Merge branch 'main' into settings

This commit is contained in:
Alex
2023-10-31 18:18:31 +00:00
committed by GitHub
44 changed files with 1168 additions and 329 deletions

View File

@@ -2,58 +2,58 @@
## Our Pledge
We as members, contributors, and leaders, pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
We as members, contributors and leaders pledge to make participation in our
community, a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
nationality, personal appearance, race, religion or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and a healthy community.
diverse, inclusive and a healthy community.
## Our Standards
Examples of behavior that contribute to a positive environment for our
community include:
* Demonstrating empathy and kindness towards other people
* Being respectful and open to differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Taking accountability and offering apologies to those who have been impacted by our errors,
## Demonstrating empathy and kindness towards other people
1. Being respectful and open to differing opinions, viewpoints, and experiences
2. Giving and gracefully accepting constructive feedback
3. Taking accountability and offering apologies to those who have been impacted by our errors,
while also gaining insights from the situation
* Focusing on what is best not just for us as individuals, but for the
4. Focusing on what is best not just for us as individuals but for the
community as a whole
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
1. The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing other's private information, such as a physical or email
2. Trolling, insulting or derogatory comments, and personal or political attacks
3. Public or private harassment
4. Publishing other's private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
5. Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
response to any behavior that they deem inappropriate, threatening, offensive
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
not aligned to this Code of Conduct and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
This Code of Conduct applies within all community spaces and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
posting via an official social media account or acting as an appointed
representative at an online or offline event.
## Enforcement
@@ -63,29 +63,27 @@ reported to the community leaders responsible for enforcement at
contact@arc53.com.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
All community leaders are obligated to be respectful towards the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
the consequences for any action that they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
* **Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community space.
**Consequence**: A private, written warning from community leaders, providing
* **Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
* **Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
* **Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
@@ -93,23 +91,21 @@ like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
* **Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
* **Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
* **Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior,harassment of an
individual or aggression towards or disparagement of classes of individuals.
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression towards or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
* **Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution

