docs: migrate to Nextra 4 and Next.js App Router

This commit is contained in:
Alex
2026-02-18 17:13:24 +00:00
parent 6b5779054d
commit 17a736a927
53 changed files with 901 additions and 691 deletions

View File

@@ -0,0 +1,25 @@
import { generateStaticParamsFor, importPage } from 'nextra/pages';
import { useMDXComponents } from '../../mdx-components';
export const generateStaticParams = generateStaticParamsFor('mdxPath');
export async function generateMetadata(props) {
const params = await props.params;
const { metadata } = await importPage(params?.mdxPath);
return metadata;
}
const Wrapper = useMDXComponents().wrapper;
export default async function Page(props) {
const params = await props.params;
const result = await importPage(params?.mdxPath);
const { default: MDXContent, metadata, sourceCode, toc } = result;
return (
<Wrapper metadata={metadata} sourceCode={sourceCode} toc={toc}>
<MDXContent {...props} params={params} />
</Wrapper>
);
}

86
docs/app/layout.jsx Normal file
View File

@@ -0,0 +1,86 @@
import Image from 'next/image';
import { Analytics } from '@vercel/analytics/react';
import { Banner, Head } from 'nextra/components';
import { getPageMap } from 'nextra/page-map';
import { Footer, Layout, Navbar } from 'nextra-theme-docs';
import 'nextra-theme-docs/style.css';
import CuteLogo from '../public/cute-docsgpt.png';
import themeConfig from '../theme.config';
const github = 'https://github.com/arc53/DocsGPT';
export const metadata = {
title: {
default: 'DocsGPT Documentation',
template: '%s - DocsGPT Documentation',
},
description:
'Use DocsGPT to chat with your data. DocsGPT is a GPT-powered chatbot that can answer questions about your data.',
};
const navbar = (
<Navbar
logo={
<div style={{ alignItems: 'center', display: 'flex', gap: '8px' }}>
<Image src={CuteLogo} alt="DocsGPT logo" width={28} height={28} />
<span style={{ fontWeight: 'bold', fontSize: 18 }}>DocsGPT Docs</span>
</div>
}
projectLink={github}
chatLink="https://discord.com/invite/n5BX8dh8rU"
/>
);
const footer = (
<Footer>
<span>MIT {new Date().getFullYear()} © </span>
<a href="https://www.docsgpt.cloud/" target="_blank" rel="noreferrer">
DocsGPT
</a>
{' | '}
<a href="https://github.com/arc53/DocsGPT" target="_blank" rel="noreferrer">
GitHub
</a>
{' | '}
<a href="https://blog.docsgpt.cloud/" target="_blank" rel="noreferrer">
Blog
</a>
</Footer>
);
export default async function RootLayout({ children }) {
return (
<html lang="en" dir="ltr" suppressHydrationWarning>
<Head>
<link
rel="apple-touch-icon"
sizes="180x180"
href="/favicons/apple-touch-icon.png"
/>
<link rel="icon" type="image/png" sizes="32x32" href="/favicons/favicon-32x32.png" />
<link rel="icon" type="image/png" sizes="16x16" href="/favicons/favicon-16x16.png" />
<link rel="manifest" href="/favicons/site.webmanifest" />
<meta httpEquiv="Content-Language" content="en" />
</Head>
<body>
<Layout
banner={
<Banner storageKey="docs-launch">
<div className="flex justify-center items-center gap-2">
Welcome to the new DocsGPT docs!
</div>
</Banner>
}
navbar={navbar}
footer={footer}
pageMap={await getPageMap()}
{...themeConfig}
>
{children}
</Layout>
<Analytics />
</body>
</html>
);
}

View File

@@ -1,3 +1,5 @@
'use client';
import Image from 'next/image';
const iconMap = {
@@ -117,4 +119,4 @@ export function DeploymentCards({ items }) {
`}</style>
</>
);
}
}

View File

@@ -1,3 +1,5 @@
'use client';
import Image from 'next/image';
const iconMap = {
@@ -114,4 +116,4 @@ export function ToolCards({ items }) {
`}</style>
</>
);
}
}

