mirror of
https://github.com/datalab-to/chandra.git
synced 2026-01-20 05:50:42 +00:00
Code cleanup
This commit is contained in:
11
README.md
11
README.md
@@ -1,6 +1,6 @@
|
||||
# Chandra
|
||||
|
||||
Chandra is an OCR model that converts images and PDFs into structured HTML/Markdown/JSON while preserving layout information.
|
||||
Chandra is a highly accurate OCR model that converts images and PDFs into structured HTML/Markdown/JSON while preserving layout information.
|
||||
|
||||
## Features
|
||||
|
||||
@@ -154,7 +154,11 @@ VLLM_MODEL_NAME=chandra
|
||||
VLLM_GPUS=0
|
||||
```
|
||||
|
||||
## Benchmark table
|
||||
# Commercial usage
|
||||
|
||||
This code is Apache 2.0, and our model weights use a modified OpenRAIL-M license (free for research, personal use, and startups under $2M funding/revenue, cannot be used competitively with our API). To remove the OpenRAIL license requirements, or for broader commercial licensing, visit our pricing page [here](https://www.datalab.to/pricing?utm_source=gh-chandra).
|
||||
|
||||
# Benchmark table
|
||||
|
||||
| **Model** | ArXiv | Old Scans Math | Tables | Old Scans | Headers and Footers | Multi column | Long tiny text | Base | Overall | Source |
|
||||
|:--------------------------|:--------:|:--------------:|:--------:|:---------:|:-------------------:|:------------:|:--------------:|:----:|:--------------:|:------:|
|
||||
@@ -168,9 +172,6 @@ VLLM_GPUS=0
|
||||
| olmOCR v0.3.0 | 78.6 | 79.9 | 72.9 | 43.9 | **95.1** | 77.3 | 81.2 | 98.9 | 78.5 ± 1.1 | olmocr repo |
|
||||
| dots.ocr | 82.1 | 64.2 | 88.3 | 40.9 | 94.1 | **82.4** | 81.2 | 99.5 | 79.1 ± 1.0 | dots.ocr repo |
|
||||
|
||||
# Commercial usage
|
||||
|
||||
This code is Apache 2.0, and our model weights use a modified OpenRAIL-M license (free for research, personal use, and startups under $2M funding/revenue, cannot be used competitively with our API). To remove the OpenRAIL license requirements, or for broader commercial licensing, visit our pricing page [here](https://www.datalab.to/pricing?utm_source=gh-chandra).
|
||||
|
||||
# Credits
|
||||
|
||||
|
||||
@@ -43,7 +43,10 @@ def scale_to_fit(
|
||||
|
||||
|
||||
def detect_repeat_token(
|
||||
predicted_tokens: str, max_repeats: int = 4, window_size: int = 500, cut_from_end: int = 0
|
||||
predicted_tokens: str,
|
||||
max_repeats: int = 4,
|
||||
window_size: int = 500,
|
||||
cut_from_end: int = 0,
|
||||
):
|
||||
try:
|
||||
predicted_tokens = parse_markdown(predicted_tokens)
|
||||
@@ -77,7 +80,3 @@ def detect_repeat_token(
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def layout_failed(predicted_tokens: str, image: Image.Image):
|
||||
pass
|
||||
|
||||
@@ -22,21 +22,6 @@ class Settings(BaseSettings):
|
||||
VLLM_GPUS: str = "0"
|
||||
MAX_VLLM_RETRIES: int = 6
|
||||
|
||||
# Transformers settings
|
||||
@computed_field
|
||||
@property
|
||||
def TORCH_DEVICE_MODEL(self) -> str:
|
||||
if self.TORCH_DEVICE is not None:
|
||||
return self.TORCH_DEVICE
|
||||
|
||||
if torch.cuda.is_available():
|
||||
return "cuda"
|
||||
|
||||
if torch.backends.mps.is_available():
|
||||
return "mps"
|
||||
|
||||
return "cpu"
|
||||
|
||||
@computed_field
|
||||
@property
|
||||
def TORCH_DTYPE(self) -> torch.dtype:
|
||||
|
||||
Reference in New Issue
Block a user