View File

@@ -17,12 +17,18 @@ Thank you for choosing to contribute to DocsGPT! We are all very grateful!
## 🐞 Issues and Pull requests
We value contributions in the form of discussions or suggestions. We recommend taking a look at existing issues and our [roadmap](https://github.com/orgs/arc53/projects/2).
- We value contributions in the form of discussions or suggestions. We recommend taking a look at existing issues and our [roadmap](https://github.com/orgs/arc53/projects/2).
- If you're interested in contributing code, here are some important things to know:
- We have a frontend built on React (Vite) and a backend in Python.
=======
Before creating issues, please check out how the latest version of our app looks and works by launching it via [Quickstart](https://github.com/arc53/DocsGPT#quickstart) the version on our live demo is slightly modified with login. Your issues should relate to the version that you can launch via [Quickstart](https://github.com/arc53/DocsGPT#quickstart).
### 👨‍💻 If you're interested in contributing code, here are some important things to know:
Tech Stack Overview:
- 🌐 Frontend: Built with React (Vite) ⚛️,
@@ -57,42 +63,55 @@ Here's a step-by-step guide on how to contribute to DocsGPT:
1. **Fork the Repository:**
- Click the "Fork" button at the top-right of this repository to create your fork.
2. **Create and Switch to a New Branch:**
2. **Clone the Forked Repository:**
- Clone the repository using:
``` shell
git clone https://github.com/<your-github-username>/DocsGPT.git
```
3. **Keep your Fork in Sync:**
- Before you make any changes, make sure that your fork is in sync to avoid merge conflicts using:
```shell
git remote add upstream https://github.com/arc53/DocsGPT.git
git pull upstream main
```
4. **Create and Switch to a New Branch:**
- Create a new branch for your contribution using:
```shell
git checkout -b your-branch-name
```
3. **Make Changes:**
5. **Make Changes:**
- Make the required changes in your branch.
4. **Add Changes to the Staging Area:**
6. **Add Changes to the Staging Area:**
- Add your changes to the staging area using:
```shell
git add .
```
5. **Commit Your Changes:**
7. **Commit Your Changes:**
- Commit your changes with a descriptive commit message using:
```shell
git commit -m "Your descriptive commit message"
```
6. **Push Your Changes to the Remote Repository:**
8. **Push Your Changes to the Remote Repository:**
- Push your branch with changes to your fork on GitHub using:
```shell
git push origin your-branch-name
```
7. **Submit a Pull Request (PR):**
9. **Submit a Pull Request (PR):**
- Create a Pull Request from your branch to the main repository. Make sure to include a detailed description of your changes and reference any related issues.
8. **Collaborate:**
10. **Collaborate:**
- Be responsive to comments and feedback on your PR.
- Make necessary updates as suggested.
- Once your PR is approved, it will be merged into the main repository.
9. **Testing:**
11. **Testing:**
- Before submitting a Pull Request, ensure your code passes all unit tests.
- To run unit tests from the root of the repository, execute:
```shell
@@ -101,7 +120,7 @@ Here's a step-by-step guide on how to contribute to DocsGPT:
*Note: You should run the unit test only after making the changes to the backend code.*
10. **Questions and Collaboration:**
12. **Questions and Collaboration:**
- Feel free to join our Discord. We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
Thank you for considering contributing to DocsGPT! 🙏

View File

@@ -14,10 +14,12 @@ Say goodbye to time-consuming manual searches, and let <strong><a href="https://
<div align="center">
<a href="https://github.com/arc53/DocsGPT">![example1](https://img.shields.io/github/stars/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT">![example2](https://img.shields.io/github/forks/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT/blob/main/LICENSE">![example3](https://img.shields.io/github/license/arc53/docsgpt)</a>
<a href="https://discord.gg/n5BX8dh8rU">![example3](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://github.com/arc53/DocsGPT">![link to main GitHub showing Stars number](https://img.shields.io/github/stars/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT">![link to main GitHub showing Forks number](https://img.shields.io/github/forks/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT/blob/main/LICENSE">![link to license file](https://img.shields.io/github/license/arc53/docsgpt)</a>
<a href="https://discord.gg/n5BX8dh8rU">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://twitter.com/ATushynski">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/ATushynski)</a>
</div>
@@ -25,10 +27,10 @@ Say goodbye to time-consuming manual searches, and let <strong><a href="https://
We're eager to provide personalized assistance when deploying your DocsGPT to a live environment.
- [Book Demo 👋](https://airtable.com/appdeaL0F1qV8Bl2C/shrrJF1Ll7btCJRbP)
- [Send Email ✉️](mailto:contact@arc53.com?subject=DocsGPT%20support%2Fsolutions)
- [Book Demo :wave:](https://airtable.com/appdeaL0F1qV8Bl2C/shrrJF1Ll7btCJRbP)
- [Send Email :email:](mailto:contact@arc53.com?subject=DocsGPT%20support%2Fsolutions)
### [🎉 Join the Hacktoberfest with DocsGPT and Earn a Free T-shirt! 🎉](https://github.com/arc53/DocsGPT/blob/main/HACKTOBERFEST.md)
### [:tada: Join the Hacktoberfest with DocsGPT and Earn a Free T-shirt! :tada:](https://github.com/arc53/DocsGPT/blob/main/HACKTOBERFEST.md)
![video-example-of-docs-gpt](https://d3dg1063dc54p9.cloudfront.net/videos/demov3.gif)
@@ -48,21 +50,21 @@ If you don't have enough resources to run it, you can use bitsnbytes to quantize
## Features
![Group 9](https://user-images.githubusercontent.com/17906039/220427472-2644cff4-7666-46a5-819f-fc4a521f63c7.png)
![Main features of DocsGPT showcasing six main features](https://user-images.githubusercontent.com/17906039/220427472-2644cff4-7666-46a5-819f-fc4a521f63c7.png)
## Useful links
- 🔍🔥 [Live preview](https://docsgpt.arc53.com/)
- :mag: :fire: [Live preview](https://docsgpt.arc53.com/)
- 💬🎉[Join our Discord](https://discord.gg/n5BX8dh8rU)
- :speech_balloon: :tada: [Join our Discord](https://discord.gg/n5BX8dh8rU)
- 📚😎 [Guides](https://docs.docsgpt.co.uk/)
- :books: :sunglasses: [Guides](https://docs.docsgpt.co.uk/)
- 👩‍💻👨‍💻 [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
- :couple: [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
- 🗂️🚀 [How to use any other documentation](https://docs.docsgpt.co.uk/Guides/How-to-train-on-other-documentation)
- :file_folder: :rocket: [How to use any other documentation](https://docs.docsgpt.co.uk/Guides/How-to-train-on-other-documentation)
- 🏠🔐 [How to host it locally (so all data will stay on-premises)](https://docs.docsgpt.co.uk/Guides/How-to-use-different-LLM)
- :house: :closed_lock_with_key: [How to host it locally (so all data will stay on-premises)](https://docs.docsgpt.co.uk/Guides/How-to-use-different-LLM)
## Project structure
@@ -72,11 +74,11 @@ If you don't have enough resources to run it, you can use bitsnbytes to quantize
- Scripts - Script that creates similarity search index for other libraries.
- Frontend - Frontend uses Vite and React.
- Frontend - Frontend uses <a href="https://vitejs.dev/">Vite</a> and <a href="https://react.dev/">React</a>.
## QuickStart
Note: Make sure you have Docker installed
Note: Make sure you have [Docker](https://docs.docker.com/engine/install/) installed
On Mac OS or Linux, write:
@@ -87,7 +89,7 @@ It will install all the dependencies and allow you to download the local model o
Otherwise, refer to this Guide:
1. Download and open this repository with `git clone https://github.com/arc53/DocsGPT.git`
2. Create a `.env` file in your root directory and set the env variable `OPENAI_API_KEY` with your [OpenAI API key](https://platform.openai.com/account/api-keys) and `VITE_API_STREAMING` to true or false, depending on whether you want streaming answers or not.
2. Create a `.env` file in your root directory and set the env variable `API_KEY` with your [OpenAI API key](https://platform.openai.com/account/api-keys) and `VITE_API_STREAMING` to true or false, depending on whether you want streaming answers or not.
It should look like this inside:
```
@@ -148,7 +150,7 @@ python -m venv venv
pip install -r requirements.txt
```
4. Run the app using `flask run --host=0.0.0.0 --port=7091`.
4. Run the app using `flask --app application/app.py run --host=0.0.0.0 --port=7091`.
5. Start worker with `celery -A application.app.celery worker -l INFO`.
### Start frontend
@@ -174,9 +176,9 @@ Please refer to the [CONTRIBUTING.md](CONTRIBUTING.md) file for information abou
We as members, contributors, and leaders, pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. Please refer to the [CODE_OF_CONDUCT.md](CODE_OF_CONDUCT.md) file for more information about contributing.
## Many Thanks To Our Contributors
## Many Thanks To Our Contributors
<a href="[https://github.com/arc53/DocsGPT/graphs/contributors](https://docsgpt.arc53.com/)" alt="View Contributors">
<a href="https://github.com/arc53/DocsGPT/graphs/contributors" alt="View Contributors">
<img src="https://contrib.rocks/image?repo=arc53/DocsGPT" alt="Contributors" />
</a>
@@ -184,4 +186,4 @@ We as members, contributors, and leaders, pledge to make participation in our co
The source code license is [MIT](https://opensource.org/license/mit/), as described in the [LICENSE](LICENSE) file.
Built with [🦜️🔗 LangChain](https://github.com/hwchase17/langchain)
Built with [:bird: :link: LangChain](https://github.com/hwchase17/langchain)

View File

@@ -29,6 +29,8 @@ answer = Blueprint('answer', __name__)
if settings.LLM_NAME == "gpt4":
gpt_model = 'gpt-4'
elif settings.LLM_NAME == "anthropic":
gpt_model = 'claude-2'
else:
gpt_model = 'gpt-3.5-turbo'

View File

@@ -19,7 +19,7 @@ class Settings(BaseSettings):
API_URL: str = "http://localhost:7091" # backend url for celery worker
API_KEY: str = None # LLM api key
EMBEDDINGS_KEY: str = None # api key for embeddings (if using openai, just copy API_KEY
EMBEDDINGS_KEY: str = None # api key for embeddings (if using openai, just copy API_KEY)
OPENAI_API_BASE: str = None # azure openai api base url
OPENAI_API_VERSION: str = None # azure openai api version
AZURE_DEPLOYMENT_NAME: str = None # azure deployment name for answering

View File

@@ -0,0 +1,40 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class AnthropicLLM(BaseLLM):
def __init__(self, api_key=None):
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
self.api_key = api_key or settings.ANTHROPIC_API_KEY # If not provided, use a default from settings
self.anthropic = Anthropic(api_key=self.api_key)
self.HUMAN_PROMPT = HUMAN_PROMPT
self.AI_PROMPT = AI_PROMPT
def gen(self, model, messages, engine=None, max_tokens=300, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
if stream:
return self.gen_stream(model, prompt, max_tokens, **kwargs)
completion = self.anthropic.completions.create(
model=model,
max_tokens_to_sample=max_tokens,
stream=stream,
prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}",
)
return completion.completion
def gen_stream(self, model, messages, engine=None, max_tokens=300, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
stream_response = self.anthropic.completions.create(
model=model,
prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}",
max_tokens_to_sample=max_tokens,
stream=True,
)
for completion in stream_response:
yield completion.completion

View File

@@ -2,6 +2,7 @@ from application.llm.openai import OpenAILLM, AzureOpenAILLM
from application.llm.sagemaker import SagemakerAPILLM
from application.llm.huggingface import HuggingFaceLLM
from application.llm.llama_cpp import LlamaCpp
from application.llm.anthropic import AnthropicLLM
