mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
Merge branch 'arc53:main' into taylor-working
This commit is contained in:
44
.github/workflows/ci.yml
vendored
Normal file
44
.github/workflows/ci.yml
vendored
Normal file
@@ -0,0 +1,44 @@
|
||||
name: Build and push DocsGPT Docker image
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v1
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||
|
||||
- name: Login to ghcr.io
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GHCR_TOKEN }}
|
||||
|
||||
# Runs a single command using the runners shell
|
||||
- name: Build and push Docker images to docker.io and ghcr.io
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
file: './application/Dockerfile'
|
||||
platforms: linux/amd64
|
||||
context: ./application
|
||||
push: true
|
||||
tags: |
|
||||
${{ secrets.DOCKER_USERNAME }}/docsgpt:latest
|
||||
ghcr.io/${{ github.repository_owner }}/docsgpt:latest
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -161,3 +161,4 @@ frontend/*.sw?
|
||||
|
||||
application/vectors/
|
||||
|
||||
**/inputs
|
||||
|
||||
38
CONTRIBUTING.md
Normal file
38
CONTRIBUTING.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# Welcome to DocsGPT Contributing guideline
|
||||
|
||||
Thank you for choosing this project to contribute to, we are all very grateful!
|
||||
|
||||
# We accept different types of contributions
|
||||
|
||||
📣 Discussions - where you can start a new topic or answer some questions
|
||||
|
||||
🐞 Issues - Is how we track tasks, sometimes its bugs that need fixing, sometimes its new features
|
||||
|
||||
🛠️ Pull requests - Is how you can suggest changes to our repository, to work on existing issue or to add new features
|
||||
|
||||
📚 Wiki - where we have our documentation
|
||||
|
||||
|
||||
## 🐞 Issues and Pull requests
|
||||
|
||||
We value contributions to our issues in form of discussion or suggestion, we recommend that you check out existing issues and our [Roadmap](https://github.com/orgs/arc53/projects/2)
|
||||
|
||||
If you want to contribute by writing code there are few things that you should know before doing it:
|
||||
We have frontend (React, Vite) and Backend (python)
|
||||
|
||||
### If you are looking to contribute to Frontend (⚛️React, Vite):
|
||||
Current frontend is being migrated from /application to /frontend with a new design, so please contribute to the new on. Check out this [Milestone](https://github.com/arc53/DocsGPT/milestone/1) and its issues also [Figma](https://www.figma.com/file/OXLtrl1EAy885to6S69554/DocsGPT?node-id=0%3A1&t=hjWVuxRg9yi5YkJ9-1)
|
||||
Please try to follow guidelines
|
||||
|
||||
|
||||
### If you are looking to contribute to Backend (🐍Python):
|
||||
Check out our issues, and contribute to /application or /scripts (ignore old ingest_rst.py ingest_rst_sphinx.py files, they will be deprecated soon)
|
||||
Currently we don't have any tests(which would be useful😉) but before submitting you PR make sure that after you ingested some test data its queryable
|
||||
|
||||
### Workflow:
|
||||
Create a fork, make changes on your forked repository, submit changes in a form of pull request
|
||||
|
||||
## Questions / collaboration
|
||||
Please join our [Discord](https://discord.gg/n5BX8dh8rU) don't hesitate, we are very friendly and welcoming to new contributors.
