(feat:attach) strategy specific to google genai

This commit is contained in:
ManishMadan2882
2025-04-10 01:29:01 +05:30
parent 55bd90fad9
commit dd9ea46e58

View File

@@ -1,5 +1,8 @@
from google import genai
from google.genai import types
import os
import logging
import mimetypes
from application.llm.base import BaseLLM
@@ -9,6 +12,141 @@ class GoogleLLM(BaseLLM):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
self.client = genai.Client(api_key=self.api_key)
def get_supported_attachment_types(self):
"""
Return a list of MIME types supported by Google Gemini for file uploads.
Returns:
list: List of supported MIME types
"""
return [
'application/pdf',
'image/png',
'image/jpeg',
'image/jpg',
'image/webp',
'image/gif'
]
def prepare_messages_with_attachments(self, messages, attachments=None):
"""
Process attachments using Google AI's file API for more efficient handling.
Args:
messages (list): List of message dictionaries.
attachments (list): List of attachment dictionaries with content and metadata.
Returns:
list: Messages formatted with file references for Google AI API.
"""
if not attachments:
return messages
prepared_messages = messages.copy()
# Find the user message to attach files to the last one
user_message_index = None
for i in range(len(prepared_messages) - 1, -1, -1):
if prepared_messages[i].get("role") == "user":
user_message_index = i
break
if user_message_index is None:
user_message = {"role": "user", "content": []}
prepared_messages.append(user_message)
user_message_index = len(prepared_messages) - 1
if isinstance(prepared_messages[user_message_index].get("content"), str):
text_content = prepared_messages[user_message_index]["content"]
prepared_messages[user_message_index]["content"] = [
{"type": "text", "text": text_content}
]
elif not isinstance(prepared_messages[user_message_index].get("content"), list):
prepared_messages[user_message_index]["content"] = []
file_uris = []
for attachment in attachments:
mime_type = attachment.get('mime_type')
if not mime_type:
file_path = attachment.get('path')
if file_path:
mime_type = mimetypes.guess_type(file_path)[0] or 'application/octet-stream'
if mime_type in self.get_supported_attachment_types():
try:
file_uri = self._upload_file_to_google(attachment)
logging.info(f"GoogleLLM: Successfully uploaded file, got URI: {file_uri}")
file_uris.append((file_uri, mime_type))
except Exception as e:
logging.error(f"GoogleLLM: Error uploading file: {e}")
if 'content' in attachment:
prepared_messages[user_message_index]["content"].append({
"type": "text",
"text": f"[File could not be processed: {attachment.get('path', 'unknown')}]"
})
if file_uris:
logging.info(f"GoogleLLM: Adding {len(file_uris)} file URIs to message")
prepared_messages[user_message_index]["content"].append({
"type": "file_uris",
"file_uris": file_uris
})
return prepared_messages
def _upload_file_to_google(self, attachment):
"""
Upload a file to Google AI and return the file URI.
Args:
attachment (dict): Attachment dictionary with path and metadata.
Returns:
str: Google AI file URI for the uploaded file.
"""
if 'google_file_uri' in attachment:
return attachment['google_file_uri']
file_path = attachment.get('path')
if not file_path:
raise ValueError("No file path provided in attachment")
if not os.path.isabs(file_path):
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
file_path = os.path.join(current_dir, "application", file_path)
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
mime_type = attachment.get('mime_type')
if not mime_type:
mime_type = mimetypes.guess_type(file_path)[0] or 'application/octet-stream'
try:
response = self.client.files.upload(file=file_path)
file_uri = response.uri
from application.core.mongo_db import MongoDB
mongo = MongoDB.get_client()
db = mongo["docsgpt"]
attachments_collection = db["attachments"]
if '_id' in attachment:
attachments_collection.update_one(
{"_id": attachment['_id']},
{"$set": {"google_file_uri": file_uri}}
)
return file_uri
except Exception as e:
logging.error(f"Error uploading file to Google AI: {e}")
raise
def _clean_messages_google(self, messages):
cleaned_messages = []
@@ -26,7 +164,7 @@ class GoogleLLM(BaseLLM):
elif isinstance(content, list):
for item in content:
if "text" in item:
parts.append(types.Part.from_text(item["text"]))
parts.append(types.Part.from_text(text=item["text"]))
elif "function_call" in item:
parts.append(
types.Part.from_function_call(
@@ -41,6 +179,14 @@ class GoogleLLM(BaseLLM):
response=item["function_response"]["response"],
)
)
elif "type" in item and item["type"] == "file_uris":
for file_uri, mime_type in item["file_uris"]:
parts.append(
types.Part.from_uri(
file_uri=file_uri,
mime_type=mime_type
)
)
else:
raise ValueError(
f"Unexpected content dictionary format:{item}"