mirror of
https://github.com/freqtrade/freqtrade.git
synced 2026-01-26 08:50:47 +00:00
chore: cleanup some code
This commit is contained in:
@@ -306,8 +306,6 @@ class Hyperopt:
|
||||
asked, is_random = self.get_asked_points(
|
||||
n_points=current_jobs, dimensions=self.hyperopter.o_dimensions
|
||||
)
|
||||
# asked_params = [asked1.params for asked1 in asked]
|
||||
# logger.info(f"asked iteration {i}: {asked} {asked_params}")
|
||||
|
||||
f_val = self.run_optimizer_parallel(
|
||||
parallel,
|
||||
@@ -317,7 +315,6 @@ class Hyperopt:
|
||||
f_val_loss = [v["loss"] for v in f_val]
|
||||
for o_ask, v in zip(asked, f_val_loss, strict=False):
|
||||
self.opt.tell(o_ask, v)
|
||||
# logger.info(f"result iteration {i}: {asked} {f_val_loss}")
|
||||
|
||||
for j, val in enumerate(f_val):
|
||||
# Use human-friendly indexes here (starting from 1)
|
||||
|
||||
@@ -147,11 +147,8 @@ class HyperOptimizer:
|
||||
self.hyperopt_pickle_magic(modules.__bases__)
|
||||
|
||||
def _get_params_dict(
|
||||
self,
|
||||
dimensions: list[DimensionProtocol],
|
||||
raw_params: dict[str, Any],
|
||||
self, dimensions: list[DimensionProtocol], raw_params: dict[str, Any]
|
||||
) -> dict[str, Any]:
|
||||
# logger.info(f"_get_params_dict: {raw_params}")
|
||||
# Ensure the number of dimensions match
|
||||
# the number of parameters in the list.
|
||||
if len(raw_params) != len(dimensions):
|
||||
@@ -159,9 +156,6 @@ class HyperOptimizer:
|
||||
|
||||
# Return a dict where the keys are the names of the dimensions
|
||||
# and the values are taken from the list of parameters.
|
||||
# result = {d.name: v for d, v in zip(dimensions, raw_params, strict=False)}
|
||||
# logger.info(f"d_get_params_dict: {result}")
|
||||
# return {d.name: v for d, v in zip(dimensions, raw_params.params, strict=False)}
|
||||
return raw_params
|
||||
|
||||
def _get_params_details(self, params: dict) -> dict:
|
||||
@@ -273,12 +267,9 @@ class HyperOptimizer:
|
||||
# noinspection PyProtectedMember
|
||||
attr.value = params_dict[attr_name]
|
||||
|
||||
# @profile
|
||||
# fp=open('memory_profiler.log','w+')
|
||||
# @profile(stream=fp)
|
||||
def generate_optimizer(
|
||||
self, backtesting: Backtesting, raw_params: dict[str, Any]
|
||||
) -> dict[str, Any]: # list[Any]
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Used Optimize function.
|
||||
Called once per epoch to optimize whatever is configured.
|
||||
@@ -330,7 +321,7 @@ class HyperOptimizer:
|
||||
|
||||
backtesting.strategy.max_open_trades = updated_max_open_trades
|
||||
|
||||
with Path(self.data_pickle_file).open("rb") as f:
|
||||
with self.data_pickle_file.open("rb") as f:
|
||||
processed = load(f, mmap_mode="r")
|
||||
if self.analyze_per_epoch:
|
||||
# Data is not yet analyzed, rerun populate_indicators.
|
||||
@@ -419,7 +410,6 @@ class HyperOptimizer:
|
||||
f"Unknown search space {original_dim.name} - {original_dim} / \
|
||||
{type(original_dim)}"
|
||||
)
|
||||
# logger.info(f"convert_dimensions_to_optuna_space: {s_dimensions} - {o_dimensions}")
|
||||
return o_dimensions
|
||||
|
||||
def get_optimizer(
|
||||
@@ -431,11 +421,6 @@ class HyperOptimizer:
|
||||
)
|
||||
self.o_dimensions = self.convert_dimensions_to_optuna_space(self.dimensions)
|
||||
|
||||
# for save/restore
|
||||
# with open("sampler.pkl", "wb") as fout:
|
||||
# pickle.dump(study.sampler, fout)
|
||||
# restored_sampler = pickle.load(open("sampler.pkl", "rb"))
|
||||
|
||||
if isinstance(o_sampler, str):
|
||||
if o_sampler not in optuna_samplers_dict.keys():
|
||||
raise OperationalException(f"Optuna Sampler {o_sampler} not supported.")
|
||||
|
||||
Reference in New Issue
Block a user