mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 00:23:17 +00:00
49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
from typing import List, Optional
|
|
from uuid import uuid4
|
|
|
|
|
|
from application.core.settings import settings
|
|
from application.vectorstore.base import BaseVectorStore
|
|
|
|
|
|
class MilvusStore(BaseVectorStore):
|
|
def __init__(self, source_id: str = "", embeddings_key: str = "embeddings"):
|
|
super().__init__()
|
|
from langchain_milvus import Milvus
|
|
|
|
connection_args = {
|
|
"uri": settings.MILVUS_URI,
|
|
"token": settings.MILVUS_TOKEN,
|
|
}
|
|
self._docsearch = Milvus(
|
|
embedding_function=self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key),
|
|
collection_name=settings.MILVUS_COLLECTION_NAME,
|
|
connection_args=connection_args,
|
|
)
|
|
self._source_id = source_id
|
|
|
|
def search(self, question, k=2, *args, **kwargs):
|
|
expr = f"source_id == '{self._source_id}'"
|
|
return self._docsearch.similarity_search(query=question, k=k, expr=expr, *args, **kwargs)
|
|
|
|
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
|
expr = f"source_id == '{self._source_id}'"
|
|
docs_and_distances = self._docsearch.similarity_search_with_score(query, k, expr=expr, *args, **kwargs)
|
|
docs_with_scores = []
|
|
for doc, distance in docs_and_distances:
|
|
similarity = 1.0 - distance
|
|
docs_with_scores.append((doc, max(0, similarity)))
|
|
|
|
return docs_with_scores
|
|
|
|
def add_texts(self, texts: List[str], metadatas: Optional[List[dict]], *args, **kwargs):
|
|
ids = [str(uuid4()) for _ in range(len(texts))]
|
|
|
|
return self._docsearch.add_texts(texts=texts, metadatas=metadatas, ids=ids, *args, **kwargs)
|
|
|
|
def save_local(self, *args, **kwargs):
|
|
pass
|
|
|
|
def delete_index(self, *args, **kwargs):
|
|
pass
|