mirror of
https://github.com/arc53/DocsGPT.git
synced 2026-01-20 14:00:55 +00:00
refactor: remove unused abstract method and improve retrievers
This commit is contained in:
@@ -5,10 +5,6 @@ class BaseRetriever(ABC):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def gen(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
|
||||
from application.core.settings import settings
|
||||
from application.llm.llm_creator import LLMCreator
|
||||
from application.retriever.base import BaseRetriever
|
||||
@@ -20,6 +21,7 @@ class ClassicRAG(BaseRetriever):
|
||||
api_key=settings.API_KEY,
|
||||
decoded_token=None,
|
||||
):
|
||||
"""Initialize ClassicRAG retriever with vectorstore sources and LLM configuration"""
|
||||
self.original_question = source.get("question", "")
|
||||
self.chat_history = chat_history if chat_history is not None else []
|
||||
self.prompt = prompt
|
||||
@@ -47,25 +49,46 @@ class ClassicRAG(BaseRetriever):
|
||||
if "active_docs" in source:
|
||||
if isinstance(source["active_docs"], list):
|
||||
self.vectorstores = source["active_docs"]
|
||||
elif isinstance(source["active_docs"], str) and "," in source["active_docs"]:
|
||||
# ✅ split multiple IDs from comma string
|
||||
self.vectorstores = [doc_id.strip() for doc_id in source["active_docs"].split(",") if doc_id.strip()]
|
||||
elif (
|
||||
isinstance(source["active_docs"], str) and "," in source["active_docs"]
|
||||
):
|
||||
self.vectorstores = [
|
||||
doc_id.strip()
|
||||
for doc_id in source["active_docs"].split(",")
|
||||
if doc_id.strip()
|
||||
]
|
||||
else:
|
||||
self.vectorstores = [source["active_docs"]]
|
||||
else:
|
||||
self.vectorstores = []
|
||||
|
||||
self.vectorstore = None
|
||||
self.question = self._rephrase_query()
|
||||
self.decoded_token = decoded_token
|
||||
self._validate_vectorstore_config()
|
||||
|
||||
def _validate_vectorstore_config(self):
|
||||
"""Validate vectorstore IDs and remove any empty/invalid entries"""
|
||||
if not self.vectorstores:
|
||||
logging.warning("No vectorstores configured for retrieval")
|
||||
return
|
||||
|
||||
invalid_ids = [
|
||||
vs_id for vs_id in self.vectorstores if not vs_id or not vs_id.strip()
|
||||
]
|
||||
if invalid_ids:
|
||||
logging.warning(f"Found invalid vectorstore IDs: {invalid_ids}")
|
||||
self.vectorstores = [
|
||||
vs_id for vs_id in self.vectorstores if vs_id and vs_id.strip()
|
||||
]
|
||||
|
||||
def _rephrase_query(self):
|
||||
"""Rephrase user query with chat history context for better retrieval"""
|
||||
if (
|
||||
not self.original_question
|
||||
or not self.chat_history
|
||||
or self.chat_history == []
|
||||
or self.chunks == 0
|
||||
or self.vectorstore is None
|
||||
or not self.vectorstores
|
||||
):
|
||||
return self.original_question
|
||||
|
||||
@@ -90,41 +113,62 @@ class ClassicRAG(BaseRetriever):
|
||||
return self.original_question
|
||||
|
||||
def _get_data(self):
|
||||
"""Retrieve relevant documents from configured vectorstores"""
|
||||
if self.chunks == 0 or not self.vectorstores:
|
||||
return []
|
||||
|
||||
all_docs = []
|
||||
chunks_per_source = max(1, self.chunks // len(self.vectorstores))
|
||||
|
||||
for vectorstore in self.vectorstores:
|
||||
if vectorstore:
|
||||
for vectorstore_id in self.vectorstores:
|
||||
if vectorstore_id:
|
||||
try:
|
||||
docsearch = VectorCreator.create_vectorstore(
|
||||
settings.VECTOR_STORE, vectorstore, settings.EMBEDDINGS_KEY
|
||||
settings.VECTOR_STORE, vectorstore_id, settings.EMBEDDINGS_KEY
|
||||
)
|
||||