342
docs/content/Agents/api.mdx Normal file
View File

@@ -0,0 +1,342 @@
---
title: Interacting with Agents via API
description: Learn how to programmatically interact with DocsGPT Agents using the streaming and non-streaming API endpoints.
---
import { Callout, Tabs } from 'nextra/components';
# Interacting with Agents via API
DocsGPT Agents can be accessed programmatically through API endpoints. This page covers:
- Non-streaming answers (`/api/answer`)
- Streaming answers over SSE (`/stream`)
- File/image attachments (`/api/store_attachment` + `/api/task_status` + `/stream`)
When you use an agent `api_key`, DocsGPT loads that agent's configuration automatically (prompt, tools, sources, default model). You usually only need to send `question` and `api_key`.
## Base URL
<Callout type="info">
For DocsGPT Cloud, use `https://gptcloud.arc53.com` as the base URL.
</Callout>
- Local: `http://localhost:7091`
- Cloud: `https://gptcloud.arc53.com`
## How Request Resolution Works
DocsGPT resolves your request in this order:
1. If `api_key` is provided, DocsGPT loads the mapped agent and executes with that config.
2. If `agent_id` is provided (typically with JWT auth), DocsGPT loads that agent if allowed.
3. If neither is provided, DocsGPT uses request-level fields (`prompt_id`, `active_docs`, `retriever`, etc.).
Authentication:
- Agent API-key flow: include `api_key` in JSON/form payload.
- JWT flow (if auth enabled): include `Authorization: Bearer <token>`.
## Endpoints
- `POST /api/answer` (non-streaming)
- `POST /stream` (SSE streaming)
- `POST /api/store_attachment` (multipart upload)
- `GET /api/task_status?task_id=...` (Celery task polling)
## Request Parameters
Common request body fields:
| Field | Type | Required | Applies to | Notes |
| --- | --- | --- | --- | --- |
| `question` | `string` | Yes | `/api/answer`, `/stream` | User query. |
| `api_key` | `string` | Usually | `/api/answer`, `/stream` | Recommended for agent API use. Loads agent config from key. |
| `conversation_id` | `string` | No | `/api/answer`, `/stream` | Continue an existing conversation. |
| `history` | `string` (JSON-encoded array) | No | `/api/answer`, `/stream` | Used for new conversations. Format: `[{\"prompt\":\"...\",\"response\":\"...\"}]`. |
| `model_id` | `string` | No | `/api/answer`, `/stream` | Override model for this request. |
| `save_conversation` | `boolean` | No | `/api/answer`, `/stream` | Default `true`. If `false`, no conversation is persisted. |
| `passthrough` | `object` | No | `/api/answer`, `/stream` | Dynamic values injected into prompt templates. |
| `prompt_id` | `string` | No | `/api/answer`, `/stream` | Ignored when `api_key` already defines prompt. |
| `active_docs` | `string` or `string[]` | No | `/api/answer`, `/stream` | Overrides active docs when not using key-owned source config. |
| `retriever` | `string` | No | `/api/answer`, `/stream` | Retriever type (for example `classic`). |
| `chunks` | `number` | No | `/api/answer`, `/stream` | Retrieval chunk count, default `2`. |
| `isNoneDoc` | `boolean` | No | `/api/answer`, `/stream` | Skip document retrieval. |
| `agent_id` | `string` | No | `/api/answer`, `/stream` | Alternative to `api_key` when using authenticated user context. |
Streaming-only fields:
| Field | Type | Required | Notes |
| --- | --- | --- | --- |
| `attachments` | `string[]` | No | List of attachment IDs from `/api/task_status` success result. |
| `index` | `number` | No | Update an existing query index. If provided, `conversation_id` is required. |
## Non-Streaming API (`/api/answer`)
`/api/answer` waits for completion and returns one JSON response.
<Callout type="info">
`attachments` are currently handled through `/stream`. For file/image-attached queries, use the streaming endpoint.
</Callout>
Response fields:
- `conversation_id`
- `answer`
- `sources`
- `tool_calls`
- `thought`
- Optional structured output metadata (`structured`, `schema`) when enabled
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/api/answer \
-H "Content-Type: application/json" \
-d '{"question":"your question here","api_key":"your_agent_api_key"}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
API_URL = "http://localhost:7091/api/answer"
API_KEY = "your_agent_api_key"
QUESTION = "your question here"
response = requests.post(
API_URL,
json={"question": QUESTION, "api_key": API_KEY}
)
if response.status_code == 200:
print(response.json())
else:
print(f"Error: {response.status_code}")
print(response.text)
