working es

This commit is contained in:
Alex
2023-09-29 00:32:19 +01:00
parent c1c54f4848
commit 783e7f6939
6 changed files with 235 additions and 31 deletions

View File

@@ -1,8 +1,7 @@
import os
import tiktoken
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from application.vectorstore.faiss import FaissStore
from retry import retry
@@ -33,11 +32,9 @@ def call_openai_api(docs, folder_name, task_status):
os.makedirs(f"{folder_name}")
from tqdm import tqdm
docs_test = [docs[0]]
docs.pop(0)
c1 = 0
store = FAISS.from_documents(docs_test, OpenAIEmbeddings(openai_api_key=os.getenv("EMBEDDINGS_KEY")))
store = FaissStore(path=f"{folder_name}", embeddings_key=os.getenv("EMBEDDINGS_KEY"))
# Uncomment for MPNet embeddings
# model_name = "sentence-transformers/all-mpnet-base-v2"

View File

@@ -22,6 +22,7 @@ decorator==5.1.1
dill==0.3.6
dnspython==2.3.0
ecdsa==0.18.0
elasticsearch==8.9.0
entrypoints==0.4
faiss-cpu==1.7.3
filelock==3.9.0

View File

@@ -19,7 +19,7 @@ class BaseVectorStore(ABC):
def is_azure_configured(self):
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
def _get_docsearch(self, embeddings_name, embeddings_key=None):
def _get_embeddings(self, embeddings_name, embeddings_key=None):
embeddings_factory = {
"openai_text-embedding-ada-002": OpenAIEmbeddings,
"huggingface_sentence-transformers/all-mpnet-base-v2": HuggingFaceHubEmbeddings,

View File

@@ -0,0 +1,199 @@
from application.vectorstore.base import BaseVectorStore
from application.core.settings import settings
import elasticsearch
#from langchain.vectorstores.elasticsearch import ElasticsearchStore
class ElasticsearchStore(BaseVectorStore):
_es_connection = None # Class attribute to hold the Elasticsearch connection
def __init__(self, path, embeddings_key, index_name="docsgpt"):
super().__init__()
self.path = path.replace("/app/application/indexes/", "")
self.embeddings_key = embeddings_key
self.index_name = index_name
if ElasticsearchStore._es_connection is None:
connection_params = {}
connection_params["cloud_id"] = settings.ELASTIC_CLOUD_ID
connection_params["basic_auth"] = (settings.ELASTIC_USERNAME, settings.ELASTIC_PASSWORD)
ElasticsearchStore._es_connection = elasticsearch.Elasticsearch(**connection_params)
self.docsearch = ElasticsearchStore._es_connection
def connect_to_elasticsearch(
*,
es_url = None,
cloud_id = None,
api_key = None,
username = None,
password = None,
):
try:
import elasticsearch
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
if es_url and cloud_id:
raise ValueError(
"Both es_url and cloud_id are defined. Please provide only one."
)
connection_params = {}
if es_url:
connection_params["hosts"] = [es_url]
elif cloud_id:
connection_params["cloud_id"] = cloud_id
else:
raise ValueError("Please provide either elasticsearch_url or cloud_id.")
if api_key:
connection_params["api_key"] = api_key
elif username and password:
connection_params["basic_auth"] = (username, password)
es_client = elasticsearch.Elasticsearch(
**connection_params,
)
try:
es_client.info()
except Exception as e:
raise e
return es_client
def search(self, question, k=2, index_name=settings.ELASTIC_INDEX, *args, **kwargs):
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key)
vector = embeddings.embed_query(question)
knn = {
"filter": [{"match": {"metadata.filename.keyword": self.path}}],
"field": "vector",
"k": k,
"num_candidates": 100,
"query_vector": vector,
}
full_query = {
"knn": knn,
"query": {
"bool": {
"must": [
{
"match": {
"text": {
"query": question,
}
}
}
],
"filter": [{"match": {"metadata.filename.keyword": self.path}}],
}
},
"rank": {"rrf": {}},
}
resp = self.docsearch.search(index=index_name, query=full_query['query'], size=k, knn=full_query['knn'])
return resp
def _create_index_if_not_exists(
self, index_name, dims_length
):
if self.client.indices.exists(index=index_name):
print(f"Index {index_name} already exists.")
else:
self.strategy.before_index_setup(
client=self.client,
text_field=self.query_field,
vector_query_field=self.vector_query_field,
)
indexSettings = self.index(
dims_length=dims_length,
)
self.client.indices.create(index=index_name, **indexSettings)
def index(
self,
dims_length,
):
return {
"mappings": {
"properties": {
"vector": {
"type": "dense_vector",
"dims": dims_length,
"index": True,
"similarity": "cosine",
},
}
}
}
def add_texts(
self,
texts,
metadatas = None,
ids = None,
refresh_indices = True,
create_index_if_not_exists = True,
bulk_kwargs = None,
**kwargs,
):
from elasticsearch.helpers import BulkIndexError, bulk
bulk_kwargs = bulk_kwargs or {}
import uuid
embeddings = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
requests = []
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key)
vectors = embeddings.embed_documents(list(texts))
dims_length = len(vectors[0])
if create_index_if_not_exists:
self._create_index_if_not_exists(
index_name=self.index_name, dims_length=dims_length
)
for i, (text, vector) in enumerate(zip(texts, vectors)):
metadata = metadatas[i] if metadatas else {}
requests.append(
{
"_op_type": "index",
"_index": self.index_name,
"text": text,
"vector": vector,
"metadata": metadata,
"_id": ids[i],
}
)
if len(requests) > 0:
try:
success, failed = bulk(
self.client,
requests,
stats_only=True,
refresh=refresh_indices,
**bulk_kwargs,
)
return ids
except BulkIndexError as e:
print(f"Error adding texts: {e}")
firstError = e.errors[0].get("index", {}).get("error", {})
print(f"First error reason: {firstError.get('reason')}")
raise e
else:
return []

