Files
DocsGPT/docs/content/Agents/api.mdx

343 lines
10 KiB
Plaintext

---
title: Interacting with Agents via API
description: Learn how to programmatically interact with DocsGPT Agents using the streaming and non-streaming API endpoints.
---
import { Callout, Tabs } from 'nextra/components';
# Interacting with Agents via API
DocsGPT Agents can be accessed programmatically through API endpoints. This page covers:
- Non-streaming answers (`/api/answer`)
- Streaming answers over SSE (`/stream`)
- File/image attachments (`/api/store_attachment` + `/api/task_status` + `/stream`)
When you use an agent `api_key`, DocsGPT loads that agent's configuration automatically (prompt, tools, sources, default model). You usually only need to send `question` and `api_key`.
## Base URL
<Callout type="info">
For DocsGPT Cloud, use `https://gptcloud.arc53.com` as the base URL.
</Callout>
- Local: `http://localhost:7091`
- Cloud: `https://gptcloud.arc53.com`
## How Request Resolution Works
DocsGPT resolves your request in this order:
1. If `api_key` is provided, DocsGPT loads the mapped agent and executes with that config.
2. If `agent_id` is provided (typically with JWT auth), DocsGPT loads that agent if allowed.
3. If neither is provided, DocsGPT uses request-level fields (`prompt_id`, `active_docs`, `retriever`, etc.).
Authentication:
- Agent API-key flow: include `api_key` in JSON/form payload.
- JWT flow (if auth enabled): include `Authorization: Bearer <token>`.
## Endpoints
- `POST /api/answer` (non-streaming)
- `POST /stream` (SSE streaming)
- `POST /api/store_attachment` (multipart upload)
- `GET /api/task_status?task_id=...` (Celery task polling)
## Request Parameters
Common request body fields:
| Field | Type | Required | Applies to | Notes |
| --- | --- | --- | --- | --- |
| `question` | `string` | Yes | `/api/answer`, `/stream` | User query. |
| `api_key` | `string` | Usually | `/api/answer`, `/stream` | Recommended for agent API use. Loads agent config from key. |
| `conversation_id` | `string` | No | `/api/answer`, `/stream` | Continue an existing conversation. |
| `history` | `string` (JSON-encoded array) | No | `/api/answer`, `/stream` | Used for new conversations. Format: `[{\"prompt\":\"...\",\"response\":\"...\"}]`. |
| `model_id` | `string` | No | `/api/answer`, `/stream` | Override model for this request. |
| `save_conversation` | `boolean` | No | `/api/answer`, `/stream` | Default `true`. If `false`, no conversation is persisted. |
| `passthrough` | `object` | No | `/api/answer`, `/stream` | Dynamic values injected into prompt templates. |
| `prompt_id` | `string` | No | `/api/answer`, `/stream` | Ignored when `api_key` already defines prompt. |
| `active_docs` | `string` or `string[]` | No | `/api/answer`, `/stream` | Overrides active docs when not using key-owned source config. |
| `retriever` | `string` | No | `/api/answer`, `/stream` | Retriever type (for example `classic`). |
| `chunks` | `number` | No | `/api/answer`, `/stream` | Retrieval chunk count, default `2`. |
| `isNoneDoc` | `boolean` | No | `/api/answer`, `/stream` | Skip document retrieval. |
| `agent_id` | `string` | No | `/api/answer`, `/stream` | Alternative to `api_key` when using authenticated user context. |
Streaming-only fields:
| Field | Type | Required | Notes |
| --- | --- | --- | --- |
| `attachments` | `string[]` | No | List of attachment IDs from `/api/task_status` success result. |
| `index` | `number` | No | Update an existing query index. If provided, `conversation_id` is required. |
## Non-Streaming API (`/api/answer`)
`/api/answer` waits for completion and returns one JSON response.
<Callout type="info">
`attachments` are currently handled through `/stream`. For file/image-attached queries, use the streaming endpoint.
