "remove":
file_paths_str = request.form.get("file_paths", "")
error_context += f", file_paths={file_paths_str}"
elif operation == "add":
parent_dir = request.form.get("parent_dir", "")
error_context += f", parent_dir={parent_dir}"
current_app.logger.error(
f"Error managing source files: {err} ({error_context})", exc_info=True
)
return make_response(
jsonify({"success": False, "message": "Operation failed"}), 500
)
@sources_upload_ns.route("/task_status")
class TaskStatus(Resource):
task_status_model = api.model(
"TaskStatusModel",
{"task_id": fields.String(required=True, description="Task ID")},
)
@api.expect(task_status_model)
@api.doc(description="Get celery job status")
def get(self):
task_id = request.args.get("task_id")
if not task_id:
return make_response(
jsonify({"success": False, "message": "Task ID is required"}), 400
)
try:
from application.celery_init import celery
task = celery.AsyncResult(task_id)
task_meta = task.info
print(f"Task status: {task.status}")
if task.status == "PENDING":
inspect = celery.control.inspect()
active_workers = inspect.ping()
if not active_workers:
raise ConnectionError("Service unavailable")
if not isinstance(
task_meta, (dict, list, str, int, float, bool, type(None))
):
task_meta = str(task_meta) # Convert to a string representation
except ConnectionError as err:
return make_response(
jsonify({"success": False, "message": str(err)}), 503
)
except Exception as err:
current_app.logger.error(f"Error getting task status: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"status": task.status, "result": task_meta}), 200)

View File

@@ -1,20 +1,12 @@
from datetime import timedelta
from application.celery_init import celery
from application.worker import (
agent_webhook_worker,
attachment_worker,
ingest_worker,
mcp_oauth,
mcp_oauth_status,
remote_worker,
sync_worker,
)
from application.worker import ingest_worker, remote_worker, sync_worker
@celery.task(bind=True)
def ingest(self, directory, formats, job_name, user, file_path, filename):
resp = ingest_worker(self, directory, formats, job_name, file_path, filename, user)
def ingest(self, directory, formats, name_job, filename, user):
resp = ingest_worker(self, directory, formats, name_job, filename, user)
return resp
@@ -24,66 +16,12 @@ def ingest_remote(self, source_data, job_name, user, loader):
return resp
@celery.task(bind=True)
def reingest_source_task(self, source_id, user):
from application.worker import reingest_source_worker
resp = reingest_source_worker(self, source_id, user)
return resp
@celery.task(bind=True)
def schedule_syncs(self, frequency):
resp = sync_worker(self, frequency)
return resp
@celery.task(bind=True)
def store_attachment(self, file_info, user):
resp = attachment_worker(self, file_info, user)
return resp
@celery.task(bind=True)
def process_agent_webhook(self, agent_id, payload):
resp = agent_webhook_worker(self, agent_id, payload)
return resp
@celery.task(bind=True)
def ingest_connector_task(
self,
job_name,
user,
source_type,
session_token=None,
file_ids=None,
folder_ids=None,
recursive=True,
retriever="classic",
operation_mode="upload",
doc_id=None,
sync_frequency="never",
):
from application.worker import ingest_connector
resp = ingest_connector(
self,
job_name,
user,
source_type,
session_token=session_token,
file_ids=file_ids,
folder_ids=folder_ids,
recursive=recursive,
retriever=retriever,
operation_mode=operation_mode,
doc_id=doc_id,
sync_frequency=sync_frequency,
)
return resp
@celery.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
sender.add_periodic_task(
@@ -98,15 +36,3 @@ def setup_periodic_tasks(sender, **kwargs):
timedelta(days=30),
schedule_syncs.s("monthly"),
)
@celery.task(bind=True)
def mcp_oauth_task(self, config, user):
resp = mcp_oauth(self, config, user)
return resp
@celery.task(bind=True)
def mcp_oauth_status_task(self, task_id):
resp = mcp_oauth_status(self, task_id)
return resp

View File

@@ -1,6 +0,0 @@
"""Tools module."""
from .mcp import tools_mcp_ns
from .routes import tools_ns
__all__ = ["tools_ns", "tools_mcp_ns"]