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/api/answer';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getAnswer() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const data = await response.json();
console.log(data);
} catch (error) {
console.error("Failed to fetch answer:", error);
}
}
getAnswer();
```
</Tabs.Tab>
</Tabs>
---
## Streaming API (`/stream`)
`/stream` returns a Server-Sent Events (SSE) stream so you can render output token-by-token.
### SSE Event Types
Each `data:` frame is JSON with `type`:
- `answer`: incremental answer chunk
- `source`: source list/chunks
- `tool_calls`: tool invocation results/metadata
- `thought`: reasoning/thought chunk (agent dependent)
- `structured_answer`: final structured payload (when schema mode is active)
- `id`: final conversation ID
- `error`: error message
- `end`: stream is complete
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/stream \
-H "Content-Type: application/json" \
-H "Accept: text/event-stream" \
-d '{"question":"your question here","api_key":"your_agent_api_key"}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
import json
API_URL = "http://localhost:7091/stream"
payload = {
"question": "your question here",
"api_key": "your_agent_api_key"
}
with requests.post(API_URL, json=payload, stream=True) as r:
for line in r.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith('data: '):
try:
data = json.loads(decoded_line[6:])
print(data)
except json.JSONDecodeError:
pass
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/stream';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getStream() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Accept': 'text/event-stream'
},
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
// Note: This parsing method assumes each chunk contains whole lines.
// For a more robust production implementation, buffer the chunks
// and process them line by line.
const lines = chunk.split('\n');
for (const line of lines) {
if (line.startsWith('data: ')) {
try {
const data = JSON.parse(line.substring(6));
console.log(data);
} catch (e) {
console.error("Failed to parse JSON from SSE event:", e);
}
}
}
}
} catch (error) {
console.error("Failed to fetch stream:", error);
}
}
getStream();
```
</Tabs.Tab>
</Tabs>
---
## Attachments API (Including Images)
To attach an image (or other file) to a query:
1. Upload file(s) to `/api/store_attachment` (multipart/form-data).
2. Poll `/api/task_status` until `status=SUCCESS`.
3. Read `result.attachment_id` from task result.
4. Send that ID in `/stream` as `attachments: ["..."]`.
<Callout type="warning">
Attachments are processed asynchronously. Do not call `/stream` with an attachment until its task has finished with `SUCCESS`.
</Callout>
### Step 1: Upload Attachment
`POST /api/store_attachment`
- Content type: `multipart/form-data`
- Form fields:
- `file` (required, can be repeated for multi-file upload)
- `api_key` (optional if JWT is present; useful for API-key-only flows)
Example upload (single image):
```bash
curl -X POST http://localhost:7091/api/store_attachment \
-F "file=@/absolute/path/to/image.png" \
-F "api_key=your_agent_api_key"
```
Possible response (single-file upload):
```json
{
"success": true,
"task_id": "34f1cb56-7c7f-4d5f-a973-4ea7e65f7a10",
"message": "File uploaded successfully. Processing started."
}
```
### Step 2: Poll Task Status
```bash
curl "http://localhost:7091/api/task_status?task_id=34f1cb56-7c7f-4d5f-a973-4ea7e65f7a10"
```
When complete:
```json
{
"status": "SUCCESS",
"result": {
"attachment_id": "67b4f8f2618dc9f19384a9e1",
"filename": "image.png",
"mime_type": "image/png"
}
}
```
### Step 3: Attach to `/stream` Request
Use the `attachment_id` in `attachments`.
```bash
curl -X POST http://localhost:7091/stream \
-H "Content-Type: application/json" \
-H "Accept: text/event-stream" \
-d '{
"question": "Describe this image",
"api_key": "your_agent_api_key",
"attachments": ["67b4f8f2618dc9f19384a9e1"]
}'
```
### Image/Attachment Behavior Notes
- Typical image MIME types supported for native vision flows: `image/png`, `image/jpeg`, `image/jpg`, `image/webp`, `image/gif`.
- If the selected model/provider does not support a file type natively, DocsGPT falls back to parsed text content.
- For providers that support images but not native PDF file attachments, DocsGPT can convert PDF pages to images (synthetic PDF support).
- Attachments are user-scoped. Upload and query must be done under the same user context (same API key owner or same JWT user).