@@ -11,7 +12,8 @@ class LLMCreator:
'azure_openai': AzureOpenAILLM,
'sagemaker': SagemakerAPILLM,
'huggingface': HuggingFaceLLM,
'llama.cpp': LlamaCpp
'llama.cpp': LlamaCpp,
'anthropic': AnthropicLLM
}
@classmethod

View File

@@ -0,0 +1,51 @@
from urllib.parse import urlparse
from openapi_parser import parse
try:
from application.parser.file.base_parser import BaseParser
except ModuleNotFoundError:
from base_parser import BaseParser
class OpenAPI3Parser(BaseParser):
def init_parser(self) -> None:
return super().init_parser()
def get_base_urls(self, urls):
base_urls = []
for i in urls:
parsed_url = urlparse(i)
base_url = parsed_url.scheme + "://" + parsed_url.netloc
if base_url not in base_urls:
base_urls.append(base_url)
return base_urls
def get_info_from_paths(self, path):
info = ""
if path.operations:
for operation in path.operations:
info += (
f"\n{operation.method.value}="
f"{operation.responses[0].description}"
)
return info
def parse_file(self, file_path):
data = parse(file_path)
results = ""
base_urls = self.get_base_urls(link.url for link in data.servers)
base_urls = ",".join([base_url for base_url in base_urls])
results += f"Base URL:{base_urls}\n"
i = 1
for path in data.paths:
info = self.get_info_from_paths(path)
results += (
f"Path{i}: {path.url}\n"
f"description: {path.description}\n"
f"parameters: {path.parameters}\nmethods: {info}\n"
)
i += 1
with open("results.txt", "w") as f:
f.write(results)
return results

View File

@@ -4,6 +4,7 @@ aiohttp-retry==2.8.3
aiosignal==1.3.1
aleph-alpha-client==2.16.1
amqp==5.1.1
anthropic==0.5.0
async-timeout==4.0.2
attrs==22.2.0
billiard==3.6.4.0
@@ -57,6 +58,7 @@ nltk==3.8.1
numcodecs==0.11.0
numpy==1.24.2
openai==0.27.8
openapi3-parser==1.1.14
packaging==23.0
pathos==0.3.0
Pillow==10.0.1
@@ -100,7 +102,7 @@ transformers==4.30.0
typer==0.7.0
typing-inspect==0.8.0
typing_extensions==4.5.0
urllib3==1.26.17
urllib3==1.26.18
vine==5.0.0
wcwidth==0.2.6
yarl==1.8.2

View File

@@ -20,17 +20,34 @@ except FileExistsError:
pass
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
store = '/'.join(title.split('/')[1:3])
return {'title': title, 'store': store}
# Define a function to generate a random string of a given length.
def generate_random_string(length):
return ''.join([string.ascii_letters[i % 52] for i in range(length)])
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Define the main function for ingesting and processing documents.
def ingest_worker(self, directory, formats, name_job, filename, user):
"""
Ingest and process documents.
Args:
self: Reference to the instance of the task.
directory (str): Specifies the directory for ingesting ('inputs' or 'temp').
formats (list of str): List of file extensions to consider for ingestion (e.g., [".rst", ".md"]).
name_job (str): Name of the job for this ingestion task.
filename (str): Name of the file to be ingested.
user (str): Identifier for the user initiating the ingestion.
Returns:
dict: Information about the completed ingestion task, including input parameters and a "limited" flag.
"""
# directory = 'inputs' or 'temp'
# formats = [".rst", ".md"]
input_files = None

View File

@@ -1,2 +1,2 @@
ignore:
- "*/tests/*
- "*/tests/*"

View File

@@ -16,6 +16,7 @@ services:
environment:
- API_KEY=$API_KEY
- EMBEDDINGS_KEY=$API_KEY
- LLM_NAME=$LLM_NAME
- CELERY_BROKER_URL=redis://redis:6379/0
- CELERY_RESULT_BACKEND=redis://redis:6379/1
- MONGO_URI=mongodb://mongo:27017/docsgpt
@@ -35,6 +36,7 @@ services:
environment:
- API_KEY=$API_KEY
- EMBEDDINGS_KEY=$API_KEY
- LLM_NAME=$LLM_NAME
- CELERY_BROKER_URL=redis://redis:6379/0
- CELERY_RESULT_BACKEND=redis://redis:6379/1
- MONGO_URI=mongodb://mongo:27017/docsgpt

View File

@@ -4,16 +4,15 @@
### 1. Clone the DocsGPT repository:
```
```bash
git clone https://github.com/arc53/DocsGPT.git
```
### 2. Navigate to the docs folder:
```
```bash
cd DocsGPT/docs
```
The docs folder contains the markdown files that make up the documentation. The majority of the files are in the pages directory. Some notable files in this folder include:
`index.mdx`: The main documentation file.
@@ -22,30 +21,29 @@ The docs folder contains the markdown files that make up the documentation. The
### 3. Verify that you have Node.js and npm installed in your system. You can check by running:
```
```bash
node --version
npm --version
```
### 4. If not installed, download Node.js and npm from the respective official websites.
### 5. Once you have Node.js and npm running, proceed to install yarn - another package manager that helps to manage project dependencies:
```
```bash
npm install --global yarn
```
### 6. Install the project dependencies using yarn:
```
```bash
yarn install
```
### 7. After the successful installation of the project dependencies, start the local server:
```
```bash
yarn dev
```
- Now, you should be able to view the docs on your local environment by visiting `http://localhost:5000`. You can explore the different markdown files and make changes as you see fit.

View File

@@ -1,6 +1,6 @@
# Self-hosting DocsGPT on Amazon Lightsail
Here's a step-by-step guide on how to setup an Amazon Lightsail instance to host DocsGPT.
Here's a step-by-step guide on how to set up an Amazon Lightsail instance to host DocsGPT.
## Configuring your instance

View File

@@ -2,22 +2,28 @@
**Note**: Make sure you have Docker installed
**On macOS or Linux:**
Just run the following command::
Just run the following command:
`./setup.sh`
```bash
./setup.sh
```
This command will install all the necessary dependencies and provide you with an option to download the local model or use OpenAI.
If you prefer to follow manual steps, refer to this guide:
1. Open and download this repository with
`git clone https://github.com/arc53/DocsGPT.git`.
```bash
git clone https://github.com/arc53/DocsGPT.git
```
2. Create a `.env` file in your root directory and set your `API_KEY` with your [OpenAI API key](https://platform.openai.com/account/api-keys).
3. Run the following commands:
`docker-compose build && docker-compose up`.
4. Navigate to `http://localhost:5173/`.
```bash
docker-compose build && docker-compose up
```
4. Navigate to http://localhost:5173/.
To stop, simply press Ctrl + C.
To stop, simply press **Ctrl + C**.
**For WINDOWS:**
@@ -28,32 +34,36 @@ To run the setup on Windows, you have two options: using the Windows Subsystem f
1. Install WSL if you haven't already. You can follow the official Microsoft documentation for installation: (https://learn.microsoft.com/en-us/windows/wsl/install).
2. After setting up WSL, open the WSL terminal.
3. Clone the repository and create the `.env` file:
```
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
echo "API_KEY=Yourkey" > .env
echo "VITE_API_STREAMING=true" >> .env
```
4. Run the following command to start the setup with Docker Compose:
`./run-with-docker-compose.sh`
5. Open your web browser and navigate to (http://localhost:5173/).
6. To stop the setup, just press `Ctrl + C` in the WSL terminal
```bash
./run-with-docker-compose.sh
```
6. Open your web browser and navigate to http://localhost:5173/.
7. To stop the setup, just press **Ctrl + C** in the WSL terminal
**Option 2: Using Git Bash or Command Prompt (CMD):**
1. Install Git for Windows if you haven't already. Download it from the official website: (https://gitforwindows.org/).
2. Open Git Bash or Command Prompt.
3. Clone the repository and create the `.env` file:
```
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
echo "API_KEY=Yourkey" > .env
echo "VITE_API_STREAMING=true" >> .env
```
4.Run the following command to start the setup with Docker Compose:
`./run-with-docker-compose.sh`
5.Open your web browser and navigate to (http://localhost:5173/).
6.To stop the setup, just press Ctrl + C in the Git Bash or Command Prompt terminal.
4. Run the following command to start the setup with Docker Compose:
```bash
./run-with-docker-compose.sh
```
5. Open your web browser and navigate to http://localhost:5173/.
6. To stop the setup, just press **Ctrl + C** in the Git Bash or Command Prompt terminal.
These steps should help you set up and run the project on Windows using either WSL or Git Bash/Command Prompt.
**Important:** Ensure that Docker is installed and properly configured on your Windows system for these steps to work.
@@ -68,32 +78,36 @@ Option 1: Using Windows Subsystem for Linux (WSL):
1. Install WSL if you haven't already. You can follow the official Microsoft documentation for installation: (https://learn.microsoft.com/en-us/windows/wsl/install).
2. After setting up WSL, open the WSL terminal.
3. Clone the repository and create the `.env` file:
```
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
echo "API_KEY=Yourkey" > .env
echo "VITE_API_STREAMING=true" >> .env
```
4. Run the following command to start the setup with Docker Compose:
`./run-with-docker-compose.sh`
5. Open your web browser and navigate to (http://localhost:5173/).
6. To stop the setup, just press `Ctrl + C` in the WSL terminal
```bash
./run-with-docker-compose.sh
```
5. Open your web browser and navigate to http://localhost:5173/.
6. To stop the setup, just press **Ctrl + C** in the WSL terminal.
Option 2: Using Git Bash or Command Prompt (CMD):
1. Install Git for Windows if you haven't already. You can download it from the official website: (https://gitforwindows.org/).
2. Open Git Bash or Command Prompt.
3. Clone the repository and create the `.env` file:
```
```bash
git clone https://github.com/arc53/DocsGPT.git
cd DocsGPT
echo "API_KEY=Yourkey" > .env
echo "VITE_API_STREAMING=true" >> .env
```
4.Run the following command to start the setup with Docker Compose:
`./run-with-docker-compose.sh`
5.Open your web browser and navigate to (http://localhost:5173/).
6.To stop the setup, just press Ctrl + C in the Git Bash or Command Prompt terminal.
4. Run the following command to start the setup with Docker Compose:
```bash
./run-with-docker-compose.sh
```
5. Open your web browser and navigate to http://localhost:5173/.
6. To stop the setup, just press **Ctrl + C** in the Git Bash or Command Prompt terminal.
These steps should help you set up and run the project on Windows using either WSL or Git Bash/Command Prompt. Make sure you have Docker installed and properly configured on your Windows system for this to work.
@@ -103,12 +117,12 @@ These steps should help you set up and run the project on Windows using either W
#### Installing the Chrome extension:
To enhance your DocsGPT experience, you can install the DocsGPT Chrome extension. Here's how:
1. In the DocsGPT GitHub repository, click on the "Code" button and select "Download ZIP".
1. In the DocsGPT GitHub repository, click on the **Code** button and select **Download ZIP**.
2. Unzip the downloaded file to a location you can easily access.
3. Open the Google Chrome browser and click on the three dots menu (upper right corner).
4. Select "More Tools" and then "Extensions".
5. Turn on the "Developer mode" switch in the top right corner of the Extensions page.
6. Click on the "Load unpacked" button.
7. Select the "Chrome" folder where the DocsGPT files have been unzipped (docsgpt-main > extensions > chrome).
4. Select **More Tools** and then **Extensions**.
5. Turn on the **Developer mode** switch in the top right corner of the **Extensions page**.
6. Click on the **Load unpacked** button.
7. Select the **Chrome** folder where the DocsGPT files have been unzipped (docsgpt-main > extensions > chrome).
8. The extension should now be added to Google Chrome and can be managed on the Extensions page.
9. To disable or remove the extension, simply turn off the toggle switch on the extension card or click the "Remove" button.
9. To disable or remove the extension, simply turn off the toggle switch on the extension card or click the **Remove** button.

