Merge pull request #1503 from arc53/chunking

test version
This commit is contained in:
Alex
2024-12-23 17:53:45 +00:00
committed by GitHub
6 changed files with 240 additions and 170 deletions

20
.vscode/launch.json vendored
View File

@@ -13,7 +13,7 @@
]
},
{
"name": "Python Debugger: Flask",
"name": "Flask Debugger",
"type": "debugpy",
"request": "launch",
"module": "flask",
@@ -32,5 +32,23 @@
],
"cwd": "${workspaceFolder}",
},
{
"name": "Celery Debugger",
"type": "debugpy",
"request": "launch",
"module": "celery",
"env": {
"PYTHONPATH": "${workspaceFolder}",
},
"args": [
"-A",
"application.app.celery",
"worker",
"-l",
"INFO",
"--pool=solo"
],
"cwd": "${workspaceFolder}"
}
]
}

View File

@@ -0,0 +1,118 @@
import re
from typing import List, Tuple
import logging
from application.parser.schema.base import Document
from application.utils import get_encoding
logger = logging.getLogger(__name__)
class Chunker:
def __init__(
self,
chunking_strategy: str = "classic_chunk",
max_tokens: int = 2000,
min_tokens: int = 150,
duplicate_headers: bool = False,
):
if chunking_strategy not in ["classic_chunk"]:
raise ValueError(f"Unsupported chunking strategy: {chunking_strategy}")
self.chunking_strategy = chunking_strategy
self.max_tokens = max_tokens
self.min_tokens = min_tokens
self.duplicate_headers = duplicate_headers
self.encoding = get_encoding()
def separate_header_and_body(self, text: str) -> Tuple[str, str]:
header_pattern = r"^(.*?\n){3}"
match = re.match(header_pattern, text)
if match:
header = match.group(0)
body = text[len(header):]
else:
header, body = "", text # No header, treat entire text as body
return header, body
def combine_documents(self, doc: Document, next_doc: Document) -> Document:
combined_text = doc.text + " " + next_doc.text
combined_token_count = len(self.encoding.encode(combined_text))
new_doc = Document(
text=combined_text,
doc_id=doc.doc_id,
embedding=doc.embedding,
extra_info={**(doc.extra_info or {}), "token_count": combined_token_count}
)
return new_doc
def split_document(self, doc: Document) -> List[Document]:
split_docs = []
header, body = self.separate_header_and_body(doc.text)
header_tokens = self.encoding.encode(header) if header else []
body_tokens = self.encoding.encode(body)
current_position = 0
part_index = 0
while current_position < len(body_tokens):
end_position = current_position + self.max_tokens - len(header_tokens)
chunk_tokens = (header_tokens + body_tokens[current_position:end_position]
if self.duplicate_headers or part_index == 0 else body_tokens[current_position:end_position])
chunk_text = self.encoding.decode(chunk_tokens)
new_doc = Document(
text=chunk_text,
doc_id=f"{doc.doc_id}-{part_index}",
embedding=doc.embedding,
extra_info={**(doc.extra_info or {}), "token_count": len(chunk_tokens)}
)
split_docs.append(new_doc)
current_position = end_position
part_index += 1
header_tokens = []
return split_docs
def classic_chunk(self, documents: List[Document]) -> List[Document]:
processed_docs = []
i = 0
while i < len(documents):
doc = documents[i]
tokens = self.encoding.encode(doc.text)
token_count = len(tokens)
if self.min_tokens <= token_count <= self.max_tokens:
doc.extra_info = doc.extra_info or {}
doc.extra_info["token_count"] = token_count
processed_docs.append(doc)
i += 1
elif token_count < self.min_tokens:
if i + 1 < len(documents):
next_doc = documents[i + 1]
next_tokens = self.encoding.encode(next_doc.text)
if token_count + len(next_tokens) <= self.max_tokens:
# Combine small documents
combined_doc = self.combine_documents(doc, next_doc)
processed_docs.append(combined_doc)
i += 2
else:
# Keep the small document as is if adding next_doc would exceed max_tokens
doc.extra_info = doc.extra_info or {}
doc.extra_info["token_count"] = token_count
processed_docs.append(doc)
i += 1
else:
# No next document to combine with; add the small document as is
doc.extra_info = doc.extra_info or {}
doc.extra_info["token_count"] = token_count
processed_docs.append(doc)
i += 1
else:
# Split large documents
processed_docs.extend(self.split_document(doc))
i += 1
return processed_docs
def chunk(
self,
documents: List[Document]
) -> List[Document]:
if self.chunking_strategy == "classic_chunk":
return self.classic_chunk(documents)
else:
raise ValueError("Unsupported chunking strategy")

