Support multiple formats

This commit is contained in:
Vik Paruchuri
2025-11-10 11:12:00 -05:00
parent fe28f26fc2
commit 3958707a80
4 changed files with 10 additions and 16 deletions

View File

@@ -5,7 +5,6 @@ from transformers import Qwen3VLForConditionalGeneration, Qwen3VLProcessor
from chandra.model.schema import BatchInputItem, GenerationResult
from chandra.model.util import scale_to_fit
from chandra.output import fix_raw
from chandra.prompts import PROMPT_MAPPING
from chandra.settings import settings
@@ -43,7 +42,7 @@ def generate_hf(
clean_up_tokenization_spaces=False,
)
results = [
GenerationResult(raw=fix_raw(out), token_count=len(ids), error=False)
GenerationResult(raw=out, token_count=len(ids), error=False)
for out, ids in zip(output_text, generated_ids_trimmed)
]
return results

View File

@@ -9,7 +9,6 @@ from openai import OpenAI
from chandra.model.schema import BatchInputItem, GenerationResult
from chandra.model.util import scale_to_fit, detect_repeat_token
from chandra.output import fix_raw
from chandra.prompts import PROMPT_MAPPING
from chandra.settings import settings
@@ -76,7 +75,6 @@ def generate_vllm(
top_p=top_p,
)
raw = completion.choices[0].message.content
raw = fix_raw(raw)
result = GenerationResult(
raw=raw,
token_count=completion.usage.completion_tokens,

View File

@@ -1,4 +1,5 @@
import hashlib
import json
import re
from dataclasses import dataclass, asdict
from functools import lru_cache
@@ -21,15 +22,6 @@ def get_image_name(html: str, div_idx: int):
return f"{html_hash}_{div_idx}_img.webp"
def fix_raw(html: str):
def replace_group(match):
numbers = re.findall(r"\d+", match.group(0))
return "[" + ",".join(numbers) + "]"
result = re.sub(r"(?:\|BBOX\d+\|){4}", replace_group, html)
return result
def extract_images(html: str, chunks: dict, image: Image.Image):
images = {}
div_idx = 0
@@ -240,9 +232,14 @@ def parse_layout(html: str, image: Image.Image):
bbox = div.get("data-bbox")
try:
bbox = bbox.split(" ")
bbox = json.loads(bbox)
assert len(bbox) == 4, "Invalid bbox length"
except Exception:
bbox = [0, 0, 1, 1]
try:
bbox = bbox.split(" ")
assert len(bbox) == 4, "Invalid bbox length"
except Exception:
bbox = [0, 0, 1, 1]
bbox = list(map(int, bbox))
# Normalize bbox

View File

@@ -15,7 +15,7 @@ class Settings(BaseSettings):
TORCH_DEVICE: str | None = None
MAX_OUTPUT_TOKENS: int = 12384
TORCH_ATTN: str | None = None
BBOX_SCALE: int = 1000
BBOX_SCALE: int = 1024
# vLLM server settings
VLLM_API_KEY: str = "EMPTY"