docs_temp = docsearch.search(self.question, k=chunks_per_source)
|
||||
for i in docs_temp:
|
||||
all_docs.append({
|
||||
"title": i.metadata.get("title", i.metadata.get("post_title", i.page_content)).split("/")[-1],
|
||||
"text": i.page_content,
|
||||
"source": i.metadata.get("source") or vectorstore,
|
||||
})
|
||||
|
||||
for doc in docs_temp:
|
||||
if hasattr(doc, "page_content") and hasattr(doc, "metadata"):
|
||||
page_content = doc.page_content
|
||||
metadata = doc.metadata
|
||||
else:
|
||||
page_content = doc.get("text", doc.get("page_content", ""))
|
||||
metadata = doc.get("metadata", {})
|
||||
|
||||
title = metadata.get(
|
||||
"title", metadata.get("post_title", page_content)
|
||||
)
|
||||
if isinstance(title, str):
|
||||
title = title.split("/")[-1]
|
||||
else:
|
||||
title = str(title).split("/")[-1]
|
||||
|
||||
all_docs.append(
|
||||
{
|
||||
"title": title,
|
||||
"text": page_content,
|
||||
"source": metadata.get("source") or vectorstore_id,
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error searching vectorstore {vectorstore}: {e}")
|
||||
logging.error(
|
||||
f"Error searching vectorstore {vectorstore_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
continue
|
||||
|
||||
return all_docs
|
||||
|
||||
def gen():
|
||||
pass
|
||||
|
||||
def search(self, query: str = ""):
|
||||
"""Search for documents using optional query override"""
|
||||
if query:
|
||||
self.original_question = query
|
||||
self.question = self._rephrase_query()
|
||||
return self._get_data()
|
||||
|
||||
def get_params(self):
|
||||
"""Return current retriever configuration parameters"""
|
||||
return {
|
||||
"question": self.original_question,
|
||||
"rephrased_question": self.question,
|
||||
|
||||
@@ -1,20 +1,28 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import os
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from application.core.settings import settings
|
||||
|
||||
|
||||
class EmbeddingsWrapper:
|
||||
def __init__(self, model_name, *args, **kwargs):
|
||||
self.model = SentenceTransformer(model_name, config_kwargs={'allow_dangerous_deserialization': True}, *args, **kwargs)
|
||||
self.model = SentenceTransformer(
|
||||
model_name,
|
||||
config_kwargs={"allow_dangerous_deserialization": True},
|
||||
*args,
|
||||
**kwargs
|
||||
)
|
||||
self.dimension = self.model.get_sentence_embedding_dimension()
|
||||
|
||||
def embed_query(self, query: str):
|
||||
return self.model.encode(query).tolist()
|
||||
|
||||
|
||||
def embed_documents(self, documents: list):
|
||||
return self.model.encode(documents).tolist()
|
||||
|
||||
|
||||
def __call__(self, text):
|
||||
if isinstance(text, str):
|
||||
return self.embed_query(text)
|
||||
@@ -24,15 +32,14 @@ class EmbeddingsWrapper:
|
||||
raise ValueError("Input must be a string or a list of strings")
|
||||
|
||||
|
||||
|
||||
class EmbeddingsSingleton:
|
||||
_instances = {}
|
||||
|
||||
@staticmethod
|
||||
def get_instance(embeddings_name, *args, **kwargs):
|
||||
if embeddings_name not in EmbeddingsSingleton._instances:
|
||||
EmbeddingsSingleton._instances[embeddings_name] = EmbeddingsSingleton._create_instance(
|
||||
embeddings_name, *args, **kwargs
|
||||
EmbeddingsSingleton._instances[embeddings_name] = (
|
||||
EmbeddingsSingleton._create_instance(embeddings_name, *args, **kwargs)
|
||||
)
|
||||
return EmbeddingsSingleton._instances[embeddings_name]
|
||||
|
||||
@@ -40,9 +47,15 @@ class EmbeddingsSingleton:
|
||||
def _create_instance(embeddings_name, *args, **kwargs):
|
||||
embeddings_factory = {
|
||||