View File

@@ -0,0 +1,254 @@
# Self-hosting DocsGPT on Railway
Here's a step-by-step guide on how to host DocsGPT on Railway App.
At first Clone and setup the project locally to run , test and Modify.
### 1. Clone and GitHub SetUp
a. Open Terminal (Windows Shell or Git bash(recommended)).
b. Type `git clone https://github.com/arc53/DocsGPT.git`
#### Download the package information
Once it has finished cloning the repository, it is time to download the package information from all sources. To do so, simply enter the following command:
`sudo apt update`
#### Install Docker and Docker Compose
DocsGPT backend and worker use Python, Frontend is written on React and the whole application is containerized using Docker. To install Docker and Docker Compose, enter the following commands:
`sudo apt install docker.io`
And now install docker-compose:
`sudo apt install docker-compose`
#### Access the DocsGPT Folder
Enter the following command to access the folder in which the DocsGPT docker-compose file is present.
`cd DocsGPT/`
#### Prepare the Environment
Inside the DocsGPT folder create a `.env` file and copy the contents of `.env_sample` into it.
`nano .env`
Make sure your `.env` file looks like this:
```
OPENAI_API_KEY=(Your OpenAI API key)
VITE_API_STREAMING=true
SELF_HOSTED_MODEL=false
```
To save the file, press CTRL+X, then Y, and then ENTER.
Next, set the correct IP for the Backend by opening the docker-compose.yml file:
`nano docker-compose.yml`
And Change line 7 to: `VITE_API_HOST=http://localhost:7091`
to this `VITE_API_HOST=http://<your instance public IP>:7091`
This will allow the frontend to connect to the backend.
#### Running the Application
You're almost there! Now that all the necessary bits and pieces have been installed, it is time to run the application. To do so, use the following command:
`sudo docker-compose up -d`
Launching it for the first time will take a few minutes to download all the necessary dependencies and build.
Once this is done you can go ahead and close the terminal window.
### 2. Pushing it to your own Repository
a. Create a Repository on your GitHub.
b. Open Terminal in the same directory of the Cloned project.
c. Type `git init`
d. `git add .`
e. `git commit -m "first-commit"`
f. `git remote add origin <your repository link>`
g. `git push git push --set-upstream origin master`
Your local files will now be pushed to your GitHub Account. :)
### 3. Create a Railway Account:
If you haven't already, create or log in to your railway account do it by visiting [Railway](https://railway.app/)
Signup via **GitHub** [Recommended].
### 4. Start New Project:
a. Open Railway app and Click on "Start New Project."
b. Choose any from the list of options available (Recommended "**Deploy from GitHub Repo**")
c. Choose the required Repository from your GitHub.
d. Configure and allow access to modify your GitHub content from the pop-up window.
e. Agree to all the terms and conditions.
PS: It may take a few minutes for the account setup to complete.
#### You will get A free trial of $5 (use it for trial and then purchase if satisfied and needed)
### 5. Connecting to Your newly Railway app with GitHub
a. Choose DocsGPT repo from the list of your GitHub repository that you want to deploy now.
b. Click on Deploy now.
![Three Tabs will be there](/Railway-selection.png)
c. Select Variables Tab.
d. Upload the env file here that you used for local setup.
e. Go to Settings Tab now.
f. Go to "Networking" and click on Generate Domain Name, to get the URL of your hosted project.
g. You can update the Root directory, build command, installation command as per need.
*[However recommended not the disturb these options and leave them as default if not that needed.]*
Your own DocsGPT is now available at the Generated domain URl. :)

View File

@@ -6,5 +6,9 @@
"Quickstart": {
"title": "⚡Quickstart",
"href": "/Deploying/Quickstart"
},
"Railway-Deploying": {
"title": "🚂Deploying on Rainway",
"href": "/Deploying/Railway-Deploying"
}
}
}