View File

@@ -8,8 +8,7 @@ export default {
"Extensions": "Extensions",
"https://gptcloud.arc53.com/": {
"title": "API",
"href": "https://gptcloud.arc53.com/",
"newWindow": true
"href": "https://gptcloud.arc53.com/"
},
"Guides": "Guides",
"changelog": {

8
docs/mdx-components.jsx Normal file
View File

@@ -0,0 +1,8 @@
import { useMDXComponents as getThemeComponents } from 'nextra-theme-docs';
export function useMDXComponents(components) {
return {
...getThemeComponents(),
...components,
};
}

View File

@@ -1,9 +1,9 @@
const withNextra = require('nextra').default({
theme: 'nextra-theme-docs',
themeConfig: './theme.config.jsx'
})
const nextra = require('nextra').default;
module.exports = withNextra()
// If you have other Next.js configurations, you can pass them as the parameter:
// module.exports = withNextra({ /* other next.js config */ })
const withNextra = nextra({
// Nextra v4 config lives in app/layout + theme.config.jsx
});
module.exports = withNextra({
reactStrictMode: true,
});

707
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -9,8 +9,8 @@
"@vercel/analytics": "^1.1.1",
"docsgpt-react": "^0.5.1",
"next": "^15.5.9",
"nextra": "^3.3.1",
"nextra-theme-docs": "^3.3.1",
"nextra": "^4.6.1",
"nextra-theme-docs": "^4.6.1",
"react": "^18.2.0",
"react-dom": "^18.2.0"
},