View File

@@ -1,333 +0,0 @@
"""Tool management MCP server integration."""
import json
from email.quoprimime import unquote
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, redirect, request
from flask_restx import fields, Namespace, Resource
from application.agents.tools.mcp_tool import MCPOAuthManager, MCPTool
from application.api import api
from application.api.user.base import user_tools_collection
from application.cache import get_redis_instance
from application.security.encryption import encrypt_credentials
from application.utils import check_required_fields
tools_mcp_ns = Namespace("tools", description="Tool management operations", path="/api")
@tools_mcp_ns.route("/mcp_server/test")
class TestMCPServerConfig(Resource):
@api.expect(
api.model(
"MCPServerTestModel",
{
"config": fields.Raw(
required=True, description="MCP server configuration to test"
),
},
)
)
@api.doc(description="Test MCP server connection with provided configuration")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["config"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
config = data["config"]
auth_credentials = {}
auth_type = config.get("auth_type", "none")
if auth_type == "api_key" and "api_key" in config:
auth_credentials["api_key"] = config["api_key"]
if "api_key_header" in config:
auth_credentials["api_key_header"] = config["api_key_header"]
elif auth_type == "bearer" and "bearer_token" in config:
auth_credentials["bearer_token"] = config["bearer_token"]
elif auth_type == "basic":
if "username" in config:
auth_credentials["username"] = config["username"]
if "password" in config:
auth_credentials["password"] = config["password"]
test_config = config.copy()
test_config["auth_credentials"] = auth_credentials
mcp_tool = MCPTool(config=test_config, user_id=user)
result = mcp_tool.test_connection()
return make_response(jsonify(result), 200)
except Exception as e:
current_app.logger.error(f"Error testing MCP server: {e}", exc_info=True)
return make_response(
jsonify(
{"success": False, "error": f"Connection test failed: {str(e)}"}
),
500,
)
@tools_mcp_ns.route("/mcp_server/save")
class MCPServerSave(Resource):
@api.expect(
api.model(
"MCPServerSaveModel",
{
"id": fields.String(
required=False, description="Tool ID for updates (optional)"
),
"displayName": fields.String(
required=True, description="Display name for the MCP server"
),
"config": fields.Raw(
required=True, description="MCP server configuration"
),
"status": fields.Boolean(
required=False, default=True, description="Tool status"
),
},
)
)
@api.doc(description="Create or update MCP server with automatic tool discovery")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["displayName", "config"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
config = data["config"]
auth_credentials = {}
auth_type = config.get("auth_type", "none")
if auth_type == "api_key":
if "api_key" in config and config["api_key"]:
auth_credentials["api_key"] = config["api_key"]
if "api_key_header" in config:
auth_credentials["api_key_header"] = config["api_key_header"]
elif auth_type == "bearer":
if "bearer_token" in config and config["bearer_token"]:
auth_credentials["bearer_token"] = config["bearer_token"]
elif auth_type == "basic":
if "username" in config and config["username"]:
auth_credentials["username"] = config["username"]
if "password" in config and config["password"]:
auth_credentials["password"] = config["password"]
mcp_config = config.copy()
mcp_config["auth_credentials"] = auth_credentials
if auth_type == "oauth":
if not config.get("oauth_task_id"):
return make_response(
jsonify(
{
"success": False,
"error": "Connection not authorized. Please complete the OAuth authorization first.",
}
),
400,
)
redis_client = get_redis_instance()
manager = MCPOAuthManager(redis_client)
result = manager.get_oauth_status(config["oauth_task_id"])
if not result.get("status") == "completed":
return make_response(
jsonify(
{
"success": False,
"error": "OAuth failed or not completed. Please try authorizing again.",
}
),
400,
)
actions_metadata = result.get("tools", [])
elif auth_type == "none" or auth_credentials:
mcp_tool = MCPTool(config=mcp_config, user_id=user)
mcp_tool.discover_tools()
actions_metadata = mcp_tool.get_actions_metadata()
else:
raise Exception(
"No valid credentials provided for the selected authentication type"
)
storage_config = config.copy()
if auth_credentials:
encrypted_credentials_string = encrypt_credentials(
auth_credentials, user
)
storage_config["encrypted_credentials"] = encrypted_credentials_string
for field in [
"api_key",
"bearer_token",
"username",
"password",
"api_key_header",
]:
storage_config.pop(field, None)
transformed_actions = []
for action in actions_metadata:
action["active"] = True
if "parameters" in action:
if "properties" in action["parameters"]:
for param_name, param_details in action["parameters"][
"properties"
].items():
param_details["filled_by_llm"] = True
param_details["value"] = ""
transformed_actions.append(action)
tool_data = {
"name": "mcp_tool",
"displayName": data["displayName"],
"customName": data["displayName"],
"description": f"MCP Server: {storage_config.get('server_url', 'Unknown')}",
"config": storage_config,
"actions": transformed_actions,
"status": data.get("status", True),
"user": user,
}
tool_id = data.get("id")
if tool_id:
result = user_tools_collection.update_one(
{"_id": ObjectId(tool_id), "user": user, "name": "mcp_tool"},
{"$set": {k: v for k, v in tool_data.items() if k != "user"}},
)
if result.matched_count == 0:
return make_response(
jsonify(
{
"success": False,
"error": "Tool not found or access denied",
}
),
404,
)
response_data = {
"success": True,
"id": tool_id,
"message": f"MCP server updated successfully! Discovered {len(transformed_actions)} tools.",
"tools_count": len(transformed_actions),
}
else:
result = user_tools_collection.insert_one(tool_data)
tool_id = str(result.inserted_id)
response_data = {
"success": True,
"id": tool_id,
"message": f"MCP server created successfully! Discovered {len(transformed_actions)} tools.",
"tools_count": len(transformed_actions),
}
return make_response(jsonify(response_data), 200)
except Exception as e:
current_app.logger.error(f"Error saving MCP server: {e}", exc_info=True)
return make_response(
jsonify(
{"success": False, "error": f"Failed to save MCP server: {str(e)}"}
),
500,
)
@tools_mcp_ns.route("/mcp_server/callback")
class MCPOAuthCallback(Resource):
@api.expect(
api.model(
"MCPServerCallbackModel",
{
"code": fields.String(required=True, description="Authorization code"),
"state": fields.String(required=True, description="State parameter"),
"error": fields.String(
required=False, description="Error message (if any)"
),
},
)
)
@api.doc(
description="Handle OAuth callback by providing the authorization code and state"
)
def get(self):
code = request.args.get("code")
state = request.args.get("state")
error = request.args.get("error")
if error:
return redirect(
f"/api/connectors/callback-status?status=error&message=OAuth+error:+{error}.+Please+try+again+and+make+sure+to+grant+all+requested+permissions,+including+offline+access.&provider=mcp_tool"
)
if not code or not state:
return redirect(
"/api/connectors/callback-status?status=error&message=Authorization+code+or+state+not+provided.+Please+complete+the+authorization+process+and+make+sure+to+grant+offline+access.&provider=mcp_tool"
)
try:
redis_client = get_redis_instance()
if not redis_client:
return redirect(
"/api/connectors/callback-status?status=error&message=Internal+server+error:+Redis+not+available.&provider=mcp_tool"
)
code = unquote(code)
manager = MCPOAuthManager(redis_client)
success = manager.handle_oauth_callback(state, code, error)
if success:
return redirect(
"/api/connectors/callback-status?status=success&message=Authorization+code+received+successfully.+You+can+close+this+window.&provider=mcp_tool"
)
else:
return redirect(
"/api/connectors/callback-status?status=error&message=OAuth+callback+failed.&provider=mcp_tool"
)
except Exception as e:
current_app.logger.error(
f"Error handling MCP OAuth callback: {str(e)}", exc_info=True
)
return redirect(
f"/api/connectors/callback-status?status=error&message=Internal+server+error:+{str(e)}.&provider=mcp_tool"
)
@tools_mcp_ns.route("/mcp_server/oauth_status/<string:task_id>")
class MCPOAuthStatus(Resource):
def get(self, task_id):
"""
Get current status of OAuth flow.
Frontend should poll this endpoint periodically.
"""
try:
redis_client = get_redis_instance()
status_key = f"mcp_oauth_status:{task_id}"
status_data = redis_client.get(status_key)
if status_data:
status = json.loads(status_data)
return make_response(
jsonify({"success": True, "task_id": task_id, **status})
)
else:
return make_response(
jsonify(
{
"success": False,
"error": "Task not found or expired",
"task_id": task_id,
}
),
404,
)
except Exception as e:
current_app.logger.error(
f"Error getting OAuth status for task {task_id}: {str(e)}"
)
return make_response(
jsonify({"success": False, "error": str(e), "task_id": task_id}), 500
)