View File

@@ -10,14 +10,16 @@ This endpoint is used to request answers to user-provided questions.
**Request:**
Method: POST
Headers: Content-Type should be set to "application/json; charset=utf-8"
Request Body: JSON object with the following fields:
* **question:** The user's question
* **history:** (Optional) Previous conversation history
* **api_key:** Your API key
* **embeddings_key:** Your embeddings key
* **active_docs:** The location of active documentation
**Method**: `POST`
**Headers**: Content-Type should be set to `application/json; charset=utf-8`
**Request Body**: JSON object with the following fields:
* `question` — The user's question.
* `history` — (Optional) Previous conversation history.
* `api_key`— Your API key.
* `embeddings_key` — Your embeddings key.
* `active_docs` — The location of active documentation.
Here is a JavaScript Fetch Request example:
```js
@@ -36,12 +38,12 @@ fetch("http://127.0.0.1:5000/api/answer", {
**Response**
In response, you will get a JSON document containing the answer,query and the result:
In response, you will get a JSON document containing the `answer`, `query` and `result`:
```json
{
"answer": " Hi there! How can I help you?\n",
"answer": "Hi there! How can I help you?\n",
"query": "Hi",
"result": " Hi there! How can I help you?\nSOURCES:"
"result": "Hi there! How can I help you?\nSOURCES:"
}
```
@@ -53,9 +55,12 @@ This endpoint will make sure documentation is loaded on the server (just run it
**Request:**
Headers: Content-Type should be set to "application/json; charset=utf-8"
Request Body: JSON object with the field:
* **docs:** The location of the documentation
**Method**: `POST`
**Headers**: Content-Type should be set to `application/json; charset=utf-8`
**Request Body**: JSON object with the field:
* `docs` — The location of the documentation:
```js
// answer (POST http://127.0.0.1:5000/api/docs_check)
fetch("http://127.0.0.1:5000/api/docs_check", {
@@ -71,7 +76,7 @@ fetch("http://127.0.0.1:5000/api/docs_check", {
**Response:**
In response, you will get a JSON document like this one indicating whether the documentation exists or not.:
In response, you will get a JSON document like this one indicating whether the documentation exists or not:
```json
{
"status": "exists"
@@ -86,19 +91,25 @@ This endpoint provides information about available vectors and their locations w
**Request:**
Method: GET
**Method**: `GET`
**Response:**
Response will include:
`date`, `description`, `docLink`, `fullName`, `language`, `location` (local or docshub), `model`, `name`, `version`.
* `date`
* `description`
* `docLink`
* `fullName`
* `language`
* `location` (local or docshub)
* `model`
* `name`
* `version`
Example of JSON in Docshub and local:
<img width="295" alt="image" src="https://user-images.githubusercontent.com/15183589/224714085-f09f51a4-7a9a-4efb-bd39-798029bb4273.png">
### 4. /api/upload
**Description:**
@@ -106,8 +117,9 @@ This endpoint is used to upload a file that needs to be trained, response is JSO
**Request:**
Method: POST
Request Body: A multipart/form-data form with file upload and additional fields, including "user" and "name."
**Method**: `POST`
**Request Body**: A multipart/form-data form with file upload and additional fields, including `user` and `name`.
HTML example:
@@ -134,8 +146,10 @@ JSON response with a status and a task ID that can be used to check the task's p
This endpoint is used to get the status of a task (`task_id`) from `/api/upload`
**Request:**
Method: GET
Query Parameter: task_id (task ID to check)
**Method**: `GET`
**Query Parameter**: `task_id` (task ID to check)
**Sample JavaScript Fetch Request:**
```js
@@ -155,33 +169,32 @@ fetch("http://localhost:5001/api/task_status?task_id=YOUR_TASK_ID", {
There are two types of responses:
1. While the task is still running, the 'current' value will show progress from 0 to 100.
```json
{
"result": {
"current": 1
},
"status": "PROGRESS"
}
```
```json
{
"result": {
"current": 1
},
"status": "PROGRESS"
}
```
2. When task is completed:
```json
{
"result": {
"directory": "temp",
"filename": "install.rst",
"formats": [
".rst",
".md",
".pdf"
],
"name_job": "somename",
"user": "local"
},
"status": "SUCCESS"
}
```
```json
{
"result": {
"directory": "temp",
"filename": "install.rst",
"formats": [
".rst",
".md",
".pdf"
],
"name_job": "somename",
"user": "local"
},
"status": "SUCCESS"
}
```
### 6. /api/delete_old
**Description:**
@@ -190,7 +203,8 @@ This endpoint is used to delete old Vector Stores.
**Request:**
Method: GET
**Method**: `GET`
```js
// Task status (GET http://127.0.0.1:5000/api/docs_check)
fetch("http://localhost:5001/api/task_status?task_id=b2d2a0f4-387c-44fd-a443-e4fe2e7454d1", {
@@ -205,7 +219,8 @@ fetch("http://localhost:5001/api/task_status?task_id=b2d2a0f4-387c-44fd-a443-e4f
```
**Response:**
JSON response indicating the status of the operation.
JSON response indicating the status of the operation:
```json
{ "status": "ok" }
```

View File

@@ -1,22 +1,31 @@
### How to set up react docsGPT widget on your website:
### Setting up the DocsGPT Widget in Your React Project
### Introduction:
The DocsGPT Widget is a powerful tool that allows you to integrate AI-powered documentation assistance into your web applications. This guide will walk you through the installation and usage of the DocsGPT Widget in your React project. Whether you're building a web app or a knowledge base, this widget can enhance your user experience.
### Installation
Go to your project and install a new dependency: `npm install docsgpt`.
First, make sure you have Node.js and npm installed in your project. Then go to your project and install a new dependency: `npm install docsgpt`.
### Usage
Go to your project and in the file where you want to use the widget, import it:
In the file where you want to use the widget, import it and include the CSS file:
```js
import { DocsGPTWidget } from "docsgpt";
import "docsgpt/dist/style.css";
```
Then you can use it like this: `<DocsGPTWidget />`
DocsGPTWidget takes 3 props:
1. `apiHost` — URL of your DocsGPT API.
2. `selectDocs` — documentation that you want to use for your widget (e.g. `default` or `local/docs1.zip`).
3. `apiKey` — usually it's empty.
Now, you can use the widget in your component like this :
```jsx
<DocsGPTWidget
apiHost="https://your-docsgpt-api.com"
selectDocs="local/docs.zip"
apiKey=""
/>
```
DocsGPTWidget takes 3 **props**:
1. `apiHost` — The URL of your DocsGPT API.
2. `selectDocs` — The documentation source that you want to use for your widget (e.g. `default` or `local/docs1.zip`).
3. `apiKey` — Usually, it's empty.
### How to use DocsGPTWidget with [Nextra](https://nextra.site/) (Next.js + MDX)
Install your widget as described above and then go to your `pages/` folder and create a new file `_app.js` with the following content:
@@ -32,6 +41,7 @@ export default function MyApp({ Component, pageProps }) {
</>
)
}
```
```
For more information about React, refer to this [link here](https://react.dev/learn)