View File

@@ -1,227 +0,0 @@
---
title: Interacting with Agents via API
description: Learn how to programmatically interact with DocsGPT Agents using the streaming and non-streaming API endpoints.
---
import { Callout, Tabs } from 'nextra/components';
# Interacting with Agents via API
DocsGPT Agents can be accessed programmatically through a dedicated API, allowing you to integrate their specialized capabilities into your own applications, scripts, and workflows. This guide covers the two primary methods for interacting with an agent: the streaming API for real-time responses and the non-streaming API for a single, consolidated answer.
When you use an API key generated for a specific agent, you do not need to pass `prompt`, `tools` etc. The agent's configuration (including its prompt, selected tools, and knowledge sources) is already associated with its unique API key.
### API Endpoints
- **Non-Streaming:** `http://localhost:7091/api/answer`
- **Streaming:** `http://localhost:7091/stream`
<Callout type="info">
For DocsGPT Cloud, use `https://gptcloud.arc53.com/` as the base URL.
</Callout>
For more technical details, you can explore the API swagger documentation available for the cloud version or your local instance.
---
## Non-Streaming API (`/api/answer`)
This is a standard synchronous endpoint. It waits for the agent to fully process the request and returns a single JSON object with the complete answer. This is the simplest method and is ideal for backend processes where a real-time feed is not required.
### Request
- **Endpoint:** `/api/answer`
- **Method:** `POST`
- **Payload:**
- `question` (string, required): The user's query or input for the agent.
- `api_key` (string, required): The unique API key for the agent you wish to interact with.
- `history` (string, optional): A JSON string representing the conversation history, e.g., `[{\"prompt\": \"first question\", \"answer\": \"first answer\"}]`.
### Response
A single JSON object containing:
- `answer`: The complete, final answer from the agent.
- `sources`: A list of sources the agent consulted.
- `conversation_id`: The unique ID for the interaction.
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/api/answer \
-H "Content-Type: application/json" \
-d '{
"question": "your question here",
"api_key": "your_agent_api_key"
}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
API_URL = "http://localhost:7091/api/answer"
API_KEY = "your_agent_api_key"
QUESTION = "your question here"
response = requests.post(
API_URL,
json={"question": QUESTION, "api_key": API_KEY}
)
if response.status_code == 200:
print(response.json())
else:
print(f"Error: {response.status_code}")
print(response.text)
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/api/answer';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getAnswer() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const data = await response.json();
console.log(data);
} catch (error) {
console.error("Failed to fetch answer:", error);
}
}
getAnswer();
```
</Tabs.Tab>
</Tabs>
---
## Streaming API (`/stream`)
The `/stream` endpoint uses Server-Sent Events (SSE) to push data in real-time. This is ideal for applications where you want to display the response as it's being generated, such as in a live chatbot interface.
### Request
- **Endpoint:** `/stream`
- **Method:** `POST`
- **Payload:** Same as the non-streaming API.
### Response (SSE Stream)
The stream consists of multiple `data:` events, each containing a JSON object. Your client should listen for these events and process them based on their `type`.
**Event Types:**
- `answer`: A chunk of the agent's final answer.
- `source`: A document or source used by the agent.
- `thought`: A reasoning step from the agent (for ReAct agents).
- `id`: The unique `conversation_id` for the interaction.
- `error`: An error message.
- `end`: A final message indicating the stream has concluded.
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/stream \
-H "Content-Type: application/json" \
-H "Accept: text/event-stream" \
-d '{
"question": "your question here",
"api_key": "your_agent_api_key"
}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
import json
API_URL = "http://localhost:7091/stream"
payload = {
"question": "your question here",
"api_key": "your_agent_api_key"
}
with requests.post(API_URL, json=payload, stream=True) as r:
for line in r.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith('data: '):
try:
data = json.loads(decoded_line[6:])
print(data)
except json.JSONDecodeError:
pass
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/stream';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getStream() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Accept': 'text/event-stream'
},
// Corrected line: 'apiKey' is changed to 'api_key'
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
// Note: This parsing method assumes each chunk contains whole lines.
// For a more robust production implementation, buffer the chunks
// and process them line by line.
const lines = chunk.split('\n');
for (const line of lines) {
if (line.startsWith('data: ')) {
try {
const data = JSON.parse(line.substring(6));
console.log(data);
} catch (e) {
console.error("Failed to parse JSON from SSE event:", e);
}
}
}
}
} catch (error) {
console.error("Failed to fetch stream:", error);
}
}
getStream();
```
</Tabs.Tab>
</Tabs>

View File

@@ -1,10 +0,0 @@
import { DocsGPTWidget } from "docsgpt-react";
export default function MyApp({ Component, pageProps }) {
return (
<>
<Component {...pageProps} />
<DocsGPTWidget showSources={true} apiKey="5d8270cb-735f-484e-9dc9-5b407f24e652" theme="dark" size="medium" />
</>
)
}

