From ca5ccc8799ba2b20a540a64ae39f8bef0f8b3984 Mon Sep 17 00:00:00 2001 From: Matthias Date: Wed, 23 Apr 2025 20:07:40 +0200 Subject: [PATCH] chore: cleanup some code --- freqtrade/optimize/hyperopt/hyperopt.py | 3 --- .../optimize/hyperopt/hyperopt_optimizer.py | 21 +++---------------- 2 files changed, 3 insertions(+), 21 deletions(-) diff --git a/freqtrade/optimize/hyperopt/hyperopt.py b/freqtrade/optimize/hyperopt/hyperopt.py index 174cfa103..6aeb79057 100644 --- a/freqtrade/optimize/hyperopt/hyperopt.py +++ b/freqtrade/optimize/hyperopt/hyperopt.py @@ -306,8 +306,6 @@ class Hyperopt: asked, is_random = self.get_asked_points( n_points=current_jobs, dimensions=self.hyperopter.o_dimensions ) - # asked_params = [asked1.params for asked1 in asked] - # logger.info(f"asked iteration {i}: {asked} {asked_params}") f_val = self.run_optimizer_parallel( parallel, @@ -317,7 +315,6 @@ class Hyperopt: f_val_loss = [v["loss"] for v in f_val] for o_ask, v in zip(asked, f_val_loss, strict=False): self.opt.tell(o_ask, v) - # logger.info(f"result iteration {i}: {asked} {f_val_loss}") for j, val in enumerate(f_val): # Use human-friendly indexes here (starting from 1) diff --git a/freqtrade/optimize/hyperopt/hyperopt_optimizer.py b/freqtrade/optimize/hyperopt/hyperopt_optimizer.py index d4af83387..0a616927d 100644 --- a/freqtrade/optimize/hyperopt/hyperopt_optimizer.py +++ b/freqtrade/optimize/hyperopt/hyperopt_optimizer.py @@ -147,11 +147,8 @@ class HyperOptimizer: self.hyperopt_pickle_magic(modules.__bases__) def _get_params_dict( - self, - dimensions: list[DimensionProtocol], - raw_params: dict[str, Any], + self, dimensions: list[DimensionProtocol], raw_params: dict[str, Any] ) -> dict[str, Any]: - # logger.info(f"_get_params_dict: {raw_params}") # Ensure the number of dimensions match # the number of parameters in the list. if len(raw_params) != len(dimensions): @@ -159,9 +156,6 @@ class HyperOptimizer: # Return a dict where the keys are the names of the dimensions # and the values are taken from the list of parameters. - # result = {d.name: v for d, v in zip(dimensions, raw_params, strict=False)} - # logger.info(f"d_get_params_dict: {result}") - # return {d.name: v for d, v in zip(dimensions, raw_params.params, strict=False)} return raw_params def _get_params_details(self, params: dict) -> dict: @@ -273,12 +267,9 @@ class HyperOptimizer: # noinspection PyProtectedMember attr.value = params_dict[attr_name] - # @profile - # fp=open('memory_profiler.log','w+') - # @profile(stream=fp) def generate_optimizer( self, backtesting: Backtesting, raw_params: dict[str, Any] - ) -> dict[str, Any]: # list[Any] + ) -> dict[str, Any]: """ Used Optimize function. Called once per epoch to optimize whatever is configured. @@ -330,7 +321,7 @@ class HyperOptimizer: backtesting.strategy.max_open_trades = updated_max_open_trades - with Path(self.data_pickle_file).open("rb") as f: + with self.data_pickle_file.open("rb") as f: processed = load(f, mmap_mode="r") if self.analyze_per_epoch: # Data is not yet analyzed, rerun populate_indicators. @@ -419,7 +410,6 @@ class HyperOptimizer: f"Unknown search space {original_dim.name} - {original_dim} / \ {type(original_dim)}" ) - # logger.info(f"convert_dimensions_to_optuna_space: {s_dimensions} - {o_dimensions}") return o_dimensions def get_optimizer( @@ -431,11 +421,6 @@ class HyperOptimizer: ) self.o_dimensions = self.convert_dimensions_to_optuna_space(self.dimensions) - # for save/restore - # with open("sampler.pkl", "wb") as fout: - # pickle.dump(study.sampler, fout) - # restored_sampler = pickle.load(open("sampler.pkl", "rb")) - if isinstance(o_sampler, str): if o_sampler not in optuna_samplers_dict.keys(): raise OperationalException(f"Optuna Sampler {o_sampler} not supported.")