View File

@@ -1,416 +0,0 @@
"""Tool management routes."""
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.agents.tools.tool_manager import ToolManager
from application.api import api
from application.api.user.base import user_tools_collection
from application.security.encryption import decrypt_credentials, encrypt_credentials
from application.utils import check_required_fields, validate_function_name
tool_config = {}
tool_manager = ToolManager(config=tool_config)
tools_ns = Namespace("tools", description="Tool management operations", path="/api")
@tools_ns.route("/available_tools")
class AvailableTools(Resource):
@api.doc(description="Get available tools for a user")
def get(self):
try:
tools_metadata = []
for tool_name, tool_instance in tool_manager.tools.items():
doc = tool_instance.__doc__.strip()
lines = doc.split("\n", 1)
name = lines[0].strip()
description = lines[1].strip() if len(lines) > 1 else ""
tools_metadata.append(
{
"name": tool_name,
"displayName": name,
"description": description,
"configRequirements": tool_instance.get_config_requirements(),
}
)
except Exception as err:
current_app.logger.error(
f"Error getting available tools: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "data": tools_metadata}), 200)
@tools_ns.route("/get_tools")
class GetTools(Resource):
@api.doc(description="Get tools created by a user")
def get(self):
try:
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
tools = user_tools_collection.find({"user": user})
user_tools = []
for tool in tools:
tool_copy = {**tool}
tool_copy["id"] = str(tool["_id"])
tool_copy.pop("_id", None)
user_tools.append(tool_copy)
except Exception as err:
current_app.logger.error(f"Error getting user tools: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "tools": user_tools}), 200)
@tools_ns.route("/create_tool")
class CreateTool(Resource):
@api.expect(
api.model(
"CreateToolModel",
{
"name": fields.String(required=True, description="Name of the tool"),
"displayName": fields.String(
required=True, description="Display name for the tool"
),
"description": fields.String(
required=True, description="Tool description"
),
"config": fields.Raw(
required=True, description="Configuration of the tool"
),
"customName": fields.String(
required=False, description="Custom name for the tool"
),
"status": fields.Boolean(
required=True, description="Status of the tool"
),
},
)
)
@api.doc(description="Create a new tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = [
"name",
"displayName",
"description",
"config",
"status",
]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
tool_instance = tool_manager.tools.get(data["name"])
if not tool_instance:
return make_response(
jsonify({"success": False, "message": "Tool not found"}), 404
)
actions_metadata = tool_instance.get_actions_metadata()
transformed_actions = []
for action in actions_metadata:
action["active"] = True
if "parameters" in action:
if "properties" in action["parameters"]:
for param_name, param_details in action["parameters"][
"properties"
].items():
param_details["filled_by_llm"] = True
param_details["value"] = ""
transformed_actions.append(action)
except Exception as err:
current_app.logger.error(
f"Error getting tool actions: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
try:
new_tool = {
"user": user,
"name": data["name"],
"displayName": data["displayName"],
"description": data["description"],
"customName": data.get("customName", ""),
"actions": transformed_actions,
"config": data["config"],
"status": data["status"],
}
resp = user_tools_collection.insert_one(new_tool)
new_id = str(resp.inserted_id)
except Exception as err:
current_app.logger.error(f"Error creating tool: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"id": new_id}), 200)
@tools_ns.route("/update_tool")
class UpdateTool(Resource):
@api.expect(
api.model(
"UpdateToolModel",
{
"id": fields.String(required=True, description="Tool ID"),
"name": fields.String(description="Name of the tool"),
"displayName": fields.String(description="Display name for the tool"),
"customName": fields.String(description="Custom name for the tool"),
"description": fields.String(description="Tool description"),
"config": fields.Raw(description="Configuration of the tool"),
"actions": fields.List(
fields.Raw, description="Actions the tool can perform"
),
"status": fields.Boolean(description="Status of the tool"),
},
)
)
@api.doc(description="Update a tool by ID")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
update_data = {}
if "name" in data:
update_data["name"] = data["name"]
if "displayName" in data:
update_data["displayName"] = data["displayName"]
if "customName" in data:
update_data["customName"] = data["customName"]
if "description" in data:
update_data["description"] = data["description"]
if "actions" in data:
update_data["actions"] = data["actions"]
if "config" in data:
if "actions" in data["config"]:
for action_name in list(data["config"]["actions"].keys()):
if not validate_function_name(action_name):
return make_response(
jsonify(
{
"success": False,
"message": f"Invalid function name '{action_name}'. Function names must match pattern '^[a-zA-Z0-9_-]+$'.",
"param": "tools[].function.name",
}
),
400,
)
tool_doc = user_tools_collection.find_one(
{"_id": ObjectId(data["id"]), "user": user}
)
if tool_doc and tool_doc.get("name") == "mcp_tool":
config = data["config"]
existing_config = tool_doc.get("config", {})
storage_config = existing_config.copy()
storage_config.update(config)
existing_credentials = {}
if "encrypted_credentials" in existing_config:
existing_credentials = decrypt_credentials(
existing_config["encrypted_credentials"], user
)
auth_credentials = existing_credentials.copy()
auth_type = storage_config.get("auth_type", "none")
if auth_type == "api_key":
if "api_key" in config and config["api_key"]:
auth_credentials["api_key"] = config["api_key"]
if "api_key_header" in config:
auth_credentials["api_key_header"] = config[
"api_key_header"
]
elif auth_type == "bearer":
if "bearer_token" in config and config["bearer_token"]:
auth_credentials["bearer_token"] = config["bearer_token"]
elif "encrypted_token" in config and config["encrypted_token"]:
auth_credentials["bearer_token"] = config["encrypted_token"]
elif auth_type == "basic":
if "username" in config and config["username"]:
auth_credentials["username"] = config["username"]
if "password" in config and config["password"]:
auth_credentials["password"] = config["password"]
if auth_type != "none" and auth_credentials:
encrypted_credentials_string = encrypt_credentials(
auth_credentials, user
)
storage_config["encrypted_credentials"] = (
encrypted_credentials_string
)
elif auth_type == "none":
storage_config.pop("encrypted_credentials", None)
for field in [
"api_key",
"bearer_token",
"encrypted_token",
"username",
"password",
"api_key_header",
]:
storage_config.pop(field, None)
update_data["config"] = storage_config
else:
update_data["config"] = data["config"]
if "status" in data:
update_data["status"] = data["status"]
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": update_data},
)
except Exception as err:
current_app.logger.error(f"Error updating tool: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/update_tool_config")
class UpdateToolConfig(Resource):
@api.expect(
api.model(
"UpdateToolConfigModel",
{
"id": fields.String(required=True, description="Tool ID"),
"config": fields.Raw(
required=True, description="Configuration of the tool"
),
},
)
)
@api.doc(description="Update the configuration of a tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "config"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"config": data["config"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating tool config: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/update_tool_actions")
class UpdateToolActions(Resource):
@api.expect(
api.model(
"UpdateToolActionsModel",
{
"id": fields.String(required=True, description="Tool ID"),
"actions": fields.List(
fields.Raw,
required=True,
description="Actions the tool can perform",
),
},
)
)
@api.doc(description="Update the actions of a tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "actions"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"actions": data["actions"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating tool actions: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/update_tool_status")
class UpdateToolStatus(Resource):
@api.expect(
api.model(
"UpdateToolStatusModel",
{
"id": fields.String(required=True, description="Tool ID"),
"status": fields.Boolean(
required=True, description="Status of the tool"
),
},
)
)
@api.doc(description="Update the status of a tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "status"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"status": data["status"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating tool status: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/delete_tool")
class DeleteTool(Resource):
@api.expect(
api.model(
"DeleteToolModel",
{"id": fields.String(required=True, description="Tool ID")},
)
)
@api.doc(description="Delete a tool by ID")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
result = user_tools_collection.delete_one(
{"_id": ObjectId(data["id"]), "user": user}
)
if result.deleted_count == 0:
return {"success": False, "message": "Tool not found"}, 404
except Exception as err:
current_app.logger.error(f"Error deleting tool: {err}", exc_info=True)
return {"success": False}, 400
return {"success": True}, 200

