o1 AI Agent

This commit is contained in:
Cole Medin
2024-09-18 10:52:02 -05:00
parent c09ddfaa20
commit 13a1969254
3 changed files with 379 additions and 0 deletions

26
o1-ai-agent/.env.example Normal file
View File

@@ -0,0 +1,26 @@
# Rename this file to .env once you have filled in the below environment variables!
# true or false - whether or not you want the LLM to display its thoughts as it is function calling
SHOW_THOUGHTS=true
# The local LLM to use for o1
# A good default to go with here is o1-mini
LLM_MODEL=o1-mini
# Open AI is optional - only if you want to compare performance of GPT vs local models
# Get your Open AI API Key by following these instructions -
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
# You only need this environment variable set if you set LLM_MODEL to a GPT model
OPENAI_API_KEY=
# Get your personal Asana access token through the developer console in Asana.
# Feel free to follow these instructions -
# https://developers.asana.com/docs/personal-access-token
ASANA_ACCESS_TOKEN=
# The Asana workspace ID is in the URL when you visit your Asana Admin Console (when logged in).
# Go to the URL "https://app.asana.com/admin" and then your workspace ID
# will appear in the URL as a slew of digits once the site loads.
# If your URL is https://app.asana.com/admin/987654321/insights, then your
# Asana workspace ID is 987654321
ASANA_WORKPLACE_ID=

