Files
DocsGPT/application/vectorstore/faiss.py
Pavel 01ea90f39a auto-rag
Need vectorstores testing for all except faiss
2025-06-08 22:08:23 +02:00

128 lines
4.8 KiB
Python

import os
import tempfile
from langchain_community.vectorstores import FAISS
from application.core.settings import settings
from application.parser.schema.base import Document
from application.vectorstore.base import BaseVectorStore
from application.storage.storage_creator import StorageCreator
def get_vectorstore(path: str) -> str:
if path:
vectorstore = f"indexes/{path}"
else:
vectorstore = "indexes"
return vectorstore
class FaissStore(BaseVectorStore):
def __init__(self, source_id: str, embeddings_key: str, docs_init=None):
super().__init__()
self.source_id = source_id
self.path = get_vectorstore(source_id)
self.embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
self.storage = StorageCreator.get_storage()
try:
if docs_init:
self.docsearch = FAISS.from_documents(docs_init, self.embeddings)
else:
with tempfile.TemporaryDirectory() as temp_dir:
faiss_path = f"{self.path}/index.faiss"
pkl_path = f"{self.path}/index.pkl"
if not self.storage.file_exists(
faiss_path
) or not self.storage.file_exists(pkl_path):
raise FileNotFoundError(
f"Index files not found in storage at {self.path}"
)
faiss_file = self.storage.get_file(faiss_path)
pkl_file = self.storage.get_file(pkl_path)
local_faiss_path = os.path.join(temp_dir, "index.faiss")
local_pkl_path = os.path.join(temp_dir, "index.pkl")
with open(local_faiss_path, "wb") as f:
f.write(faiss_file.read())
with open(local_pkl_path, "wb") as f:
f.write(pkl_file.read())
self.docsearch = FAISS.load_local(
temp_dir, self.embeddings, allow_dangerous_deserialization=True
)
except Exception as e:
raise Exception(f"Error loading FAISS index: {str(e)}")
self.assert_embedding_dimensions(self.embeddings)
def search(self, *args, **kwargs):
return self.docsearch.similarity_search(*args, **kwargs)
def search_with_scores(self, query: str, k: int, *args, **kwargs):
docs_and_distances = self.docsearch.similarity_search_with_score(query, k, *args, **kwargs)
# Convert L2 distance to a normalized similarity score (0-1, higher is better)
docs_and_similarities = []
for doc, distance in docs_and_distances:
if distance < 0: distance = 0
similarity = 1 / (1 + distance)
docs_and_similarities.append((doc, similarity))
return docs_and_similarities
def add_texts(self, *args, **kwargs):
return self.docsearch.add_texts(*args, **kwargs)
def save_local(self, *args, **kwargs):
return self.docsearch.save_local(*args, **kwargs)
def delete_index(self, *args, **kwargs):
return self.docsearch.delete(*args, **kwargs)
def assert_embedding_dimensions(self, embeddings):
"""Check that the word embedding dimension of the docsearch index matches the dimension of the word embeddings used."""
if (
settings.EMBEDDINGS_NAME
== "huggingface_sentence-transformers/all-mpnet-base-v2"
):
word_embedding_dimension = getattr(embeddings, "dimension", None)
if word_embedding_dimension is None:
raise AttributeError(
"'dimension' attribute not found in embeddings instance."
)
docsearch_index_dimension = self.docsearch.index.d
if word_embedding_dimension != docsearch_index_dimension:
raise ValueError(
f"Embedding dimension mismatch: embeddings.dimension ({word_embedding_dimension}) != docsearch index dimension ({docsearch_index_dimension})"
)
def get_chunks(self):
chunks = []
if self.docsearch:
for doc_id, doc in self.docsearch.docstore._dict.items():
chunk_data = {
"doc_id": doc_id,
"text": doc.page_content,
"metadata": doc.metadata,
}
chunks.append(chunk_data)
return chunks
def add_chunk(self, text, metadata=None):
metadata = metadata or {}
doc = Document(text=text, extra_info=metadata).to_langchain_format()
doc_id = self.docsearch.add_documents([doc])
self.save_local(self.path)
return doc_id
def delete_chunk(self, chunk_id):
self.delete_index([chunk_id])
self.save_local(self.path)
return True