View File

@@ -8,8 +8,11 @@ class FaissStore(BaseVectorStore):
super().__init__()
self.path = path
self.docsearch = FAISS.load_local(
self.path, self._get_docsearch(settings.EMBEDDINGS_NAME, settings.EMBEDDINGS_KEY)
self.path, self._get_embeddings(settings.EMBEDDINGS_NAME, settings.EMBEDDINGS_KEY)
)
def search(self, *args, **kwargs):
return self.docsearch.similarity_search(*args, **kwargs)
def add_texts(self, *args, **kwargs):
return self.docsearch.add_texts(*args, **kwargs)

View File

@@ -1346,9 +1346,9 @@
}
},
"node_modules/@typescript-eslint/eslint-plugin/node_modules/semver": {
"version": "7.3.8",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.3.8.tgz",
"integrity": "sha512-NB1ctGL5rlHrPJtFDVIVzTyQylMLu9N9VICA6HSFJo8MCGVTMW6gfpicwKmmK/dAjTOrqu5l63JJOpDSrAis3A==",
"version": "7.5.4",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz",
"integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==",
"dev": true,
"dependencies": {
"lru-cache": "^6.0.0"
@@ -1490,9 +1490,9 @@
}
},
"node_modules/@typescript-eslint/typescript-estree/node_modules/semver": {
"version": "7.3.8",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.3.8.tgz",
"integrity": "sha512-NB1ctGL5rlHrPJtFDVIVzTyQylMLu9N9VICA6HSFJo8MCGVTMW6gfpicwKmmK/dAjTOrqu5l63JJOpDSrAis3A==",
"version": "7.5.4",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz",
"integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==",
"dev": true,
"dependencies": {
"lru-cache": "^6.0.0"
@@ -1549,9 +1549,9 @@
}
},
"node_modules/@typescript-eslint/utils/node_modules/semver": {
"version": "7.3.8",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.3.8.tgz",
"integrity": "sha512-NB1ctGL5rlHrPJtFDVIVzTyQylMLu9N9VICA6HSFJo8MCGVTMW6gfpicwKmmK/dAjTOrqu5l63JJOpDSrAis3A==",
"version": "7.5.4",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz",
"integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==",
"dev": true,
"dependencies": {
"lru-cache": "^6.0.0"
@@ -1991,9 +1991,9 @@
}
},
"node_modules/builtins/node_modules/semver": {
"version": "7.3.8",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.3.8.tgz",
"integrity": "sha512-NB1ctGL5rlHrPJtFDVIVzTyQylMLu9N9VICA6HSFJo8MCGVTMW6gfpicwKmmK/dAjTOrqu5l63JJOpDSrAis3A==",
"version": "7.5.4",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz",
"integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==",
"dev": true,
"dependencies": {
"lru-cache": "^6.0.0"
@@ -2055,9 +2055,9 @@
}
},
"node_modules/caniuse-lite": {
"version": "1.0.30001450",
"resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001450.tgz",
"integrity": "sha512-qMBmvmQmFXaSxexkjjfMvD5rnDL0+m+dUMZKoDYsGG8iZN29RuYh9eRoMvKsT6uMAWlyUUGDEQGJJYjzCIO9ew==",
"version": "1.0.30001541",
"resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001541.tgz",
"integrity": "sha512-bLOsqxDgTqUBkzxbNlSBt8annkDpQB9NdzdTbO2ooJ+eC/IQcvDspDc058g84ejCelF7vHUx57KIOjEecOHXaw==",
"dev": true,
"funding": [
{
@@ -2067,6 +2067,10 @@
{
"type": "tidelift",
"url": "https://tidelift.com/funding/github/npm/caniuse-lite"
},
{
"type": "github",
"url": "https://github.com/sponsors/ai"
}
]
},
@@ -2889,9 +2893,9 @@
}
},
"node_modules/eslint-plugin-n/node_modules/semver": {
"version": "7.3.8",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.3.8.tgz",
"integrity": "sha512-NB1ctGL5rlHrPJtFDVIVzTyQylMLu9N9VICA6HSFJo8MCGVTMW6gfpicwKmmK/dAjTOrqu5l63JJOpDSrAis3A==",
"version": "7.5.4",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz",
"integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==",
"dev": true,
"dependencies": {
"lru-cache": "^6.0.0"
@@ -4478,9 +4482,9 @@
}
},
"node_modules/lint-staged/node_modules/yaml": {
"version": "2.2.1",
"resolved": "https://registry.npmjs.org/yaml/-/yaml-2.2.1.tgz",
"integrity": "sha512-e0WHiYql7+9wr4cWMx3TVQrNwejKaEe7/rHNmQmqRjazfOP5W8PB6Jpebb5o6fIapbz9o9+2ipcaTM2ZwDI6lw==",
"version": "2.3.2",
"resolved": "https://registry.npmjs.org/yaml/-/yaml-2.3.2.tgz",
"integrity": "sha512-N/lyzTPaJasoDmfV7YTrYCI0G/3ivm/9wdG0aHuheKowWQwGTsK0Eoiw6utmzAnI6pkJa0DUVygvp3spqqEKXg==",
"dev": true,
"engines": {
"node": ">= 14"
@@ -6532,9 +6536,9 @@
}
},
"node_modules/semver": {
"version": "6.3.0",
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz",
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==",
"version": "6.3.1",
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz",
"integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==",
"dev": true,
"bin": {
"semver": "bin/semver.js"