347
o1-ai-agent/o1-ai-agent.py Normal file
View File

@@ -0,0 +1,347 @@
import asana
from asana.rest import ApiException
from dotenv import load_dotenv
from datetime import datetime
from typing import List
import streamlit as st
import uuid
import json
import os
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
load_dotenv()
model = os.getenv('LLM_MODEL', 'o1-mini')
show_thoughts = os.getenv('SHOW_THOUGHTS', 'true').lower() in ["true", "yes", "1"]
configuration = asana.Configuration()
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
api_client = asana.ApiClient(configuration)
# create an instance of the different Asana API classes
projects_api_instance = asana.ProjectsApi(api_client)
tasks_api_instance = asana.TasksApi(api_client)
workspace_gid = os.getenv("ASANA_WORKPLACE_ID", "")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~ AI Agent Tool Functions ~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@tool
def create_asana_task(task_name, project_gid, due_on="today"):
"""
Creates a task in Asana given the name of the task and when it is due
Example call:
create_asana_task("Test Task", "2024-06-24")
Args:
task_name (str): The name of the task in Asana
project_gid (str): The ID of the project to add the task to
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
Returns:
str: The API response of adding the task to Asana or an error message if the API call threw an error
"""
if due_on == "today":
due_on = str(datetime.now().date())
task_body = {
"data": {
"name": task_name,
"due_on": due_on,
"projects": [project_gid]
}
}
try:
api_response = tasks_api_instance.create_task(task_body, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return f"Exception when calling TasksApi->create_task: {e}"
@tool
def get_asana_projects():
"""
Gets all of the projects in the user's Asana workspace
Returns:
str: The API response from getting the projects or an error message if the projects couldn't be fetched.
The API response is an array of project objects, where each project object looks like:
{'gid': '1207789085525921', 'name': 'Project Name', 'resource_type': 'project'}
"""
opts = {
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
'workspace': workspace_gid, # str | The workspace or organization to filter projects on.
'archived': False # bool | Only return projects whose `archived` field takes on the value of this parameter.
}
try:
api_response = projects_api_instance.get_projects(opts)
return json.dumps(list(api_response), indent=2)
except ApiException as e:
return "Exception when calling ProjectsApi->create_project: %s\n" % e
@tool
def create_asana_project(project_name, due_on=None):
"""
Creates a project in Asana given the name of the project and optionally when it is due
Example call:
create_asana_project("Test Project", "2024-06-24")
Args:
project_name (str): The name of the project in Asana
due_on (str): The date the project is due in the format YYYY-MM-DD. If not supplied, the project is not given a due date
Returns:
str: The API response of adding the project to Asana or an error message if the API call threw an error
"""
body = {
"data": {
"name": project_name, "due_on": due_on, "workspace": workspace_gid
}
} # dict | The project to create.
try:
# Create a project
api_response = projects_api_instance.create_project(body, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return "Exception when calling ProjectsApi->create_project: %s\n" % e
@tool
def get_asana_tasks(project_gid):
"""
Gets all the Asana tasks in a project
Example call:
get_asana_tasks("1207789085525921")
Args:
project_gid (str): The ID of the project in Asana to fetch the tasks for
Returns:
str: The API response from fetching the tasks for the project in Asana or an error message if the API call threw an error
The API response is an array of tasks objects where each task object is in the format:
{'gid': '1207780961742158', 'created_at': '2024-07-11T16:25:46.380Z', 'due_on': None or date in format "YYYY-MM-DD", 'name': 'Test Task'}
"""
opts = {
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
'project': project_gid, # str | The project to filter tasks on.
'opt_fields': "created_at,name,due_on", # list[str] | This endpoint returns a compact resource, which excludes some properties by default. To include those optional properties, set this query parameter to a comma-separated list of the properties you wish to include.
}
try:
# Get multiple tasks
api_response = tasks_api_instance.get_tasks(opts)
return json.dumps(list(api_response), indent=2)
except ApiException as e:
return "Exception when calling TasksApi->get_tasks: %s\n" % e
@tool
def update_asana_task(task_gid, data):
"""
Updates a task in Asana by updating one or both of completed and/or the due date
Example call:
update_asana_task("1207780961742158", {"completed": True, "due_on": "2024-07-13"})
Args:
task_gid (str): The ID of the task to update
data (dict): A dictionary with either one or both of the keys 'completed' and/or 'due_on'
If given, completed needs to be either True or False.
If given, the due date needs to be in the format 'YYYY-MM-DD'.
Returns:
str: The API response of updating the task or an error message if the API call threw an error
"""
# Data: {"completed": True or False, "due_on": "YYYY-MM-DD"}
body = {"data": data} # dict | The task to update.
try:
# Update a task
api_response = tasks_api_instance.update_task(body, task_gid, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return "Exception when calling TasksApi->update_task: %s\n" % e
@tool
def delete_task(task_gid):
"""
Deletes a task in Asana
Example call:
delete_task("1207780961742158")
Args:
task_gid (str): The ID of the task to delete
Returns:
str: The API response of deleting the task or an error message if the API call threw an error
"""
try:
# Delete a task
api_response = tasks_api_instance.delete_task(task_gid)
return json.dumps(api_response, indent=2)
except ApiException as e:
return "Exception when calling TasksApi->delete_task: %s\n" % e
# Maps the function names to the actual function object in the script
# This mapping will also be used to create the list of tools to bind to the agent
available_tools = {
"create_asana_task": create_asana_task,
"get_asana_projects": get_asana_projects,
"create_asana_project": create_asana_project,
"get_asana_tasks": get_asana_tasks,
"update_asana_task": update_asana_task,
"delete_task": delete_task
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~ Tool Prompt Setup ~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tool_descriptions = [f"{name}:\n{func.__doc__}\n\n" for name, func in available_tools.items()]
class ToolCall(BaseModel):
name: str = Field(description="Name of the function to run")
args: dict = Field(description="Arguments for the function call (empty dictionary if no arguments are needed for the tool call)")
class ToolCallOrResponse(BaseModel):
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
tool_text = f"""
You always respond with a JSON object that has two required keys.
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
Here is the type for ToolCall (object with two keys):
name: str = Field(description="Name of the function to run (NA if you don't need to invoke a tool)")
args: dict = Field(description="Arguments for the function call (empty dictionary if you don't need to invoke a tool or if no arguments are needed for the tool call)")
Don't start your answers with "Here is the JSON response", just give the JSON.
The tools you have access to are:
{"".join(tool_descriptions)}
Any message that starts with "Thought:" is you thinking to yourself. This isn't told to the user so you still need to communicate what you did with them.
Don't repeat an action. If a thought tells you that you already took an action for a user, don't do it again.
"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~ AI Prompting Function ~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def add_thought(thought):
"""
Important function that adds LLM "thoughts" to the conversation
that can optionally be show to the user. This includes things like
results of tool calls, the LLM correcting itself, etc.
"""
st.session_state.messages.append(AIMessage(content=thought))
# Show thoughts determined by .env variable SHOW_THOUGHTS
if show_thoughts:
with st.chat_message("assistant"):
st.markdown(thought)
def prompt_ai(nested_calls=0, invoked_tools=[]):
if nested_calls > 10:
raise Exception("Failsafe - AI is failing too much!")
# First, prompt the AI with the latest user message
parser = JsonOutputParser(pydantic_object=ToolCallOrResponse)
asana_chatbot = ChatOpenAI(model=model, temperature=1) | parser
try:
ai_response = asana_chatbot.invoke(st.session_state.messages)
except Exception as e:
print(e)
return prompt_ai(nested_calls + 1)
print(ai_response)
# Second, see if the AI decided it needs to invoke a tool
has_tool_calls = len(ai_response["tool_calls"]) > 0
if has_tool_calls:
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages as a "thought" for the LLM
for tool_call in ai_response["tool_calls"]:
if str(tool_call) not in invoked_tools:
tool_name = tool_call["name"].lower()
selected_tool = available_tools[tool_name]
# Invoke the tool and add the response as a thought
try:
tool_output = selected_tool.invoke(tool_call["args"])
except Exception as e:
# AI gave bad arguments for the function, so add that as a thought and have the LLM correct itself
add_thought(f"Thought: - I called {tool_name} with args {tool_call['args']} but my arguments were wrong so I got this error: {e}.")
return prompt_ai(nested_calls + 1, invoked_tools)
print(tool_output)
# Add a thought so the LLM knows the result of invoking the tool
add_thought(f"Thought: - I called {tool_name} with args {tool_call['args']} and got back: {tool_output}.")
# Add to the list of tool calls so this app can prevent the LLM from repeating itself
invoked_tools.append(str(tool_call))
else:
# In this case the LLM already tried to make the exact same tool call. So add a thought for that so it doesn't loop.
add_thought(f"Thought: - I already called {tool_call['name']} with args {tool_call['args']} and got a response. I need to respond to the user now and not make another tool call.")
# Prompt the AI again now that the result of calling the tool(s) has been added to the chat history
return prompt_ai(nested_calls + 1, invoked_tools)
return ai_response
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~ Main Function with UI Creation ~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def main():
st.title("o1 Agent Chatbot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [
HumanMessage(content=f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}.\n{tool_text}")
]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
message_json = json.loads(message.json())
message_type = message_json["type"]
message_content = message_json["content"]
if message_type in ["human", "ai"] and (not message_content.startswith("Thought:") or show_thoughts):
with st.chat_message(message_type):
st.markdown(message_content)
# React to user input
if prompt := st.chat_input("What would you like to do today?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append(HumanMessage(content=prompt))
# Display assistant response in chat message container
ai_response = prompt_ai()
with st.chat_message("assistant"):
st.markdown(ai_response['content'])
st.session_state.messages.append(AIMessage(content=ai_response['content']))
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,6 @@
asana==5.0.0
python-dotenv==0.13.0
langchain==0.2.6
langchain-openai==0.1.10
langchain-core==0.2.10
streamlit==1.36.0