View File

@@ -1,37 +1,28 @@
import os
import platform
import uuid
import dotenv
from flask import Flask, jsonify, redirect, request
from jose import jwt
from application.auth import handle_auth
from flask import Flask, redirect, request
from application.api.answer.routes import answer
from application.api.internal.routes import internal
from application.api.user.routes import user
from application.celery_init import celery
from application.core.logging_config import setup_logging
setup_logging()
from application.api import api # noqa: E402
from application.api.answer import answer # noqa: E402
from application.api.internal.routes import internal # noqa: E402
from application.api.user.routes import user # noqa: E402
from application.api.connector.routes import connector # noqa: E402
from application.celery_init import celery # noqa: E402
from application.core.settings import settings # noqa: E402
from application.core.settings import settings
from application.extensions import api
if platform.system() == "Windows":
import pathlib
pathlib.PosixPath = pathlib.WindowsPath
dotenv.load_dotenv()
setup_logging()
app = Flask(__name__)
app.register_blueprint(user)
app.register_blueprint(answer)
app.register_blueprint(internal)
app.register_blueprint(connector)
app.config.update(
UPLOAD_FOLDER="inputs",
CELERY_BROKER_URL=settings.CELERY_BROKER_URL,
@@ -41,24 +32,6 @@ app.config.update(
celery.config_from_object("application.celeryconfig")
api.init_app(app)
if settings.AUTH_TYPE in ("simple_jwt", "session_jwt") and not settings.JWT_SECRET_KEY:
key_file = ".jwt_secret_key"
try:
with open(key_file, "r") as f:
settings.JWT_SECRET_KEY = f.read().strip()
except FileNotFoundError:
new_key = os.urandom(32).hex()
with open(key_file, "w") as f:
f.write(new_key)
settings.JWT_SECRET_KEY = new_key
except Exception as e:
raise RuntimeError(f"Failed to setup JWT_SECRET_KEY: {e}")
SIMPLE_JWT_TOKEN = None
if settings.AUTH_TYPE == "simple_jwt":
payload = {"sub": "local"}
SIMPLE_JWT_TOKEN = jwt.encode(payload, settings.JWT_SECRET_KEY, algorithm="HS256")
print(f"Generated Simple JWT Token: {SIMPLE_JWT_TOKEN}")
@app.route("/")
def home():
@@ -68,46 +41,11 @@ def home():
return "Welcome to DocsGPT Backend!"
@app.route("/api/config")
def get_config():
response = {
"auth_type": settings.AUTH_TYPE,
"requires_auth": settings.AUTH_TYPE in ["simple_jwt", "session_jwt"],
}
return jsonify(response)
@app.route("/api/generate_token")
def generate_token():
if settings.AUTH_TYPE == "session_jwt":
new_user_id = str(uuid.uuid4())
token = jwt.encode(
{"sub": new_user_id}, settings.JWT_SECRET_KEY, algorithm="HS256"
)
return jsonify({"token": token})
return jsonify({"error": "Token generation not allowed in current auth mode"}), 400
@app.before_request
def authenticate_request():
if request.method == "OPTIONS":
return "", 200
decoded_token = handle_auth(request)
if not decoded_token:
request.decoded_token = None
elif "error" in decoded_token:
return jsonify(decoded_token), 401
else:
request.decoded_token = decoded_token
@app.after_request
def after_request(response):
response.headers.add("Access-Control-Allow-Origin", "*")
response.headers.add("Access-Control-Allow-Headers", "Content-Type, Authorization")
response.headers.add(
"Access-Control-Allow-Methods", "GET, POST, PUT, DELETE, OPTIONS"
)
response.headers.add("Access-Control-Allow-Headers", "Content-Type,Authorization")
response.headers.add("Access-Control-Allow-Methods", "GET,PUT,POST,DELETE,OPTIONS")
return response