"openai_text-embedding-ada-002": OpenAIEmbeddings,
|
||||
"huggingface_sentence-transformers/all-mpnet-base-v2": lambda: EmbeddingsWrapper("sentence-transformers/all-mpnet-base-v2"),
|
||||
"huggingface_sentence-transformers-all-mpnet-base-v2": lambda: EmbeddingsWrapper("sentence-transformers/all-mpnet-base-v2"),
|
||||
"huggingface_hkunlp/instructor-large": lambda: EmbeddingsWrapper("hkunlp/instructor-large"),
|
||||
"huggingface_sentence-transformers/all-mpnet-base-v2": lambda: EmbeddingsWrapper(
|
||||
"sentence-transformers/all-mpnet-base-v2"
|
||||
),
|
||||
"huggingface_sentence-transformers-all-mpnet-base-v2": lambda: EmbeddingsWrapper(
|
||||
"sentence-transformers/all-mpnet-base-v2"
|
||||
),
|
||||
"huggingface_hkunlp/instructor-large": lambda: EmbeddingsWrapper(
|
||||
"hkunlp/instructor-large"
|
||||
),
|
||||
}
|
||||
|
||||
if embeddings_name in embeddings_factory:
|
||||
@@ -50,34 +63,63 @@ class EmbeddingsSingleton:
|
||||
else:
|
||||
return EmbeddingsWrapper(embeddings_name, *args, **kwargs)
|
||||
|
||||
|
||||
class BaseVectorStore(ABC):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search(self, *args, **kwargs):
|
||||
"""Search for similar documents/chunks in the vectorstore"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def add_texts(self, texts, metadatas=None, *args, **kwargs):
|
||||
"""Add texts with their embeddings to the vectorstore"""
|
||||
pass
|
||||
|
||||
def delete_index(self, *args, **kwargs):
|
||||
"""Delete the entire index/collection"""
|
||||
pass
|
||||
|
||||
def save_local(self, *args, **kwargs):
|
||||
"""Save vectorstore to local storage"""
|
||||
pass
|
||||
|
||||
def get_chunks(self, *args, **kwargs):
|
||||
"""Get all chunks from the vectorstore"""
|
||||
pass
|
||||
|
||||
def add_chunk(self, text, metadata=None, *args, **kwargs):
|
||||
"""Add a single chunk to the vectorstore"""
|
||||
pass
|
||||
|
||||
def delete_chunk(self, chunk_id, *args, **kwargs):
|
||||
"""Delete a specific chunk from the vectorstore"""
|
||||
pass
|
||||
|
||||
def is_azure_configured(self):
|
||||
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
|
||||
return (
|
||||
settings.OPENAI_API_BASE
|
||||
and settings.OPENAI_API_VERSION
|
||||
and settings.AZURE_DEPLOYMENT_NAME
|
||||
)
|
||||
|
||||
def _get_embeddings(self, embeddings_name, embeddings_key=None):
|
||||
if embeddings_name == "openai_text-embedding-ada-002":
|
||||
if self.is_azure_configured():
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
embedding_instance = EmbeddingsSingleton.get_instance(
|
||||
embeddings_name,
|
||||
model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME
|
||||
embeddings_name, model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME
|
||||
)
|
||||
else:
|
||||
embedding_instance = EmbeddingsSingleton.get_instance(
|
||||
embeddings_name,
|
||||
openai_api_key=embeddings_key
|
||||
embeddings_name, openai_api_key=embeddings_key
|
||||
)
|
||||
elif embeddings_name == "huggingface_sentence-transformers/all-mpnet-base-v2":
|
||||
if os.path.exists("./models/all-mpnet-base-v2"):
|
||||
embedding_instance = EmbeddingsSingleton.get_instance(
|
||||
embeddings_name = "./models/all-mpnet-base-v2",
|
||||
embeddings_name="./models/all-mpnet-base-v2",
|
||||
)
|
||||
else:
|
||||
embedding_instance = EmbeddingsSingleton.get_instance(
|
||||
@@ -87,4 +129,3 @@ class BaseVectorStore(ABC):
|
||||
embedding_instance = EmbeddingsSingleton.get_instance(embeddings_name)
|
||||
|
||||
return embedding_instance
|
||||
|
||||
|
||||
Reference in New Issue
Block a user