View File

@@ -1,161 +1,18 @@
import Image from 'next/image'
import { Analytics } from '@vercel/analytics/react';
const github = 'https://github.com/arc53/DocsGPT';
import { useConfig, useTheme } from 'nextra-theme-docs';
import CuteLogo from './public/cute-docsgpt.png';
const Logo = ({ height, width }) => {
const { theme } = useTheme();
return (
<div style={{ alignItems: 'center', display: 'flex', gap: '8px' }}>
<Image src={CuteLogo} alt="DocsGPT logo" width={width} height={height} />
<span style={{ fontWeight: 'bold', fontSize: 18 }}>DocsGPT Docs</span>
</div>
);
};
const config = {
docsRepositoryBase: `${github}/blob/main/docs`,
chat: {
link: 'https://discord.com/invite/n5BX8dh8rU',
},
banner: {
key: 'docs-launch',
text: (
<div className="flex justify-center items-center gap-2">
Welcome to the new DocsGPT 🦖 docs! 👋
</div>
),
},
toc: {
float: true,
},
project: {
link: github,
},
darkMode: true,
nextThemes: {
defaultTheme: 'dark',
},
primaryHue: {
dark: 207,
light: 212,
},
footer: {
text: (
<div>
<span>MIT {new Date().getFullYear()} © </span>
<a href="https://www.docsgpt.cloud/" target="_blank">
DocsGPT
</a>
{' | '}
<a href="https://github.com/arc53/DocsGPT" target="_blank">
GitHub
</a>
{' | '}
<a href="https://blog.docsgpt.cloud/" target="_blank">
Blog
</a>
</div>
),
},
editLink: {
content: 'Edit this page on GitHub',
},
logo() {
return (
<div className="flex items-center gap-2">
<Logo width={28} height={28} />
</div>
);
},
useNextSeoProps() {
return {
titleTemplate: `%s - DocsGPT Documentation`,
};
},
head() {
const { frontMatter } = useConfig();
const { theme } = useTheme();
const title = frontMatter?.title || 'Chat with your data with DocsGPT';
const description =
frontMatter?.description ||
'Use DocsGPT to chat with your data. DocsGPT is a GPT powered chatbot that can answer questions about your data.'
const image = '/cute-docsgpt.png';
const composedTitle = `${title} DocsGPT Documentation`;
return (
<>
<link
rel="apple-touch-icon"
sizes="180x180"
href={`/favicons/apple-touch-icon.png`}
/>
<link
rel="icon"
type="image/png"
sizes="32x32"
href={`/favicons/favicon-32x32.png`}
/>
<link
rel="icon"
type="image/png"
sizes="16x16"
href={`/favicons/favicon-16x16.png`}
/>
<meta name="theme-color" content="#ffffff" />
<meta name="msapplication-TileColor" content="#00a300" />
<link rel="manifest" href={`/favicons/site.webmanifest`} />
<meta httpEquiv="Content-Language" content="en" />
<meta name="title" content={composedTitle} />
<meta name="description" content={description} />
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:site" content="@ATushynski" />
<meta name="twitter:image" content={image} />
<meta property="og:description" content={description} />
<meta property="og:title" content={composedTitle} />
<meta property="og:image" content={image} />
<meta property="og:type" content="website" />
<meta
name="apple-mobile-web-app-title"
content="DocsGPT Documentation"
/>
</>
);
},
sidebar: {
defaultMenuCollapseLevel: 1,
titleComponent: ({ title, type }) =>
type === 'separator' ? (
<div className="flex items-center gap-2">
<Logo height={10} width={10} />
{title}
<Analytics />
</div>
) : (
<>{title}
<Analytics />
</>
),
},
gitTimestamp: ({ timestamp }) => (
<>Last updated on {timestamp.toLocaleDateString()}</>
),
toc: {
float: true,
},
editLink: 'Edit this page on GitHub',
};
export default config;
export default config;

View File

@@ -3,4 +3,5 @@ VITE_BASE_URL=http://localhost:5173
VITE_API_HOST=http://127.0.0.1:7091
VITE_API_STREAMING=true
VITE_NOTIFICATION_TEXT="What's new in 0.15.0 — Changelog"
VITE_NOTIFICATION_LINK="https://blog.docsgpt.cloud/docsgpt-0-15-masters-long-term-memory-and-tooling/"
VITE_NOTIFICATION_LINK="https://blog.docsgpt.cloud/docsgpt-0-15-masters-long-term-memory-and-tooling/"
VITE_GOOGLE_CLIENT_ID=896376503572-u46l78n8ctgtdr4dlei4u06jv6rbpqc5.apps.googleusercontent.com