View File

@@ -1,28 +0,0 @@
from jose import jwt
from application.core.settings import settings
def handle_auth(request, data={}):
if settings.AUTH_TYPE in ["simple_jwt", "session_jwt"]:
jwt_token = request.headers.get("Authorization")
if not jwt_token:
return None
jwt_token = jwt_token.replace("Bearer ", "")
try:
decoded_token = jwt.decode(
jwt_token,
settings.JWT_SECRET_KEY,
algorithms=["HS256"],
options={"verify_exp": False},
)
return decoded_token
except Exception as e:
return {
"message": f"Authentication error: {str(e)}",
"error": "invalid_token",
}
else:
return {"sub": "local"}

View File

@@ -1,117 +1,93 @@
import redis
import time
import json
import logging
import time
from threading import Lock
import redis
from application.core.settings import settings
from application.utils import get_hash
logger = logging.getLogger(__name__)
_redis_instance = None
_redis_creation_failed = False
_instance_lock = Lock()
def get_redis_instance():
global _redis_instance, _redis_creation_failed
if _redis_instance is None and not _redis_creation_failed:
global _redis_instance
if _redis_instance is None:
with _instance_lock:
if _redis_instance is None and not _redis_creation_failed:
if _redis_instance is None:
try:
_redis_instance = redis.Redis.from_url(
settings.CACHE_REDIS_URL, socket_connect_timeout=2
)
except ValueError as e:
logger.error(f"Invalid Redis URL: {e}")
_redis_creation_failed = True # Stop future attempts
_redis_instance = None
_redis_instance = redis.Redis.from_url(settings.CACHE_REDIS_URL, socket_connect_timeout=2)
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
_redis_instance = None # Keep trying for connection errors
_redis_instance = None
return _redis_instance
def gen_cache_key(messages, model="docgpt", tools=None):
def gen_cache_key(*messages, model="docgpt"):
if not all(isinstance(msg, dict) for msg in messages):
raise ValueError("All messages must be dictionaries.")
messages_str = json.dumps(messages)
tools_str = json.dumps(str(tools)) if tools else ""
combined = f"{model}_{messages_str}_{tools_str}"
messages_str = json.dumps(list(messages), sort_keys=True)
combined = f"{model}_{messages_str}"
cache_key = get_hash(combined)
return cache_key
def gen_cache(func):
def wrapper(self, model, messages, stream, tools=None, *args, **kwargs):
if tools is not None:
return func(self, model, messages, stream, tools, *args, **kwargs)
def wrapper(self, model, messages, *args, **kwargs):
try:
cache_key = gen_cache_key(messages, model, tools)
cache_key = gen_cache_key(*messages)
redis_client = get_redis_instance()
if redis_client:
try:
cached_response = redis_client.get(cache_key)
if cached_response:
return cached_response.decode('utf-8')
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
result = func(self, model, messages, *args, **kwargs)
if redis_client:
try:
redis_client.set(cache_key, result, ex=1800)
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
return result
except ValueError as e:
logger.error(f"Cache key generation failed: {e}")
return func(self, model, messages, stream, tools, *args, **kwargs)
redis_client = get_redis_instance()
if redis_client:
try:
cached_response = redis_client.get(cache_key)
if cached_response:
return cached_response.decode("utf-8")
except Exception as e:
logger.error(f"Error getting cached response: {e}", exc_info=True)
result = func(self, model, messages, stream, tools, *args, **kwargs)
if redis_client and isinstance(result, str):
try:
redis_client.set(cache_key, result, ex=1800)
except Exception as e:
logger.error(f"Error setting cache: {e}", exc_info=True)
return result
logger.error(e)
return "Error: No user message found in the conversation to generate a cache key."
return wrapper
def stream_cache(func):
def wrapper(self, model, messages, stream, tools=None, *args, **kwargs):
if tools is not None:
yield from func(self, model, messages, stream, tools, *args, **kwargs)
return
def wrapper(self, model, messages, stream, *args, **kwargs):
cache_key = gen_cache_key(*messages)
logger.info(f"Stream cache key: {cache_key}")
try:
cache_key = gen_cache_key(messages, model, tools)
except ValueError as e:
logger.error(f"Cache key generation failed: {e}")
yield from func(self, model, messages, stream, tools, *args, **kwargs)
return
redis_client = get_redis_instance()
if redis_client:
try:
cached_response = redis_client.get(cache_key)
if cached_response:
logger.info(f"Cache hit for stream key: {cache_key}")
cached_response = json.loads(cached_response.decode("utf-8"))
cached_response = json.loads(cached_response.decode('utf-8'))
for chunk in cached_response:
yield chunk
time.sleep(0.03) # Simulate streaming delay
time.sleep(0.03)
return
except Exception as e:
logger.error(f"Error getting cached stream: {e}", exc_info=True)
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
result = func(self, model, messages, stream, *args, **kwargs)
stream_cache_data = []
for chunk in func(self, model, messages, stream, tools, *args, **kwargs):
for chunk in result:
stream_cache_data.append(chunk)
yield chunk
stream_cache_data.append(str(chunk))
if redis_client:
try:
redis_client.set(cache_key, json.dumps(stream_cache_data), ex=1800)
logger.info(f"Stream cache saved for key: {cache_key}")
except Exception as e:
logger.error(f"Error setting stream cache: {e}", exc_info=True)
return wrapper
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
return wrapper

View File

@@ -2,22 +2,14 @@ from celery import Celery
from application.core.settings import settings
from celery.signals import setup_logging
def make_celery(app_name=__name__):
celery = Celery(
app_name,
broker=settings.CELERY_BROKER_URL,
backend=settings.CELERY_RESULT_BACKEND,
)
celery = Celery(app_name, broker=settings.CELERY_BROKER_URL, backend=settings.CELERY_RESULT_BACKEND)
celery.conf.update(settings)
return celery
@setup_logging.connect
def config_loggers(*args, **kwargs):
from application.core.logging_config import setup_logging
setup_logging()
celery = make_celery()