</Callout>
Response fields:
- `conversation_id`
- `answer`
- `sources`
- `tool_calls`
- `thought`
- Optional structured output metadata (`structured`, `schema`) when enabled
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/api/answer \
-H "Content-Type: application/json" \
-d '{"question":"your question here","api_key":"your_agent_api_key"}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
API_URL = "http://localhost:7091/api/answer"
API_KEY = "your_agent_api_key"
QUESTION = "your question here"
response = requests.post(
API_URL,
json={"question": QUESTION, "api_key": API_KEY}
)
if response.status_code == 200:
print(response.json())
else:
print(f"Error: {response.status_code}")
print(response.text)
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/api/answer';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getAnswer() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const data = await response.json();
console.log(data);
} catch (error) {
console.error("Failed to fetch answer:", error);
}
}
getAnswer();
```
</Tabs.Tab>
</Tabs>
---
## Streaming API (`/stream`)
`/stream` returns a Server-Sent Events (SSE) stream so you can render output token-by-token.
### SSE Event Types
Each `data:` frame is JSON with `type`:
- `answer`: incremental answer chunk
- `source`: source list/chunks
- `tool_calls`: tool invocation results/metadata
- `thought`: reasoning/thought chunk (agent dependent)
- `structured_answer`: final structured payload (when schema mode is active)
- `id`: final conversation ID
- `error`: error message
- `end`: stream is complete
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/stream \
-H "Content-Type: application/json" \
-H "Accept: text/event-stream" \
-d '{"question":"your question here","api_key":"your_agent_api_key"}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
import json
API_URL = "http://localhost:7091/stream"
payload = {
"question": "your question here",
"api_key": "your_agent_api_key"
}
with requests.post(API_URL, json=payload, stream=True) as r:
for line in r.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith('data: '):
try:
data = json.loads(decoded_line[6:])
print(data)
except json.JSONDecodeError:
pass
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/stream';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getStream() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Accept': 'text/event-stream'
},
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
// Note: This parsing method assumes each chunk contains whole lines.
// For a more robust production implementation, buffer the chunks
// and process them line by line.
const lines = chunk.split('\n');
for (const line of lines) {
if (line.startsWith('data: ')) {
try {
const data = JSON.parse(line.substring(6));
console.log(data);
} catch (e) {
console.error("Failed to parse JSON from SSE event:", e);
}
}
}
}
} catch (error) {
console.error("Failed to fetch stream:", error);
}
}
getStream();
```
</Tabs.Tab>
</Tabs>
---
## Attachments API (Including Images)
To attach an image (or other file) to a query:
1. Upload file(s) to `/api/store_attachment` (multipart/form-data).
2. Poll `/api/task_status` until `status=SUCCESS`.
3. Read `result.attachment_id` from task result.
4. Send that ID in `/stream` as `attachments: ["..."]`.
<Callout type="warning">
Attachments are processed asynchronously. Do not call `/stream` with an attachment until its task has finished with `SUCCESS`.
</Callout>
### Step 1: Upload Attachment
`POST /api/store_attachment`
- Content type: `multipart/form-data`
- Form fields:
- `file` (required, can be repeated for multi-file upload)
- `api_key` (optional if JWT is present; useful for API-key-only flows)
Example upload (single image):
```bash
curl -X POST http://localhost:7091/api/store_attachment \
-F "file=@/absolute/path/to/image.png" \
-F "api_key=your_agent_api_key"
```
Possible response (single-file upload):
```json
{
"success": true,
"task_id": "34f1cb56-7c7f-4d5f-a973-4ea7e65f7a10",
"message": "File uploaded successfully. Processing started."
}
```
### Step 2: Poll Task Status
```bash
curl "http://localhost:7091/api/task_status?task_id=34f1cb56-7c7f-4d5f-a973-4ea7e65f7a10"
```
When complete:
```json
{
"status": "SUCCESS",
"result": {
"attachment_id": "67b4f8f2618dc9f19384a9e1",
"filename": "image.png",
"mime_type": "image/png"
}
}
```
### Step 3: Attach to `/stream` Request
Use the `attachment_id` in `attachments`.
```bash
curl -X POST http://localhost:7091/stream \
-H "Content-Type: application/json" \
-H "Accept: text/event-stream" \
-d '{
"question": "Describe this image",
"api_key": "your_agent_api_key",
"attachments": ["67b4f8f2618dc9f19384a9e1"]
}'
```
### Image/Attachment Behavior Notes
- Typical image MIME types supported for native vision flows: `image/png`, `image/jpeg`, `image/jpg`, `image/webp`, `image/gif`.
- If the selected model/provider does not support a file type natively, DocsGPT falls back to parsed text content.
- For providers that support images but not native PDF file attachments, DocsGPT can convert PDF pages to images (synthetic PDF support).
- Attachments are user-scoped. Upload and query must be done under the same user context (same API key owner or same JWT user).