View File

@@ -0,0 +1,86 @@
import os
import logging
from retry import retry
from tqdm import tqdm
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
@retry(tries=10, delay=60)
def add_text_to_store_with_retry(store, doc, source_id):
"""
Add a document's text and metadata to the vector store with retry logic.
Args:
store: The vector store object.
doc: The document to be added.
source_id: Unique identifier for the source.
"""
try:
doc.metadata["source_id"] = str(source_id)
store.add_texts([doc.page_content], metadatas=[doc.metadata])
except Exception as e:
logging.error(f"Failed to add document with retry: {e}")
raise
def embed_and_store_documents(docs, folder_name, source_id, task_status):
"""
Embeds documents and stores them in a vector store.
Args:
docs (list): List of documents to be embedded and stored.
folder_name (str): Directory to save the vector store.
source_id (str): Unique identifier for the source.
task_status: Task state manager for progress updates.
Returns:
None
"""
# Ensure the folder exists
if not os.path.exists(folder_name):
os.makedirs(folder_name)
# Initialize vector store
if settings.VECTOR_STORE == "faiss":
docs_init = [docs.pop(0)]
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
docs_init=docs_init,
source_id=folder_name,
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
else:
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
source_id=source_id,
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
store.delete_index()
total_docs = len(docs)
# Process and embed documents
for idx, doc in tqdm(
enumerate(docs),
desc="Embedding 🦖",
unit="docs",
total=total_docs,
bar_format="{l_bar}{bar}| Time Left: {remaining}",
):
try:
# Update task status for progress tracking
progress = int(((idx + 1) / total_docs) * 100)
task_status.update_state(state="PROGRESS", meta={"current": progress})
# Add document to vector store
add_text_to_store_with_retry(store, doc, source_id)
except Exception as e:
logging.error(f"Error embedding document {idx}: {e}")
logging.info(f"Saving progress at document {idx} out of {total_docs}")
store.save_local(folder_name)
break
# Save the vector store
if settings.VECTOR_STORE == "faiss":
store.save_local(folder_name)
logging.info("Vector store saved successfully.")

View File

@@ -1,75 +0,0 @@
import os
from retry import retry
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_community.embeddings import HuggingFaceInstructEmbeddings
# from langchain_community.embeddings import CohereEmbeddings
@retry(tries=10, delay=60)
def store_add_texts_with_retry(store, i, id):
# add source_id to the metadata
i.metadata["source_id"] = str(id)
store.add_texts([i.page_content], metadatas=[i.metadata])
# store_pine.add_texts([i.page_content], metadatas=[i.metadata])
def call_openai_api(docs, folder_name, id, task_status):
# Function to create a vector store from the documents and save it to disk
if not os.path.exists(f"{folder_name}"):
os.makedirs(f"{folder_name}")
from tqdm import tqdm
c1 = 0
if settings.VECTOR_STORE == "faiss":
docs_init = [docs[0]]
docs.pop(0)
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
docs_init=docs_init,
source_id=f"{folder_name}",
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
else:
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
source_id=str(id),
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
store.delete_index()
# Uncomment for MPNet embeddings
# model_name = "sentence-transformers/all-mpnet-base-v2"
# hf = HuggingFaceEmbeddings(model_name=model_name)
# store = FAISS.from_documents(docs_test, hf)
s1 = len(docs)
for i in tqdm(
docs,
desc="Embedding 🦖",
unit="docs",
total=len(docs),
bar_format="{l_bar}{bar}| Time Left: {remaining}",
):
try:
task_status.update_state(
state="PROGRESS", meta={"current": int((c1 / s1) * 100)}
)
store_add_texts_with_retry(store, i, id)
except Exception as e:
print(e)
print("Error on ", i)
print("Saving progress")
print(f"stopped at {c1} out of {len(docs)}")
store.save_local(f"{folder_name}")
break
c1 += 1
if settings.VECTOR_STORE == "faiss":
store.save_local(f"{folder_name}")