View File

@@ -1,189 +0,0 @@
"""
Model configurations for all supported LLM providers.
"""
from application.core.model_settings import (
AvailableModel,
ModelCapabilities,
ModelProvider,
)
OPENAI_ATTACHMENTS = [
"application/pdf",
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
GOOGLE_ATTACHMENTS = [
"application/pdf",
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
OPENAI_MODELS = [
AvailableModel(
id="gpt-5.1",
provider=ModelProvider.OPENAI,
display_name="GPT-5.1",
description="Flagship model with enhanced reasoning, coding, and agentic capabilities",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=200000,
),
),
AvailableModel(
id="gpt-5-mini",
provider=ModelProvider.OPENAI,
display_name="GPT-5 Mini",
description="Faster, cost-effective variant of GPT-5.1",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=200000,
),
)
]
ANTHROPIC_MODELS = [
AvailableModel(
id="claude-3-5-sonnet-20241022",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3.5 Sonnet (Latest)",
description="Latest Claude 3.5 Sonnet with enhanced capabilities",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-5-sonnet",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3.5 Sonnet",
description="Balanced performance and capability",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-opus",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3 Opus",
description="Most capable Claude model",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-haiku",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3 Haiku",
description="Fastest Claude model",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
]
GOOGLE_MODELS = [
AvailableModel(
id="gemini-flash-latest",
provider=ModelProvider.GOOGLE,
display_name="Gemini Flash (Latest)",
description="Latest experimental Gemini model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=int(1e6),
),
),
AvailableModel(
id="gemini-flash-lite-latest",
provider=ModelProvider.GOOGLE,
display_name="Gemini Flash Lite (Latest)",
description="Fast with huge context window",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=int(1e6),
),
),
AvailableModel(
id="gemini-3-pro-preview",
provider=ModelProvider.GOOGLE,
display_name="Gemini 3 Pro",
description="Most capable Gemini model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=2000000,
),
),
]
GROQ_MODELS = [
AvailableModel(
id="llama-3.3-70b-versatile",
provider=ModelProvider.GROQ,
display_name="Llama 3.3 70B",
description="Latest Llama model with high-speed inference",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=128000,
),
),
AvailableModel(
id="llama-3.1-8b-instant",
provider=ModelProvider.GROQ,
display_name="Llama 3.1 8B",
description="Ultra-fast inference",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=128000,
),
),
AvailableModel(
id="mixtral-8x7b-32768",
provider=ModelProvider.GROQ,
display_name="Mixtral 8x7B",
description="High-speed inference with tools",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=32768,
),
),
]
AZURE_OPENAI_MODELS = [
AvailableModel(
id="azure-gpt-4",
provider=ModelProvider.AZURE_OPENAI,
display_name="Azure OpenAI GPT-4",
description="Azure-hosted GPT model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=8192,
),
),
]

View File

@@ -1,236 +0,0 @@
import logging
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional
logger = logging.getLogger(__name__)
class ModelProvider(str, Enum):
OPENAI = "openai"
AZURE_OPENAI = "azure_openai"
ANTHROPIC = "anthropic"
GROQ = "groq"
GOOGLE = "google"
HUGGINGFACE = "huggingface"
LLAMA_CPP = "llama.cpp"
DOCSGPT = "docsgpt"
PREMAI = "premai"
SAGEMAKER = "sagemaker"
NOVITA = "novita"
@dataclass
class ModelCapabilities:
supports_tools: bool = False
supports_structured_output: bool = False
supports_streaming: bool = True
supported_attachment_types: List[str] = field(default_factory=list)
context_window: int = 128000
input_cost_per_token: Optional[float] = None
output_cost_per_token: Optional[float] = None
@dataclass
class AvailableModel:
id: str
provider: ModelProvider
display_name: str
description: str = ""
capabilities: ModelCapabilities = field(default_factory=ModelCapabilities)
enabled: bool = True
base_url: Optional[str] = None
def to_dict(self) -> Dict:
result = {
"id": self.id,
"provider": self.provider.value,
"display_name": self.display_name,
"description": self.description,
"supported_attachment_types": self.capabilities.supported_attachment_types,
"supports_tools": self.capabilities.supports_tools,
"supports_structured_output": self.capabilities.supports_structured_output,
"supports_streaming": self.capabilities.supports_streaming,
"context_window": self.capabilities.context_window,
"enabled": self.enabled,
}
if self.base_url:
result["base_url"] = self.base_url
return result
class ModelRegistry:
_instance = None
_initialized = False
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not ModelRegistry._initialized:
self.models: Dict[str, AvailableModel] = {}
self.default_model_id: Optional[str] = None
self._load_models()
ModelRegistry._initialized = True
@classmethod
def get_instance(cls) -> "ModelRegistry":
return cls()
def _load_models(self):
from application.core.settings import settings
self.models.clear()
self._add_docsgpt_models(settings)
if settings.OPENAI_API_KEY or (
settings.LLM_PROVIDER == "openai" and settings.API_KEY
):
self._add_openai_models(settings)
if settings.OPENAI_API_BASE or (
settings.LLM_PROVIDER == "azure_openai" and settings.API_KEY
):
self._add_azure_openai_models(settings)
if settings.ANTHROPIC_API_KEY or (
settings.LLM_PROVIDER == "anthropic" and settings.API_KEY
):
self._add_anthropic_models(settings)
if settings.GOOGLE_API_KEY or (
settings.LLM_PROVIDER == "google" and settings.API_KEY
):
self._add_google_models(settings)
if settings.GROQ_API_KEY or (
settings.LLM_PROVIDER == "groq" and settings.API_KEY
):
self._add_groq_models(settings)
if settings.HUGGINGFACE_API_KEY or (
settings.LLM_PROVIDER == "huggingface" and settings.API_KEY
):
self._add_huggingface_models(settings)
# Default model selection
if settings.LLM_NAME and settings.LLM_NAME in self.models:
self.default_model_id = settings.LLM_NAME
elif settings.LLM_PROVIDER and settings.API_KEY:
for model_id, model in self.models.items():
if model.provider.value == settings.LLM_PROVIDER:
self.default_model_id = model_id
break
else:
self.default_model_id = next(iter(self.models.keys()))
logger.info(
f"ModelRegistry loaded {len(self.models)} models, default: {self.default_model_id}"
)
def _add_openai_models(self, settings):
from application.core.model_configs import OPENAI_MODELS
if settings.OPENAI_API_KEY:
for model in OPENAI_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "openai" and settings.LLM_NAME:
for model in OPENAI_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in OPENAI_MODELS:
self.models[model.id] = model
def _add_azure_openai_models(self, settings):
from application.core.model_configs import AZURE_OPENAI_MODELS
if settings.LLM_PROVIDER == "azure_openai" and settings.LLM_NAME:
for model in AZURE_OPENAI_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in AZURE_OPENAI_MODELS:
self.models[model.id] = model
def _add_anthropic_models(self, settings):
from application.core.model_configs import ANTHROPIC_MODELS
if settings.ANTHROPIC_API_KEY:
for model in ANTHROPIC_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "anthropic" and settings.LLM_NAME:
for model in ANTHROPIC_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in ANTHROPIC_MODELS:
self.models[model.id] = model
def _add_google_models(self, settings):
from application.core.model_configs import GOOGLE_MODELS
if settings.GOOGLE_API_KEY:
for model in GOOGLE_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "google" and settings.LLM_NAME:
for model in GOOGLE_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in GOOGLE_MODELS:
self.models[model.id] = model
def _add_groq_models(self, settings):
from application.core.model_configs import GROQ_MODELS
if settings.GROQ_API_KEY:
for model in GROQ_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "groq" and settings.LLM_NAME:
for model in GROQ_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in GROQ_MODELS:
self.models[model.id] = model
def _add_docsgpt_models(self, settings):
model_id = "docsgpt-local"
model = AvailableModel(
id=model_id,
provider=ModelProvider.DOCSGPT,
display_name="DocsGPT Model",
description="Local model",
capabilities=ModelCapabilities(
supports_tools=False,
supported_attachment_types=[],
),
)
self.models[model_id] = model
def _add_huggingface_models(self, settings):
model_id = "huggingface-local"
model = AvailableModel(
id=model_id,
provider=ModelProvider.HUGGINGFACE,
display_name="Hugging Face Model",
description="Local Hugging Face model",
capabilities=ModelCapabilities(
supports_tools=False,
supported_attachment_types=[],
),
)
self.models[model_id] = model
def get_model(self, model_id: str) -> Optional[AvailableModel]:
return self.models.get(model_id)
def get_all_models(self) -> List[AvailableModel]:
return list(self.models.values())
def get_enabled_models(self) -> List[AvailableModel]:
return [m for m in self.models.values() if m.enabled]
def model_exists(self, model_id: str) -> bool:
return model_id in self.models