View File

@@ -1,10 +1,10 @@
# Customizing the Main Prompt
To customize the main prompt for DocsGPT, follow these steps:
Customizing the main prompt for DocsGPT gives you the ability to tailor the AI's responses to your specific requirements. By modifying the prompt text, you can achieve more accurate and relevant answers. Here's how you can do it:
1. Navigate to `/application/prompt/combine_prompt.txt`.
1. Navigate to `/application/prompts/combine_prompt.txt`.
2. Edit the `combine_prompt.txt` file to modify the prompt text. You can experiment with different phrasings and structures to see how the model responds.
2. Open the `combine_prompt.txt` file and modify the prompt text to suit your needs. You can experiment with different phrasings and structures to observe how the model responds. The main prompt serves as guidance to the AI model on how to generate responses.
## Example Prompt Modification
@@ -19,7 +19,7 @@ When using code examples, use the following format:
{summaries}
```
Feel free to customize the prompt to align it with your specific use case or the kind of responses you want from the AI. For example, you can focus on specific document types, industries, or topics to get more targeted results.
## Conclusion

View File

@@ -1,43 +1,47 @@
## How to train on other documentation
This AI can use any documentation, but first it needs to be prepared for similarity search.
This AI can utilize any documentation, but it requires preparation for similarity search. Follow these steps to get your documentation ready:
**Step 1: Prepare Your Documentation**
![video-example-of-how-to-do-it](https://d3dg1063dc54p9.cloudfront.net/videos/how-to-vectorise.gif)
Start by going to `/scripts/` folder.
If you open this file, you will see that it uses RST files from the folder to create a `index.faiss` and `index.pkl`.
It currently uses OPEN_AI to create the vector store, so make sure your documentation is not too big. Pandas cost me around $3-$4.
It currently uses OPENAI to create the vector store, so make sure your documentation is not too large. Using Pandas cost me around $3-$4.
You can usually find documentation on Github in `docs/` folder for most open-source projects.
You can typically find documentation on GitHub in the `docs/` folder for most open-source projects.
### 1. Find documentation in .rst/.md and create a folder with it in your scripts directory
### 1. Find documentation in .rst/.md format and create a folder with it in your scripts directory.
- Name it `inputs/`.
- Put all your .rst/.md files in there.
- The search is recursive, so you don't need to flatten them.
If there are no .rst/.md files just convert whatever you find to .txt file and feed it. (don't forget to change the extension in script)
If there are no .rst/.md files, convert whatever you find to a .txt file and feed it. (Don't forget to change the extension in the script).
### 2. Create .env file in `scripts/` folder
And write your OpenAI API key inside
`OPENAI_API_KEY=<your-api-key>`.
### Step 2: Configure Your OpenAI API Key
1. Create a .env file in the scripts/ folder.
- Add your OpenAI API key inside: OPENAI_API_KEY=<your-api-key>.
### 3. Run scripts/ingest.py
### Step 3: Run the Ingestion Script
`python ingest.py ingest`
It will tell you how much it will cost.
It will provide you with the estimated cost.
### 4. Move `index.faiss` and `index.pkl` generated in `scripts/output` to `application/` folder.
### Step 4: Move `index.faiss` and `index.pkl` generated in `scripts/output` to `application/` folder.
### 5. Run web app
Once you run it will use new context that is relevant to your documentation.
Make sure you select default in the dropdown in the UI.
### Step 5: Run the Web App
Once you run it, it will use new context relevant to your documentation.Make sure you select default in the dropdown in the UI.
## Customization
You can learn more about options while running ingest.py by running:
- Make sure you select 'default' from the dropdown in the UI.
## Customization
You can learn more about options while running ingest.py by executing:
`python ingest.py --help`
| Options | |
|:--------------------------------:|:------------------------------------------------------------------------------------------------------------------------------:|

View File

@@ -1,36 +1,42 @@
Fortunately, there are many providers for LLMs, and some of them can even be run locally.
# Setting Up Local Language Models for Your App
There are two models used in the app:
1. Embeddings.
2. Text generation.
Your app relies on two essential models: Embeddings and Text Generation. While OpenAI's default models work seamlessly, you have the flexibility to switch providers or even run the models locally.
By default, we use OpenAI's models, but if you want to change it or even run it locally, it's very simple!
## Step 1: Configure Environment Variables
### Go to .env file or set environment variables:
Navigate to the `.env` file or set the following environment variables:
`LLM_NAME=<your Text generation>`
```env
LLM_NAME=<your Text Generation model>
API_KEY=<API key for Text Generation>
EMBEDDINGS_NAME=<LLM for Embeddings>
EMBEDDINGS_KEY=<API key for Embeddings>
VITE_API_STREAMING=<true or false>
```
`API_KEY=<api_key for Text generation>`
You can omit the keys if users provide their own. Ensure you set `LLM_NAME` and `EMBEDDINGS_NAME`.
`EMBEDDINGS_NAME=<llm for embeddings>`
## Step 2: Choose Your Models
`EMBEDDINGS_KEY=<api_key for embeddings>`
**Options for `LLM_NAME`:**
- OpenAI ([More details](https://platform.openai.com/docs/models))
- manifest ([More details](https://python.langchain.com/docs/integrations/llms/manifest))
- cohere ([More details](https://docs.cohere.com/docs/llmu))
- Arc53/docsgpt-14b ([More details](https://huggingface.co/Arc53/docsgpt-14b))
- Arc53/docsgpt-7b-falcon ([More details](https://huggingface.co/Arc53/docsgpt-7b-falcon))
- llama.cpp ([More details](https://python.langchain.com/docs/integrations/llms/llamacpp))
`VITE_API_STREAMING=<true or false (true if using openai, false for all others)>`
**Options for `EMBEDDINGS_NAME`:**
- openai_text-embedding-ada-002
- huggingface_sentence-transformers/all-mpnet-base-v2
- huggingface_hkunlp/instructor-large
- cohere_medium
You don't need to provide keys if you are happy with users providing theirs, so make sure you set `LLM_NAME` and `EMBEDDINGS_NAME`.
If using Llama, set `EMBEDDINGS_NAME` to `huggingface_sentence-transformers/all-mpnet-base-v2`. Download the required model and place it in the `models/` folder.
Options:
LLM_NAME (openai, manifest, cohere, Arc53/docsgpt-14b, Arc53/docsgpt-7b-falcon, llama.cpp)
EMBEDDINGS_NAME (openai_text-embedding-ada-002, huggingface_sentence-transformers/all-mpnet-base-v2, huggingface_hkunlp/instructor-large, cohere_medium)
Alternatively, for local Llama setup, run `setup.sh` and choose option 1. The script handles the DocsGPT model addition.
If using Llama, set the `EMBEDDINGS_NAME` to `huggingface_sentence-transformers/all-mpnet-base-v2` and be sure to download [this model](https://d3dg1063dc54p9.cloudfront.net/models/docsgpt-7b-f16.gguf) into the `models/` folder: `https://d3dg1063dc54p9.cloudfront.net/models/docsgpt-7b-f16.gguf`.
## Step 3: Local Hosting for Privacy
Alternatively, if you wish to run Llama locally, you can run `setup.sh` and choose option 1 when prompted. You do not need to manually add the DocsGPT model mentioned above to your `models/` folder if you use `setup.sh`, as the script will manage that step for you.
That's it!
### Hosting everything locally and privately (for using our optimised open-source models)
If you are working with critical data and don't want anything to leave your premises.
Make sure you set `SELF_HOSTED_MODEL` as true in your `.env` variable, and for your `LLM_NAME`, you can use anything that is on Hugging Face.
If working with sensitive data, host everything locally by setting `SELF_HOSTED_MODEL` to true in your `.env`. For `LLM_NAME`, use any model available on Hugging Face.
That's it! Your app is now configured for local and private hosting, ensuring optimal security for critical data.

View File

@@ -1,3 +1,5 @@
# Avoiding hallucinations
If your AI uses external knowledge and is not explicit enough, it is ok, because we try to make DocsGPT friendly.
But if you want to adjust it, here is a simple way:-

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

View File

@@ -1,5 +1,6 @@
//TODO - Add hyperlinks to text
//TODO - Styling
import DocsGPT3 from './assets/cute_docsgpt3.svg';
export default function About() {
return (
@@ -7,7 +8,7 @@ export default function About() {
<article className="place-items-left mx-auto my-auto flex w-full max-w-6xl flex-col gap-4 rounded-3xl bg-gray-100 p-6 text-jet lg:p-6 xl:p-10">
<div className="flex items-center">
<p className="mr-2 text-3xl">About DocsGPT</p>
<p className="text-[21px]">🦖</p>
<img className="h14 mb-2" src={DocsGPT3} alt="DocsGPT" />
</div>
<p className="mt-4">
Find the information in your documentation through AI-powered

View File

@@ -1,18 +0,0 @@
export default function Avatar({
avatar,
size,
className,
}: {
avatar: string;
size?: 'SMALL' | 'MEDIUM' | 'LARGE';
className: string;
}) {
const styles = {
transform: 'scale(-1, 1)',
};
return (
<div style={styles} className={className}>
{avatar}
</div>
);
}

View File

@@ -1,9 +1,11 @@
import DocsGPT3 from './assets/cute_docsgpt3.svg';
export default function Hero({ className = '' }: { className?: string }) {
return (
<div className={`mt-14 mb-12 flex flex-col `}>
<div className="mb-10 flex items-center justify-center ">
<p className="mr-2 text-4xl font-semibold">DocsGPT</p>
<p className="text-[27px]">🦖</p>
<img className="mb-2 h-14" src={DocsGPT3} alt="DocsGPT" />
</div>
<p className="mb-3 text-center leading-6 text-black-1000">
Welcome to DocsGPT, your technical documentation assistant!
@@ -17,9 +19,9 @@ export default function Hero({ className = '' }: { className?: string }) {
Start by entering your query in the input field below and we will do the
rest!
</p>
<div className="sections mt-8 flex flex-wrap items-center justify-center sm:gap-1 md:gap-0 ">
<div className="mr-4 mb-4 h-[224px] rounded-[25px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1">
<div className="h-full rounded-[21px] bg-white p-6">
<div className="sections mt-8 flex flex-col items-center justify-center gap-1 sm:gap-0 lg:flex-row">
<div className="relative mb-4 h-60 rounded-[25px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 sm:mr-0 lg:rounded-r-none">
<div className="h-full rounded-[21px] bg-white p-6 lg:rounded-r-none">
<img
src="/message-text.svg"
alt="lock"
@@ -35,8 +37,8 @@ export default function Hero({ className = '' }: { className?: string }) {
</div>
</div>
<div className="mr-4 mb-4 rounded-[25px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1">
<div className="h-full rounded-[21px] bg-white p-6">
<div className="relative mb-4 h-60 rounded-[25px] bg-gradient-to-r from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 sm:mr-0 lg:rounded-none lg:px-0">
<div className="h-full rounded-[21px] bg-white p-6 lg:rounded-none">
<img src="/lock.svg" alt="lock" className="h-[24px] w-[24px]" />
<h2 className="mt-2 mb-3 text-lg font-bold">Secure Data Storage</h2>
<p className=" w-[250px] text-xs text-gray-500">
@@ -47,8 +49,8 @@ export default function Hero({ className = '' }: { className?: string }) {
</p>
</div>
</div>
<div className="mb-4 rounded-[25px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1">
<div className="h-full rounded-[21px] bg-white p-6">
<div className="relative mb-4 h-60 rounded-[25px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 lg:rounded-l-none">
<div className="h-full rounded-[21px] bg-white p-6 lg:rounded-l-none">
<img
src="/message-programming.svg"
alt="lock"

View File

@@ -1,20 +1,24 @@
import { useEffect, useRef, useState } from 'react';
import { useDispatch, useSelector } from 'react-redux';
import { NavLink, useNavigate } from 'react-router-dom';
import Arrow1 from './assets/arrow.svg';
import DocsGPT3 from './assets/cute_docsgpt3.svg';
import Documentation from './assets/documentation.svg';
import Discord from './assets/discord.svg';
import Arrow2 from './assets/dropdown-arrow.svg';
import Expand from './assets/expand.svg';
import Exit from './assets/exit.svg';
import Message from './assets/message.svg';
import Github from './assets/github.svg';
import Hamburger from './assets/hamburger.svg';
import Key from './assets/key.svg';
import Info from './assets/info.svg';
import SettingGear from './assets/settingGear.svg';
import Documentation from './assets/documentation.svg';