View File

@@ -1,79 +0,0 @@
import re
from math import ceil
from typing import List
import tiktoken
from application.parser.schema.base import Document
def separate_header_and_body(text):
header_pattern = r"^(.*?\n){3}"
match = re.match(header_pattern, text)
header = match.group(0)
body = text[len(header):]
return header, body
def group_documents(documents: List[Document], min_tokens: int, max_tokens: int) -> List[Document]:
docs = []
current_group = None
for doc in documents:
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
# Check if current group is empty or if the document can be added based on token count and matching metadata
if (current_group is None or
(len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and
doc_len < min_tokens and
current_group.extra_info == doc.extra_info)):
if current_group is None:
current_group = doc # Use the document directly to retain its metadata
else:
current_group.text += " " + doc.text # Append text to the current group
else:
docs.append(current_group)
current_group = doc # Start a new group with the current document
if current_group is not None:
docs.append(current_group)
return docs
def split_documents(documents: List[Document], max_tokens: int) -> List[Document]:
docs = []
for doc in documents:
token_length = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
if token_length <= max_tokens:
docs.append(doc)
else:
header, body = separate_header_and_body(doc.text)
if len(tiktoken.get_encoding("cl100k_base").encode(header)) > max_tokens:
body = doc.text
header = ""
num_body_parts = ceil(token_length / max_tokens)
part_length = ceil(len(body) / num_body_parts)
body_parts = [body[i:i + part_length] for i in range(0, len(body), part_length)]
for i, body_part in enumerate(body_parts):
new_doc = Document(text=header + body_part.strip(),
doc_id=f"{doc.doc_id}-{i}",
embedding=doc.embedding,
extra_info=doc.extra_info)
docs.append(new_doc)
return docs
def group_split(documents: List[Document], max_tokens: int = 2000, min_tokens: int = 150, token_check: bool = True):
if not token_check:
return documents
print("Grouping small documents")
try:
documents = group_documents(documents=documents, min_tokens=min_tokens, max_tokens=max_tokens)
except Exception:
print("Grouping failed, try running without token_check")
print("Separating large documents")
try:
documents = split_documents(documents=documents, max_tokens=max_tokens)
except Exception:
print("Grouping failed, try running without token_check")
return documents

View File

@@ -12,10 +12,10 @@ from bson.objectid import ObjectId
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.parser.file.bulk import SimpleDirectoryReader
from application.parser.open_ai_func import call_openai_api
from application.parser.embedding_pipeline import embed_and_store_documents
from application.parser.remote.remote_creator import RemoteCreator
from application.parser.schema.base import Document
from application.parser.token_func import group_split
from application.parser.chunking import Chunker
from application.utils import count_tokens_docs
mongo = MongoDB.get_client()
@@ -126,7 +126,6 @@ def ingest_worker(
limit = None
exclude = True
sample = False
token_check = True
full_path = os.path.join(directory, user, name_job)
logging.info(f"Ingest file: {full_path}", extra={"user": user, "job": name_job})
@@ -153,17 +152,19 @@ def ingest_worker(
exclude_hidden=exclude,
file_metadata=metadata_from_filename,
).load_data()
raw_docs = group_split(
documents=raw_docs,
min_tokens=MIN_TOKENS,
chunker = Chunker(
chunking_strategy="classic_chunk",
max_tokens=MAX_TOKENS,
token_check=token_check,
min_tokens=MIN_TOKENS,
duplicate_headers=False
)
raw_docs = chunker.chunk(documents=raw_docs)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
id = ObjectId()
call_openai_api(docs, full_path, id, self)
embed_and_store_documents(docs, full_path, id, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
@@ -203,7 +204,6 @@ def remote_worker(
operation_mode="upload",
doc_id=None,
):
token_check = True
full_path = os.path.join(directory, user, name_job)
if not os.path.exists(full_path):
@@ -217,21 +217,23 @@ def remote_worker(
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
docs = group_split(
documents=raw_docs,
min_tokens=MIN_TOKENS,
chunker = Chunker(
chunking_strategy="classic_chunk",
max_tokens=MAX_TOKENS,
token_check=token_check,
min_tokens=MIN_TOKENS,
duplicate_headers=False
)
docs = chunker.chunk(documents=raw_docs)
tokens = count_tokens_docs(docs)
if operation_mode == "upload":
id = ObjectId()
call_openai_api(docs, full_path, id, self)
embed_and_store_documents(docs, full_path, id, self)
elif operation_mode == "sync":
if not doc_id or not ObjectId.is_valid(doc_id):
raise ValueError("doc_id must be provided for sync operation.")
id = ObjectId(doc_id)
call_openai_api(docs, full_path, id, self)
embed_and_store_documents(docs, full_path, id, self)
self.update_state(state="PROGRESS", meta={"current": 100})
file_data = {