Need vectorstores testing for all except faiss
This commit is contained in:
Pavel
2025-06-08 22:08:23 +02:00
parent c0f693d35d
commit 01ea90f39a
12 changed files with 1971 additions and 1474 deletions

View File

@@ -58,6 +58,10 @@ class BaseVectorStore(ABC):
def search(self, *args, **kwargs):
pass
@abstractmethod
def search_with_scores(self, query: str, k: int, *args, **kwargs):
pass
def is_azure_configured(self):
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME

View File

@@ -108,6 +108,46 @@ class ElasticsearchStore(BaseVectorStore):
doc_list.append(Document(page_content = hit['_source']['text'], metadata = hit['_source']['metadata']))
return doc_list
def search_with_scores(self, query: str, k: int, *args, **kwargs):
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key)
vector = embeddings.embed_query(query)
knn = {
"filter": [{"match": {"metadata.source_id.keyword": self.source_id}}],
"field": "vector",
"k": k,
"num_candidates": 100,
"query_vector": vector,
}
full_query = {
"knn": knn,
"query": {
"bool": {
"must": [
{
"match": {
"text": {
"query": question,
}
}
}
],
"filter": [{"match": {"metadata.source_id.keyword": self.source_id}}],
}
},
"rank": {"rrf": {}},
}
resp = self.docsearch.search(index=self.index_name, query=full_query['query'], size=k, knn=full_query['knn'])
docs_with_scores = []
for hit in resp['hits']['hits']:
score = hit['_score']
# Normalize the score. Elasticsearch returns a score of 1.0 + cosine similarity.
similarity = max(0, score - 1.0)
doc = Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata'])
docs_with_scores.append((doc, similarity))
return docs_with_scores
def _create_index_if_not_exists(
self, index_name, dims_length

View File

@@ -62,6 +62,18 @@ class FaissStore(BaseVectorStore):
def search(self, *args, **kwargs):
return self.docsearch.similarity_search(*args, **kwargs)
def search_with_scores(self, query: str, k: int, *args, **kwargs):
docs_and_distances = self.docsearch.similarity_search_with_score(query, k, *args, **kwargs)
# Convert L2 distance to a normalized similarity score (0-1, higher is better)
docs_and_similarities = []
for doc, distance in docs_and_distances:
if distance < 0: distance = 0
similarity = 1 / (1 + distance)
docs_and_similarities.append((doc, similarity))
return docs_and_similarities
def add_texts(self, *args, **kwargs):
return self.docsearch.add_texts(*args, **kwargs)

View File

@@ -2,6 +2,8 @@ from typing import List, Optional
import importlib
from application.vectorstore.base import BaseVectorStore
from application.core.settings import settings
from application.vectorstore.document_class import Document
class LanceDBVectorStore(BaseVectorStore):
"""Class for LanceDB Vector Store integration."""
@@ -87,6 +89,23 @@ class LanceDBVectorStore(BaseVectorStore):
results = self.docsearch.search(query_embedding).limit(k).to_list()
return [(result["_distance"], result["text"], result["metadata"]) for result in results]
def search_with_scores(self, query: str, k: int, *args, **kwargs):
"""Perform a similarity search with scores."""
self.ensure_table_exists()
query_embedding = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key).embed_query(query)
results = self.docsearch.search(query_embedding).limit(k).to_list()
docs_with_scores = []
for result in results:
distance = result.get('_distance', float('inf'))
if distance < 0: distance = 0
# Convert L2 distance to a normalized similarity score
similarity = 1 / (1 + distance)
doc = Document(page_content=result['text'], metadata=result["metadata"])
docs_with_scores.append((doc, similarity))
return docs_with_scores
def delete_index(self):
"""Delete the entire LanceDB index (table)."""
if self.table:

View File

@@ -25,6 +25,16 @@ class MilvusStore(BaseVectorStore):
def search(self, question, k=2, *args, **kwargs):
expr = f"source_id == '{self._source_id}'"
return self._docsearch.similarity_search(query=question, k=k, expr=expr, *args, **kwargs)
def search_with_scores(self, query: str, k: int, *args, **kwargs):
expr = f"source_id == '{self._source_id}'"
docs_and_distances = self._docsearch.similarity_search_with_score(query, k, expr=expr, *args, **kwargs)
docs_with_scores = []
for doc, distance in docs_and_distances:
similarity = 1.0 - distance
docs_with_scores.append((doc, max(0, similarity)))
return docs_with_scores
def add_texts(self, texts: List[str], metadatas: Optional[List[dict]], *args, **kwargs):
ids = [str(uuid4()) for _ in range(len(texts))]

View File

@@ -62,6 +62,40 @@ class MongoDBVectorStore(BaseVectorStore):
metadata = doc
results.append(Document(text, metadata))
return results
def search_with_scores(self, query: str, k: int, *args, **kwargs):
query_vector = self._embedding.embed_query(query)
pipeline = [
{
"$vectorSearch": {
"queryVector": query_vector,
"path": self._embedding_key,
"limit": k,
"numCandidates": k * 10,
"index": self._index_name,
"filter": {"source_id": {"$eq": self._source_id}},
}
},
{
"$addFields": {
"score": {"$meta": "vectorSearchScore"}
}
}
]
cursor = self._collection.aggregate(pipeline)
results = []
for doc in cursor:
score = doc.pop("score", 0.0)
text = doc.pop(self._text_key)
doc.pop("_id")
doc.pop(self._embedding_key, None)
metadata = doc
doc = Document(page_content=text, metadata=metadata)
results.append((doc, score))
return results
def _insert_texts(self, texts, metadatas):
if not texts:

View File

@@ -35,6 +35,9 @@ class QdrantStore(BaseVectorStore):
def search(self, *args, **kwargs):
return self._docsearch.similarity_search(filter=self._filter, *args, **kwargs)
def search_with_scores(self, query: str, k: int, *args, **kwargs):
return self._docsearch.similarity_search_with_score(query=query, k=k, filter=self._filter, *args, **kwargs)
def add_texts(self, *args, **kwargs):
return self._docsearch.add_texts(*args, **kwargs)