View File

@@ -1,91 +0,0 @@
from typing import Any, Dict, Optional
from application.core.model_settings import ModelRegistry
def get_api_key_for_provider(provider: str) -> Optional[str]:
"""Get the appropriate API key for a provider"""
from application.core.settings import settings
provider_key_map = {
"openai": settings.OPENAI_API_KEY,
"anthropic": settings.ANTHROPIC_API_KEY,
"google": settings.GOOGLE_API_KEY,
"groq": settings.GROQ_API_KEY,
"huggingface": settings.HUGGINGFACE_API_KEY,
"azure_openai": settings.API_KEY,
"docsgpt": None,
"llama.cpp": None,
}
provider_key = provider_key_map.get(provider)
if provider_key:
return provider_key
return settings.API_KEY
def get_all_available_models() -> Dict[str, Dict[str, Any]]:
"""Get all available models with metadata for API response"""
registry = ModelRegistry.get_instance()
return {model.id: model.to_dict() for model in registry.get_enabled_models()}
def validate_model_id(model_id: str) -> bool:
"""Check if a model ID exists in registry"""
registry = ModelRegistry.get_instance()
return registry.model_exists(model_id)
def get_model_capabilities(model_id: str) -> Optional[Dict[str, Any]]:
"""Get capabilities for a specific model"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return {
"supported_attachment_types": model.capabilities.supported_attachment_types,
"supports_tools": model.capabilities.supports_tools,
"supports_structured_output": model.capabilities.supports_structured_output,
"context_window": model.capabilities.context_window,
}
return None
def get_default_model_id() -> str:
"""Get the system default model ID"""
registry = ModelRegistry.get_instance()
return registry.default_model_id
def get_provider_from_model_id(model_id: str) -> Optional[str]:
"""Get the provider name for a given model_id"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.provider.value
return None
def get_token_limit(model_id: str) -> int:
"""
Get context window (token limit) for a model.
Returns model's context_window or default 128000 if model not found.
"""
from application.core.settings import settings
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.capabilities.context_window
return settings.DEFAULT_LLM_TOKEN_LIMIT
def get_base_url_for_model(model_id: str) -> Optional[str]:
"""
Get the custom base_url for a specific model if configured.
Returns None if no custom base_url is set.
"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.base_url
return None