import Discord from './assets/discord.svg';
import Github from './assets/github.svg';
import Key from './assets/key.svg';
import Add from './assets/add.svg';
import UploadIcon from './assets/upload.svg';
import { ActiveState } from './models/misc';
import APIKeyModal from './preferences/APIKeyModal';
import { useDispatch, useSelector } from 'react-redux';
import {
selectApiKeyStatus,
selectSelectedDocs,
@@ -173,17 +177,17 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
<>
{!navOpen && (
<button
className="duration-25 absolute relative top-3 left-3 z-20 hidden transition-all md:block"
className="duration-25 absolute sticky top-3 left-3 z-20 hidden transition-all md:block"
onClick={() => {
setNavOpen(!navOpen);
}}
>
<img
src={Arrow1}
src={Expand}
alt="menu toggle"
className={`${
!navOpen ? 'rotate-180' : 'rotate-0'
} m-auto w-3 transition-all duration-200`}
} m-auto transition-all duration-200`}
/>
</button>
)}
@@ -191,21 +195,27 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
ref={navRef}
className={`${
!navOpen && '-ml-96 md:-ml-[18rem]'
} duration-20 fixed top-0 z-20 flex h-full w-72 flex-col border-r-2 bg-gray-50 transition-all`}
} duration-20 fixed top-0 z-20 flex h-full w-72 flex-col border-r-2 bg-white transition-all`}
>
<div className={'visible h-16 w-full border-b-2 md:h-12'}>
<div
className={'visible mt-2 flex h-16 w-full justify-between md:h-12'}
>
<div className="my-auto mx-4 flex cursor-pointer gap-1.5">
<img className="mb-2 h-10" src={DocsGPT3} alt="" />
<p className="my-auto text-2xl font-semibold">DocsGPT</p>
</div>
<button
className="float-right mr-5 mt-5 h-5 w-5 md:mt-3"
className="float-right mr-5"
onClick={() => {
setNavOpen(!navOpen);
}}
>
<img
src={Arrow1}
src={Expand}
alt="menu toggle"
className={`${
!navOpen ? 'rotate-180' : 'rotate-0'
} m-auto w-3 transition-all duration-200`}
} m-auto transition-all duration-200`}
/>
</button>
</div>
@@ -221,30 +231,38 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
}}
className={({ isActive }) =>
`${
isActive && conversationId === null ? 'bg-gray-3000' : ''
} my-auto mx-4 mt-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100`
isActive ? 'bg-gray-3000' : ''
} group my-auto mx-4 mt-4 flex cursor-pointer gap-2.5 rounded-3xl border border-silver p-3 hover:border-rainy-gray hover:bg-gray-3000`
}
>
<img src={Message} className="ml-4 w-5"></img>
<p className="my-auto text-sm text-eerie-black">New Chat</p>
<img
src={Add}
alt="new"
className="opacity-80 group-hover:opacity-100"
/>
<p className="my-auto text-sm text-dove-gray group-hover:text-neutral-600">
New Chat
</p>
</NavLink>
<div className="conversations-container max-h-[25rem] overflow-y-auto">
{conversations?.map((conversation) => (
<ConversationTile
key={conversation.id}
conversation={conversation}
selectConversation={(id) => handleConversationClick(id)}
onDeleteConversation={(id) => handleDeleteConversation(id)}
onSave={(conversation) => updateConversationName(conversation)}
/>
))}
</div>
{conversations && (
<div className="conversations-container max-h-[25rem] overflow-y-auto">
<p className="ml-6 mt-3 text-sm font-semibold">Chats</p>
{conversations?.map((conversation) => (
<ConversationTile
key={conversation.id}
conversation={conversation}
selectConversation={(id) => handleConversationClick(id)}
onDeleteConversation={(id) => handleDeleteConversation(id)}
onSave={(conversation) => updateConversationName(conversation)}
/>
))}
</div>
)}
<div className="flex-grow border-b-2 border-gray-100"></div>
<div className="flex flex-col-reverse border-b-2">
<div className="relative my-4 flex gap-2 px-2">
<div
className="flex h-12 w-full cursor-pointer justify-between rounded-3xl border-2 bg-white"
className="flex h-12 w-5/6 cursor-pointer justify-between rounded-3xl border-2 bg-white"
onClick={() => setIsDocsListOpen(!isDocsListOpen)}
>
{selectedDocs && (
@@ -306,7 +324,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
</div>
)}
</div>
<p className="ml-6 mt-3 font-bold text-jet">Source Docs</p>
<p className="ml-6 mt-3 text-sm font-semibold">Source Docs</p>
</div>
<div className="flex flex-col gap-2 border-b-2 py-2">
<div
@@ -316,7 +334,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
}}
>
<img src={Key} alt="key" className="ml-2 w-6" />
<p className="my-auto text-eerie-black">Reset Key</p>
<p className="my-auto text-sm text-eerie-black">Reset Key</p>
</div>
</div>
@@ -341,7 +359,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
}
>
<img src={Info} alt="info" className="ml-2 w-5" />
<p className="my-auto text-eerie-black">About</p>
<p className="my-auto text-sm text-eerie-black">About</p>
</NavLink>
<a
@@ -351,7 +369,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
className="my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100"
>
<img src={Documentation} alt="documentation" className="ml-2 w-5" />
<p className="my-auto text-eerie-black">Documentation</p>
<p className="my-auto text-sm text-eerie-black">Documentation</p>
</a>
<a
href="https://discord.gg/WHJdfbQDR4"
@@ -360,7 +378,9 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
className="my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100"
>
<img src={Discord} alt="link" className="ml-2 w-5" />
<p className="my-auto text-eerie-black">Visit our Discord</p>
<p className="my-auto text-sm text-eerie-black">
Visit our Discord
</p>
</a>
<a
@@ -370,7 +390,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
className="my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100"
>
<img src={Github} alt="link" className="ml-2 w-5" />
<p className="my-auto text-eerie-black">Visit our Github</p>
<p className="my-auto text-sm text-eerie-black">Visit our Github</p>
</a>
</div>
</div>

View File

@@ -0,0 +1,10 @@
<svg width="17" height="17" viewBox="0 0 17 17" fill="none" xmlns="http://www.w3.org/2000/svg">
<g clip-path="url(#clip0_2494_3464)">
<path d="M7.43717 14.1667C7.43717 14.4485 7.54912 14.7187 7.74837 14.918C7.94763 15.1172 8.21788 15.2292 8.49967 15.2292C8.78147 15.2292 9.05172 15.1172 9.25098 14.918C9.45023 14.7187 9.56217 14.4485 9.56217 14.1667V9.56249H14.1663C14.4481 9.56249 14.7184 9.45055 14.9176 9.2513C15.1169 9.05204 15.2288 8.78179 15.2288 8.49999C15.2288 8.2182 15.1169 7.94795 14.9176 7.74869C14.7184 7.54944 14.4481 7.43749 14.1663 7.43749H9.56217V2.83333C9.56217 2.55154 9.45023 2.28128 9.25098 2.08203C9.05172 1.88277 8.78147 1.77083 8.49967 1.77083C8.21788 1.77083 7.94763 1.88277 7.74837 2.08203C7.54912 2.28128 7.43717 2.55154 7.43717 2.83333V7.43749H2.83301C2.55122 7.43749 2.28096 7.54944 2.08171 7.74869C1.88245 7.94795 1.77051 8.2182 1.77051 8.49999C1.77051 8.78179 1.88245 9.05204 2.08171 9.2513C2.28096 9.45055 2.55122 9.56249 2.83301 9.56249H7.43717V14.1667Z" fill="#5D5D5D" />
</g>
<defs>
<clipPath id="clip0_2494_3464">
<rect width="17" height="17" fill="white"/>
</clipPath>
</defs>
</svg>

After

Width:  |  Height:  |  Size: 1.1 KiB

View File

Before

Width:  |  Height:  |  Size: 1.0 KiB

After

Width:  |  Height:  |  Size: 1.0 KiB

View File

@@ -1,3 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" width="14" height="11" viewBox="0 0 14 11" fill="none">
<path d="M4.95919 10.1906C4.84318 10.1902 4.72847 10.166 4.62222 10.1194C4.51596 10.0729 4.42041 10.0049 4.34152 9.91985L0.229353 5.54538C0.0756344 5.38157 -0.00671208 5.1634 0.000428491 4.93886C0.00756906 4.71433 0.103612 4.50183 0.267428 4.34812C0.431245 4.1944 0.649417 4.11205 0.873948 4.11919C1.09848 4.12633 1.31098 4.22238 1.4647 4.38619L4.95073 8.10068L12.0666 0.316329C12.1389 0.226405 12.2287 0.152193 12.3306 0.0982513C12.4326 0.0443098 12.5445 0.0117775 12.6594 0.00265255C12.7744 -0.00647237 12.89 0.00800286 12.9992 0.045189C13.1084 0.082375 13.2088 0.141487 13.2943 0.218894C13.3798 0.296301 13.4485 0.390369 13.4964 0.49532C13.5442 0.600272 13.57 0.713891 13.5723 0.829198C13.5746 0.944506 13.5534 1.05907 13.5098 1.16585C13.4662 1.27263 13.4012 1.36937 13.3189 1.45014L5.58533 9.91139C5.50718 9.998 5.41197 10.0675 5.30567 10.1156C5.19938 10.1636 5.0843 10.1892 4.96766 10.1906H4.95919Z" fill="#747474"/>
</svg>
<svg width="16px" height="16px" viewBox="0 0 1024 1024" class="icon" version="1.1" xmlns="http://www.w3.org/2000/svg" fill="#11ee1c" stroke="#11ee1c" stroke-width="83.96799999999999"><g id="SVGRepo_bgCarrier" stroke-width="0"></g><g id="SVGRepo_tracerCarrier" stroke-linecap="round" stroke-linejoin="round"></g><g id="SVGRepo_iconCarrier"><path d="M866.133333 258.133333L362.666667 761.6l-204.8-204.8L98.133333 618.666667 362.666667 881.066667l563.2-563.2z" fill="#11ee1c"></path></g></svg>

Before

Width:  |  Height:  |  Size: 1.0 KiB

After

Width:  |  Height:  |  Size: 490 B

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 256 KiB

View File

@@ -1,3 +1,3 @@
<svg xmlns="http://www.w3.org/2000/svg" x="0px" y="0px" width="100" height="100" viewBox="0,0,256,256">
<g transform="translate(-19.2,-19.2) scale(1.15,1.15)"><g fill="#605b5b" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><g transform="scale(10.66667,10.66667)"><path d="M13.172,2h-7.172c-1.1,0 -2,0.9 -2,2v16c0,1.1 0.9,2 2,2h12c1.1,0 2,-0.9 2,-2v-11.172c0,-0.53 -0.211,-1.039 -0.586,-1.414l-4.828,-4.828c-0.375,-0.375 -0.884,-0.586 -1.414,-0.586zM15,18h-6c-0.552,0 -1,-0.448 -1,-1v0c0,-0.552 0.448,-1 1,-1h6c0.552,0 1,0.448 1,1v0c0,0.552 -0.448,1 -1,1zM15,14h-6c-0.552,0 -1,-0.448 -1,-1v0c0,-0.552 0.448,-1 1,-1h6c0.552,0 1,0.448 1,1v0c0,0.552 -0.448,1 -1,1zM13,9v-5.5l5.5,5.5z"></path></g></g></g>
</svg>
<g transform="translate(-19.2,-19.2) scale(1.15,1.15)"><g fill="black" fill-opacity="0.5" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><g transform="scale(10.66667,10.66667)"><path d="M13.172,2h-7.172c-1.1,0 -2,0.9 -2,2v16c0,1.1 0.9,2 2,2h12c1.1,0 2,-0.9 2,-2v-11.172c0,-0.53 -0.211,-1.039 -0.586,-1.414l-4.828,-4.828c-0.375,-0.375 -0.884,-0.586 -1.414,-0.586zM15,18h-6c-0.552,0 -1,-0.448 -1,-1v0c0,-0.552 0.448,-1 1,-1h6c0.552,0 1,0.448 1,1v0c0,0.552 -0.448,1 -1,1zM15,14h-6c-0.552,0 -1,-0.448 -1,-1v0c0,-0.552 0.448,-1 1,-1h6c0.552,0 1,0.448 1,1v0c0,0.552 -0.448,1 -1,1zM13,9v-5.5l5.5,5.5z"></path></g></g></g>
</svg>

Before

Width:  |  Height:  |  Size: 936 B

After

Width:  |  Height:  |  Size: 950 B

View File

@@ -0,0 +1,4 @@
<svg width="27" height="26" viewBox="0 0 27 26" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M4.03371 5.27275L4.1915 20.9162C4.20021 21.7802 4.90766 22.4735 5.77162 22.4648L21.4151 22.307C22.2791 22.2983 22.9724 21.5909 22.9637 20.7269L22.8059 5.0834C22.7972 4.21944 22.0897 3.52612 21.2258 3.53483L5.58228 3.69262C4.71831 3.70134 4.02499 4.40878 4.03371 5.27275Z" stroke="#949494" stroke-width="2.08591" stroke-linejoin="round"/>
<path d="M9.42289 22.428L9.23354 3.65585M17.6924 15.0436L15.5856 12.9788L17.6504 10.872M6.29419 22.4596L12.5516 22.3965M6.10484 3.68741L12.3622 3.62429" stroke="#949494" stroke-width="2.08591" stroke-linecap="round" stroke-linejoin="round"/>
</svg>

After

Width:  |  Height:  |  Size: 692 B

View File

@@ -0,0 +1,13 @@
import { ReactNode } from 'react';
export default function Avatar({
avatar,
size,
className,
}: {
avatar: string | ReactNode;
size?: 'SMALL' | 'MEDIUM' | 'LARGE';
className: string;
}) {
return <div className={`${className} flex-shrink-0`}>{avatar}</div>;
}

View File

@@ -192,7 +192,7 @@ export default function Conversation() {
</div>
)}
</div>
<p className="w-[100vw] self-center bg-white p-5 text-center text-xs text-gray-2000 md:w-full">
<p className="w-[100vw] self-center bg-white p-5 text-center text-xs text-gray-595959 md:w-full">
This is a chatbot that uses the GPT-3, Faiss and LangChain to answer
questions.
</p>

View File

@@ -1,16 +1,17 @@
import { forwardRef, useState } from 'react';
import Avatar from '../Avatar';
import Avatar from '../components/Avatar';
import { FEEDBACK, MESSAGE_TYPE } from './conversationModels';
import classes from './ConversationBubble.module.css';
import Alert from './../assets/alert.svg';
import { ReactComponent as Like } from './../assets/like.svg';
import { ReactComponent as Dislike } from './../assets/dislike.svg';
import { ReactComponent as Copy } from './../assets/copy.svg';
import { ReactComponent as Checkmark } from './../assets/checkmark.svg';
import { ReactComponent as CheckMark } from './../assets/checkmark.svg';
import ReactMarkdown from 'react-markdown';
import copy from 'copy-to-clipboard';
import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter';
import { vscDarkPlus } from 'react-syntax-highlighter/dist/cjs/styles/prism';
import DocsGPT3 from '../assets/cute_docsgpt3.svg';
const DisableSourceFE = import.meta.env.VITE_DISABLE_SOURCE_FE || false;
@@ -37,8 +38,13 @@ const ConversationBubble = forwardRef<