|
||||
|
||||
# Thank you so much for considering to contribute to DocsGPT!🙏
|
||||
@@ -57,7 +57,7 @@ Copy .env_sample and create .env with your openai api token
|
||||
|
||||
## [Guides](https://github.com/arc53/docsgpt/wiki)
|
||||
|
||||
|
||||
## [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
|
||||
|
||||
## [How to use any other documentation](https://github.com/arc53/docsgpt/wiki/How-to-train-on-other-documentation)
|
||||
|
||||
|
||||
@@ -5,8 +5,8 @@ import datetime
|
||||
from flask import Flask, request, render_template
|
||||
# os.environ["LANGCHAIN_HANDLER"] = "langchain"
|
||||
import faiss
|
||||
from langchain import OpenAI
|
||||
from langchain.chains import VectorDBQAWithSourcesChain
|
||||
from langchain import OpenAI, VectorDBQA
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
from langchain.prompts import PromptTemplate
|
||||
import requests
|
||||
|
||||
@@ -69,11 +69,22 @@ def api_answer():
|
||||
c_prompt = PromptTemplate(input_variables=["summaries", "question"], template=template)
|
||||
# create a chain with the prompt template and the store
|
||||
|
||||
chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(openai_api_key=api_key, temperature=0), vectorstore=store, combine_prompt=c_prompt)
|
||||
#chain = VectorDBQA.from_llm(llm=OpenAI(openai_api_key=api_key, temperature=0), vectorstore=store, combine_prompt=c_prompt)
|
||||
# chain = VectorDBQA.from_chain_type(llm=OpenAI(openai_api_key=api_key, temperature=0), chain_type='map_reduce',
|
||||
# vectorstore=store)
|
||||
|
||||
qa_chain = load_qa_chain(OpenAI(openai_api_key=api_key, temperature=0), chain_type="map_reduce",
|
||||
combine_prompt=c_prompt)
|
||||
chain = VectorDBQA(combine_documents_chain=qa_chain, vectorstore=store)
|
||||
|
||||
|
||||
|
||||
# fetch the answer
|
||||
result = chain({"question": question})
|
||||
result = chain({"query": question})
|
||||
print(result)
|
||||
|
||||
# some formatting for the frontend
|
||||
result['answer'] = result['result']
|
||||
result['answer'] = result['answer'].replace("\\n", "<br>")
|
||||
result['answer'] = result['answer'].replace("SOURCES:", "")
|
||||
# mock result
|
||||
|
||||
@@ -60,6 +60,7 @@ tiktoken==0.1.2
|
||||
tokenizers==0.13.2
|
||||
tqdm==4.64.1
|
||||
transformers==4.26.0
|
||||
typer==0.7.0
|
||||
typing-inspect==0.8.0
|
||||
typing_extensions==4.4.0
|
||||
urllib3==1.26.14
|
||||
|
||||
@@ -1,6 +1,9 @@
|
||||
import sys
|
||||
import nltk
|
||||
import dotenv
|
||||
import typer
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
|
||||
@@ -10,28 +13,52 @@ from parser.open_ai_func import call_openai_api, get_user_permission
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
#Specify your folder HERE
|
||||
directory_to_ingest = 'inputs'
|
||||
app = typer.Typer(add_completion=False)
|
||||
|
||||
nltk.download('punkt')
|
||||
nltk.download('averaged_perceptron_tagger')
|
||||
nltk.download('punkt', quiet=True)
|
||||
nltk.download('averaged_perceptron_tagger', quiet=True)
|
||||
|
||||
#Splits all files in specified folder to documents
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory_to_ingest).load_data()
|
||||
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = RecursiveCharacterTextSplitter()
|
||||
docs = text_splitter.split_documents(raw_docs)
|
||||
@app.command()
|
||||
def ingest(directory: Optional[str] = typer.Option("inputs",
|
||||
help="Path to the directory for index creation."),
|
||||
files: Optional[List[str]] = typer.Option(None,
|
||||
help="""File paths to use (Optional; overrides directory).
|
||||
E.g. --files inputs/1.md --files inputs/2.md"""),
|
||||
recursive: Optional[bool] = typer.Option(True,
|
||||
help="Whether to recursively search in subdirectories."),
|
||||
limit: Optional[int] = typer.Option(None,
|
||||
help="Maximum number of files to read."),
|
||||
formats: Optional[List[str]] = typer.Option([".rst", ".md"],
|
||||
help="""List of required extensions (list with .)
|
||||
Currently supported: .rst, .md, .pdf, .docx, .csv, .epub"""),
|
||||
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles).")):
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the permission_bypass_flag argument is not '-y',
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
permission_bypass_flag = sys.argv[1]
|
||||
if permission_bypass_flag == '-y':
|
||||
call_openai_api(docs)
|
||||
"""
|
||||
Creates index from specified location or files.
|
||||
By default /inputs folder is used, .rst and .md are parsed.
|
||||
"""
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=files, recursive=recursive,
|
||||
required_exts=formats, num_files_limit=limit,
|
||||
exclude_hidden=exclude).load_data()
|
||||
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
print(raw_docs)
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = RecursiveCharacterTextSplitter()
|
||||
docs = text_splitter.split_documents(raw_docs)
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the permission_bypass_flag argument is not '-y',
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
permission_bypass_flag = sys.argv[1]
|
||||
if permission_bypass_flag == '-y':
|
||||
call_openai_api(docs)
|
||||
else:
|
||||
get_user_permission(docs)
|
||||
else:
|
||||
get_user_permission(docs)
|
||||
else:
|
||||
get_user_permission(docs)
|
||||
|
||||
if __name__ == "__main__":
|
||||
app()
|
||||
|
||||
@@ -29,6 +29,18 @@ def convert_rst_to_txt(src_dir, dst_dir):
|
||||
f"-D source_suffix=.rst " \
|
||||
f"-C {dst_dir} "
|
||||
sphinx_main(args.split())
|
||||
elif file.endswith(".md"):
|
||||
# Rename the .md file to .rst file
|
||||
src_file = os.path.join(root, file)
|
||||
dst_file = os.path.join(root, file.replace(".md", ".rst"))
|
||||
os.rename(src_file, dst_file)
|
||||
# Convert the .rst file to .txt file using sphinx-build
|
||||
args = f". -b text -D extensions=sphinx.ext.autodoc " \
|
||||
f"-D master_doc={dst_file} " \
|
||||
f"-D source_suffix=.rst " \
|
||||
f"-C {dst_dir} "
|
||||
sphinx_main(args.split())