View File

@@ -1,89 +1,38 @@
import os
from pathlib import Path
from typing import Optional
import os
from pydantic_settings import BaseSettings
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class Settings(BaseSettings):
AUTH_TYPE: Optional[str] = None # simple_jwt, session_jwt, or None
LLM_PROVIDER: str = "docsgpt"
LLM_NAME: Optional[str] = (
None # if LLM_PROVIDER is openai, LLM_NAME can be gpt-4 or gpt-3.5-turbo
)
LLM_NAME: str = "docsgpt"
MODEL_NAME: Optional[str] = None # if LLM_NAME is openai, MODEL_NAME can be gpt-4 or gpt-3.5-turbo
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
MONGO_DB_NAME: str = "docsgpt"
LLM_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
MODEL_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150
DEFAULT_LLM_TOKEN_LIMIT: int = 128000 # Fallback when model not found in registry
RESERVED_TOKENS: dict = {
"system_prompt": 500,
"current_query": 500,
"safety_buffer": 1000,
}
DEFAULT_AGENT_LIMITS: dict = {
"token_limit": 50000,
"request_limit": 500,
}
MODEL_TOKEN_LIMITS: dict = {"gpt-3.5-turbo": 4096, "claude-2": 1e5}
UPLOAD_FOLDER: str = "inputs"
PARSE_PDF_AS_IMAGE: bool = False
PARSE_IMAGE_REMOTE: bool = False
VECTOR_STORE: str = (
"faiss" # "faiss" or "elasticsearch" or "qdrant" or "milvus" or "lancedb"
)
RETRIEVERS_ENABLED: list = ["classic_rag"]
AGENT_NAME: str = "classic"
FALLBACK_LLM_PROVIDER: Optional[str] = None # provider for fallback llm
FALLBACK_LLM_NAME: Optional[str] = None # model name for fallback llm
FALLBACK_LLM_API_KEY: Optional[str] = None # api key for fallback llm
# Google Drive integration
GOOGLE_CLIENT_ID: Optional[str] = (
None # Replace with your actual Google OAuth client ID
)
GOOGLE_CLIENT_SECRET: Optional[str] = (
None # Replace with your actual Google OAuth client secret
)
CONNECTOR_REDIRECT_BASE_URI: Optional[str] = (
"http://127.0.0.1:7091/api/connectors/callback" ##add redirect url as it is to your provider's console(gcp)
)
# GitHub source
GITHUB_ACCESS_TOKEN: Optional[str] = None # PAT token with read repo access
VECTOR_STORE: str = "faiss" # "faiss" or "elasticsearch" or "qdrant" or "milvus" or "lancedb"
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search
# LLM Cache
CACHE_REDIS_URL: str = "redis://localhost:6379/2"
API_URL: str = "http://localhost:7091" # backend url for celery worker
API_KEY: Optional[str] = None # LLM api key (used by LLM_PROVIDER)
# Provider-specific API keys (for multi-model support)
OPENAI_API_KEY: Optional[str] = None
ANTHROPIC_API_KEY: Optional[str] = None
GOOGLE_API_KEY: Optional[str] = None
GROQ_API_KEY: Optional[str] = None
HUGGINGFACE_API_KEY: Optional[str] = None
EMBEDDINGS_KEY: Optional[str] = (
None # api key for embeddings (if using openai, just copy API_KEY)
)
API_KEY: Optional[str] = None # LLM api key
EMBEDDINGS_KEY: Optional[str] = None # api key for embeddings (if using openai, just copy API_KEY)
OPENAI_API_BASE: Optional[str] = None # azure openai api base url
OPENAI_API_VERSION: Optional[str] = None # azure openai api version
AZURE_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for answering
AZURE_EMBEDDINGS_DEPLOYMENT_NAME: Optional[str] = (
None # azure deployment name for embeddings
)
OPENAI_BASE_URL: Optional[str] = (
None # openai base url for open ai compatable models
)
AZURE_EMBEDDINGS_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for embeddings
OPENAI_BASE_URL: Optional[str] = None # openai base url for open ai compatable models
# elasticsearch
ELASTIC_CLOUD_ID: Optional[str] = None # cloud id for elasticsearch
@@ -116,40 +65,17 @@ class Settings(BaseSettings):
QDRANT_PATH: Optional[str] = None
QDRANT_DISTANCE_FUNC: str = "Cosine"
# PGVector vectorstore config
PGVECTOR_CONNECTION_STRING: Optional[str] = None
# Milvus vectorstore config
MILVUS_COLLECTION_NAME: Optional[str] = "docsgpt"
MILVUS_URI: Optional[str] = "./milvus_local.db" # milvus lite version as default
MILVUS_URI: Optional[str] = "./milvus_local.db" # milvus lite version as default
MILVUS_TOKEN: Optional[str] = ""
# LanceDB vectorstore config
LANCEDB_PATH: str = "/tmp/lancedb" # Path where LanceDB stores its local data
LANCEDB_TABLE_NAME: Optional[str] = (
"docsgpts" # Name of the table to use for storing vectors
)
LANCEDB_TABLE_NAME: Optional[str] = "docsgpts" # Name of the table to use for storing vectors
BRAVE_SEARCH_API_KEY: Optional[str] = None
FLASK_DEBUG_MODE: bool = False
STORAGE_TYPE: str = "local" # local or s3
URL_STRATEGY: str = "backend" # backend or s3
JWT_SECRET_KEY: str = ""
# Encryption settings
ENCRYPTION_SECRET_KEY: str = "default-docsgpt-encryption-key"
TTS_PROVIDER: str = "google_tts" # google_tts or elevenlabs
ELEVENLABS_API_KEY: Optional[str] = None
# Tool pre-fetch settings
ENABLE_TOOL_PREFETCH: bool = True
# Conversation Compression Settings
ENABLE_CONVERSATION_COMPRESSION: bool = True
COMPRESSION_THRESHOLD_PERCENTAGE: float = 0.8 # Trigger at 80% of context
COMPRESSION_MODEL_OVERRIDE: Optional[str] = None # Use different model for compression
COMPRESSION_PROMPT_VERSION: str = "v1.0" # Track prompt iterations
COMPRESSION_MAX_HISTORY_POINTS: int = 3 # Keep only last N compression points to prevent DB bloat
path = Path(__file__).parent.parent.absolute()

View File

@@ -0,0 +1,7 @@
from flask_restx import Api
api = Api(
version="1.0",
title="DocsGPT API",
description="API for DocsGPT",
)

View File

@@ -1,41 +1,30 @@
from anthropic import AI_PROMPT, Anthropic, HUMAN_PROMPT
from application.core.settings import settings
from application.llm.base import BaseLLM
from application.core.settings import settings
class AnthropicLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, base_url=None, *args, **kwargs):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
super().__init__(*args, **kwargs)
self.api_key = api_key or settings.ANTHROPIC_API_KEY or settings.API_KEY
self.api_key = (
api_key or settings.ANTHROPIC_API_KEY
) # If not provided, use a default from settings
self.user_api_key = user_api_key
# Use custom base_url if provided
if base_url:
self.anthropic = Anthropic(api_key=self.api_key, base_url=base_url)
else:
self.anthropic = Anthropic(api_key=self.api_key)
self.anthropic = Anthropic(api_key=self.api_key)
self.HUMAN_PROMPT = HUMAN_PROMPT
self.AI_PROMPT = AI_PROMPT
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
tools=None,
max_tokens=300,
**kwargs,
self, baseself, model, messages, stream=False, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
if stream:
return self.gen_stream(model, prompt, stream, max_tokens, **kwargs)
completion = self.anthropic.completions.create(
model=model,
max_tokens_to_sample=max_tokens,
@@ -45,14 +34,7 @@ class AnthropicLLM(BaseLLM):
return completion.completion
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
tools=None,
max_tokens=300,
**kwargs,
self, baseself, model, messages, stream=True, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
@@ -64,9 +46,5 @@ class AnthropicLLM(BaseLLM):
stream=True,
)
try:
for completion in stream_response:
yield completion.completion
finally:
if hasattr(stream_response, "close"):
stream_response.close()
for completion in stream_response:
yield completion.completion

Some files were not shown because too many files have changed in this diff Show More