// Reset copied to false after a few seconds
setTimeout(() => {
setCopied(false);
}, 2000);
}, 3000);
};
const [isCopyHovered, setIsCopyHovered] = useState(false);
const [isLikeHovered, setIsLikeHovered] = useState(false);
const [isDislikeHovered, setIsDislikeHovered] = useState(false);
const [isLikeClicked, setIsLikeClicked] = useState(false);
const [isDislikeClicked, setIsDislikeClicked] = useState(false);
let bubble;
@@ -55,13 +61,26 @@ const ConversationBubble = forwardRef<
);
} else {
bubble = (
<div ref={ref} className={`flex self-start ${className} group flex-col`}>
<div
ref={ref}
className={`flex self-start ${className} group flex-col pr-20`}
>
<div className="flex self-start">
<Avatar className="mt-2 text-2xl" avatar="🦖"></Avatar>
<Avatar
className="mt-2 h-12 w-12 text-2xl"
avatar={
<img
src={DocsGPT3}
alt="DocsGPT"
className="h-full w-full object-cover"
/>
}
/>
<div
className={`ml-2 mr-5 flex rounded-3xl bg-gray-1000 p-3.5 ${
type === 'ERROR'
? 'flex-row rounded-full border border-transparent bg-[#FFE7E7] p-2 py-5 text-sm font-normal text-red-3000 dark:border-red-2000 dark:text-white'
? 'flex-row items-center rounded-full border border-transparent bg-[#FFE7E7] p-2 py-5 text-sm font-normal text-red-3000 dark:border-red-2000 dark:text-white'
: 'flex-col rounded-3xl'
}`}
>
@@ -146,52 +165,113 @@ const ConversationBubble = forwardRef<
)}
</div>
<div
className={`relative mr-2 flex items-center justify-center md:invisible ${
className={`relative mr-5 flex items-center justify-center md:invisible ${
type !== 'ERROR' ? 'group-hover:md:visible' : ''
}`}
>
{copied ? (
<Checkmark className="absolute left-2 top-4" />
) : (
<Copy
className={`absolute left-2 top-4 cursor-pointer fill-gray-4000 hover:stroke-gray-4000`}
onClick={() => {
handleCopyClick(message);
<div className="absolute left-2 top-4">
<div
className="flex items-center justify-center rounded-full p-2"
style={{
backgroundColor: isCopyHovered ? '#EEEEEE' : '#ffffff',
}}
></Copy>
)}
>
{copied ? (
<CheckMark
className="cursor-pointer stroke-green-2000"
onMouseEnter={() => setIsCopyHovered(true)}
onMouseLeave={() => setIsCopyHovered(false)}
/>
) : (
<Copy
className={`cursor-pointer fill-none`}
onClick={() => {
handleCopyClick(message);
}}
onMouseEnter={() => setIsCopyHovered(true)}
onMouseLeave={() => setIsCopyHovered(false)}
></Copy>
)}
</div>
</div>
</div>
<div
className={`relative mr-2 flex items-center justify-center md:invisible ${
className={`relative mr-5 flex items-center justify-center ${
!isLikeClicked ? 'md:invisible' : ''
} ${
feedback === 'LIKE' || type !== 'ERROR'
? 'group-hover:md:visible'
: ''
}`}
>
<Like
className={`absolute left-6 top-4 cursor-pointer ${
feedback === 'LIKE'
? 'fill-purple-30 stroke-purple-30'
: 'fill-none stroke-gray-4000 hover:fill-gray-4000'
}`}
onClick={() => handleFeedback?.('LIKE')}
></Like>
<div className="absolute left-6 top-4">
<div
className="flex items-center justify-center rounded-full p-2"
style={{
backgroundColor: isLikeHovered
? isLikeClicked
? 'rgba(125, 84, 209, 0.3)'
: '#EEEEEE'
: isLikeClicked
? 'rgba(125, 84, 209, 0.3)'
: '#ffffff',
}}
>
<Like
className={`cursor-pointer ${
isLikeClicked || feedback === 'LIKE'
? 'fill-white-3000 stroke-purple-30'
: 'fill-none stroke-gray-4000'
}`}
onClick={() => {
handleFeedback?.('LIKE');
setIsLikeClicked(true);
setIsDislikeClicked(false);
}}
onMouseEnter={() => setIsLikeHovered(true)}
onMouseLeave={() => setIsLikeHovered(false)}
></Like>
</div>
</div>
</div>
<div
className={`relative mr-10 flex items-center justify-center md:invisible ${
className={`mr-13 relative flex items-center justify-center ${
!isDislikeClicked ? 'md:invisible' : ''
} ${
feedback === 'DISLIKE' || type !== 'ERROR'
? 'group-hover:md:visible'
: ''
}`}
>
<Dislike
className={`absolute left-10 top-4 cursor-pointer ${
feedback === 'DISLIKE'
? 'fill-red-2000 stroke-red-2000'
: 'fill-none stroke-gray-4000 hover:fill-gray-4000'
}`}
onClick={() => handleFeedback?.('DISLIKE')}
></Dislike>
<div className="absolute left-10 top-4">
<div
className="flex items-center justify-center rounded-full p-2"
style={{
backgroundColor: isDislikeHovered
? isDislikeClicked
? 'rgba(248, 113, 113, 0.3)'
: '#EEEEEE'
: isDislikeClicked
? 'rgba(248, 113, 113, 0.3)'
: '#ffffff',
}}
>
<Dislike
className={`cursor-pointer ${
isDislikeClicked || feedback === 'DISLIKE'
? 'fill-white-3000 stroke-red-2000'
: 'fill-none stroke-gray-4000'
}`}
onClick={() => {
handleFeedback?.('DISLIKE');
setIsDislikeClicked(true);
setIsLikeClicked(false);
}}
onMouseEnter={() => setIsDislikeHovered(true)}
onMouseLeave={() => setIsDislikeHovered(false)}
></Dislike>
</div>
</div>
</div>
</div>

View File

@@ -3,11 +3,10 @@ import { useSelector } from 'react-redux';
import Edit from '../assets/edit.svg';
import Exit from '../assets/exit.svg';
import Message from '../assets/message.svg';
import CheckMark from '../assets/checkmark.svg';
import CheckMark2 from '../assets/checkMark2.svg';
import Trash from '../assets/trash.svg';
import { selectConversationId } from '../preferences/preferenceSlice';
import { useOutsideAlerter } from '../hooks';
interface ConversationProps {
name: string;
@@ -31,15 +30,15 @@ export default function ConversationTile({
const [isEdit, setIsEdit] = useState(false);
const [conversationName, setConversationsName] = useState('');
useOutsideAlerter(
tileRef,
() =>
handleSaveConversation({
id: conversationId || conversation.id,
name: conversationName,
}),
[conversationName],
);
// useOutsideAlerter(
// tileRef,
// () =>
// handleSaveConversation({
// id: conversationId || conversation.id,
// name: conversationName,
// }),
// [conversationName],
// );
useEffect(() => {
setConversationsName(conversation.name);
@@ -95,7 +94,7 @@ export default function ConversationTile({
{conversationId === conversation.id && (
<div className="flex">
<img
src={isEdit ? CheckMark : Edit}
src={isEdit ? CheckMark2 : Edit}
alt="Edit"
className="mr-2 h-4 w-4 cursor-pointer hover:opacity-50"
id={`img-${conversation.id}`}

View File

@@ -29,6 +29,12 @@ module.exports = {
'purple-3000': 'rgb(230,222,247)',
'blue-4000': 'rgba(0, 125, 255, 0.36)',
'blue-5000': 'rgba(0, 125, 255)',
'green-2000': '#0FFF50',
'light-gray': '#edeef0',
'white-3000': '#ffffff',
'dove-gray': '#6c6c6c',
silver: '#c4c4c4',
'rainy-gray': '#a4a4a4',
},
},
},

View File

@@ -0,0 +1,51 @@
from urllib.parse import urlparse
from openapi_parser import parse
try:
from scripts.parser.file.base_parser import BaseParser
except ModuleNotFoundError:
from base_parser import BaseParser
class OpenAPI3Parser(BaseParser):
def init_parser(self) -> None:
return super().init_parser()
def get_base_urls(self, urls):
base_urls = []
for i in urls:
parsed_url = urlparse(i)
base_url = parsed_url.scheme + "://" + parsed_url.netloc
if base_url not in base_urls:
base_urls.append(base_url)
return base_urls
def get_info_from_paths(self, path):
info = ""
if path.operations:
for operation in path.operations:
info += (
f"\n{operation.method.value}="
f"{operation.responses[0].description}"
)
return info
def parse_file(self, file_path):
data = parse(file_path)
results = ""
base_urls = self.get_base_urls(link.url for link in data.servers)
base_urls = ",".join([base_url for base_url in base_urls])
results += f"Base URL:{base_urls}\n"
i = 1
for path in data.paths:
info = self.get_info_from_paths(path)
results += (
f"Path{i}: {path.url}\n"
f"description: {path.description}\n"
f"parameters: {path.parameters}\nmethods: {info}\n"
)
i += 1
with open("results.txt", "w") as f:
f.write(results)
return results

View File

@@ -61,6 +61,7 @@ nltk==3.8.1
numcodecs==0.11.0
numpy==1.25.2
openai==0.27.8
openapi3-parser==1.1.14
openpyxl==3.1.2
packaging==23.1
pandas==2.0.3

View File

@@ -0,0 +1,57 @@
import unittest
from unittest.mock import patch, Mock
from application.llm.anthropic import AnthropicLLM
class TestAnthropicLLM(unittest.TestCase):
def setUp(self):
self.api_key = "TEST_API_KEY"
self.llm = AnthropicLLM(api_key=self.api_key)
@patch("application.llm.anthropic.settings")
def test_init_default_api_key(self, mock_settings):
mock_settings.ANTHROPIC_API_KEY = "DEFAULT_API_KEY"
llm = AnthropicLLM()
self.assertEqual(llm.api_key, "DEFAULT_API_KEY")
def test_gen(self):
messages = [
{"content": "context"},
{"content": "question"}
]
mock_response = Mock()
mock_response.completion = "test completion"
with patch.object(self.llm.anthropic.completions, "create", return_value=mock_response) as mock_create:
response = self.llm.gen("test_model", messages)
self.assertEqual(response, "test completion")
prompt_expected = "### Context \n context \n ### Question \n question"
mock_create.assert_called_with(
model="test_model",
max_tokens_to_sample=300,
stream=False,
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}"
)
def test_gen_stream(self):
messages = [
{"content": "context"},
{"content": "question"}
]
mock_responses = [Mock(completion="response_1"), Mock(completion="response_2")]
with patch.object(self.llm.anthropic.completions, "create", return_value=iter(mock_responses)) as mock_create:
responses = list(self.llm.gen_stream("test_model", messages))
self.assertListEqual(responses, ["response_1", "response_2"])
prompt_expected = "### Context \n context \n ### Question \n question"
mock_create.assert_called_with(
model="test_model",
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}",
max_tokens_to_sample=300,
stream=True
)
if __name__ == "__main__":
unittest.main()

116
tests/test_openapi3.yaml Normal file
View File

@@ -0,0 +1,116 @@
openapi: "3.0.0"
info:
version: 1.0.0
title: Swagger Petstore
license:
name: MIT
servers:
- url: http://petstore.swagger.io/v1
- url: https://api.example.com/v1/resource
- url: https://api.example.com/v1/another/resource
- url: https://api.example.com/v1/some/endpoint
paths:
/pets:
get:
summary: List all pets
operationId: listPets
tags:
- pets
parameters:
- name: limit
in: query
description: How many items to return at one time (max 100)
required: false
schema:
type: integer
maximum: 100
format: int32
responses:
'200':
description: A paged array of pets
headers:
x-next:
description: A link to the next page of responses
schema:
type: string
content:
application/json:
schema:
$ref: "#/components/schemas/Pets"
default:
description: unexpected error
content:
application/json:
schema:
$ref: "#/components/schemas/Error"
post:
summary: Create a pet
operationId: createPets
tags:
- pets
responses:
'201':
description: Null response
default:
description: unexpected error
content:
application/json:
schema:
$ref: "#/components/schemas/Error"
/pets/{petId}:
get:
summary: Info for a specific pet
operationId: showPetById
tags:
- pets
parameters:
- name: petId
in: path
required: true
description: The id of the pet to retrieve
schema:
type: string
responses:
'200':
description: Expected response to a valid request
content:
application/json:
schema:
$ref: "#/components/schemas/Pet"
default:
description: unexpected error
content:
application/json:
schema:
$ref: "#/components/schemas/Error"
components:
schemas:
Pet:
type: object
required:
- id
- name
properties:
id:
type: integer
format: int64
name:
type: string
tag:
type: string
Pets:
type: array
maxItems: 100
items:
$ref: "#/components/schemas/Pet"
Error:
type: object
required:
- code
- message
properties:
code:
type: integer
format: int32
message:
type: string

View File

@@ -0,0 +1,50 @@
import pytest
from openapi_parser import parse
from application.parser.file.openapi3_parser import OpenAPI3Parser
@pytest.mark.parametrize(
"urls, expected_base_urls",
[
(
[
"http://petstore.swagger.io/v1",
"https://api.example.com/v1/resource",
"https://api.example.com/v1/another/resource",
"https://api.example.com/v1/some/endpoint",
],
["http://petstore.swagger.io", "https://api.example.com"],
),
],
)
def test_get_base_urls(urls, expected_base_urls):
assert OpenAPI3Parser().get_base_urls(urls) == expected_base_urls
def test_get_info_from_paths():
file_path = "tests/test_openapi3.yaml"
data = parse(file_path)
path = data.paths[1]
assert (
OpenAPI3Parser().get_info_from_paths(path)
== "\nget=Expected response to a valid request"
)
def test_parse_file():
file_path = "tests/test_openapi3.yaml"
results_expected = (
"Base URL:http://petstore.swagger.io,https://api.example.com\nPath1: "
+ "/pets\ndescription: None\nparameters: []\nmethods: \n"
+ "get=A paged array of pets\npost=Null "
+ "response\nPath2: /pets/{petId}\ndescription: None\n"
+ "parameters: []\nmethods: "
+ "\nget=Expected response to a valid request\n"
)
openapi_parser_test = OpenAPI3Parser()
results = openapi_parser_test.parse_file(file_path)
assert results == results_expected
if __name__ == "__main__":
pytest.main()