|
||||
|
||||
|
||||
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
# Function to convert string to tokens and estimate user cost.
|
||||
@@ -24,6 +24,8 @@ class RstParser(BaseParser):
|
||||
remove_hyperlinks: bool = True,
|
||||
remove_images: bool = True,
|
||||
remove_table_excess: bool = True,
|
||||
remove_interpreters: bool = True,
|
||||
remove_directives: bool = True,
|
||||
remove_whitespaces_excess: bool = True,
|
||||
#Be carefull with remove_characters_excess, might cause data loss
|
||||
remove_characters_excess: bool = True,
|
||||
@@ -34,6 +36,8 @@ class RstParser(BaseParser):
|
||||
self._remove_hyperlinks = remove_hyperlinks
|
||||
self._remove_images = remove_images
|
||||
self._remove_table_excess = remove_table_excess
|
||||
self._remove_interpreters = remove_interpreters
|
||||
self._remove_directives = remove_directives
|
||||
self._remove_whitespaces_excess = remove_whitespaces_excess
|
||||
self._remove_characters_excess = remove_characters_excess
|
||||
|
||||
@@ -95,6 +99,18 @@ class RstParser(BaseParser):
|
||||
content = re.sub(pattern, r"\1", content)
|
||||
return content
|
||||
|
||||
def remove_directives(self, content: str) -> str:
|
||||
"""Removes reStructuredText Directives"""
|
||||
pattern = r"`\.\.([^:]+)::"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
def remove_interpreters(self, content: str) -> str:
|
||||
"""Removes reStructuredText Interpreted Text Roles"""
|
||||
pattern = r":(\w+):"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
def remove_table_excess(self, content: str) -> str:
|
||||
"""Pattern to remove grid table separators"""
|
||||
pattern = r"^\+[-]+\+[-]+\+$"
|
||||
@@ -129,6 +145,10 @@ class RstParser(BaseParser):
|
||||
content = self.remove_images(content)
|
||||
if self._remove_table_excess:
|
||||
content = self.remove_table_excess(content)
|
||||
if self._remove_directives:
|
||||
content = self.remove_directives(content)
|
||||
if self._remove_interpreters:
|
||||
content = self.remove_interpreters(content)
|
||||
rst_tups = self.rst_to_tups(content)
|
||||
if self._remove_whitespaces_excess:
|
||||
rst_tups = self.remove_whitespaces_excess(rst_tups)
|
||||
|
||||
@@ -14,10 +14,38 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
|
||||
def call_openai_api(docs):
|
||||
# Function to create a vector store from the documents and save it to disk.
|
||||
store = FAISS.from_documents(docs, OpenAIEmbeddings())
|
||||
from tqdm import tqdm
|
||||
docs_test = [docs[0]]
|
||||
# remove the first element from docs
|
||||
docs.pop(0)
|
||||
# cut first n docs if you want to restart
|
||||
#docs = docs[:n]
|
||||
c1 = 0
|
||||
store = FAISS.from_documents(docs_test, OpenAIEmbeddings())
|
||||
for i in tqdm(docs, desc="Embedding 🦖", unit="docs", total=len(docs), bar_format='{l_bar}{bar}| Time Left: {remaining}'):
|
||||
try:
|
||||
import time
|
||||
store.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print("Error on ", i)
|
||||
print("Saving progress")
|
||||
print(f"stopped at {c1} out of {len(docs)}")
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
store_index_bak = store.index
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
print("Sleeping for 60 seconds and trying again")
|
||||
time.sleep(60)
|
||||
faiss.write_index(store_index_bak, "docs.index")
|
||||
store.index = store_index_bak
|
||||
store.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
c1 += 1
|
||||
|
||||
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
store.index = None
|
||||
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
|
||||
@@ -41,4 +69,4 @@ def get_user_permission(docs):
|
||||
elif user_input == "":
|
||||
call_openai_api(docs)
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
print("The API was not called. No money was spent.")
|
||||
|
||||
Reference in New Issue
Block a user