mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-30 17:13:15 +00:00
@@ -1,11 +1,15 @@
|
||||
aiohttp==3.8.3
|
||||
aiosignal==1.3.1
|
||||
alabaster==0.7.13
|
||||
async-timeout==4.0.2
|
||||
attrs==22.2.0
|
||||
Babel==2.11.0
|
||||
blobfile==2.0.1
|
||||
certifi==2022.12.7
|
||||
charset-normalizer==2.1.1
|
||||
click==8.1.3
|
||||
dataclasses-json==0.5.7
|
||||
docutils==0.19
|
||||
faiss-cpu==1.7.3
|
||||
filelock==3.9.0
|
||||
Flask==2.2.2
|
||||
@@ -13,6 +17,7 @@ frozenlist==1.3.3
|
||||
greenlet==2.0.2
|
||||
huggingface-hub==0.12.0
|
||||
idna==3.4
|
||||
imagesize==1.4.1
|
||||
itsdangerous==2.1.2
|
||||
Jinja2==3.1.2
|
||||
langchain==0.0.76
|
||||
@@ -27,10 +32,20 @@ openai==0.26.4
|
||||
packaging==23.0
|
||||
pycryptodomex==3.17
|
||||
pydantic==1.10.4
|
||||
Pygments==2.14.0
|
||||
python-dotenv==0.21.1
|
||||
pytz==2022.7.1
|
||||
PyYAML==6.0
|
||||
regex==2022.10.31
|
||||
requests==2.28.2
|
||||
snowballstemmer==2.2.0
|
||||
Sphinx==6.1.3
|
||||
sphinxcontrib-applehelp==1.0.4
|
||||
sphinxcontrib-devhelp==1.0.2
|
||||
sphinxcontrib-htmlhelp==2.0.1
|
||||
sphinxcontrib-jsmath==1.0.1
|
||||
sphinxcontrib-qthelp==1.0.3
|
||||
sphinxcontrib-serializinghtml==1.1.5
|
||||
SQLAlchemy==1.4.46
|
||||
tiktoken==0.1.2
|
||||
tokenizers==0.13.2
|
||||
|
||||
@@ -5,13 +5,12 @@ from langchain.vectorstores import FAISS
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
import pickle
|
||||
import dotenv
|
||||
import os
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
# Here we load in the data in the format that Notion exports it in.
|
||||
ps = list(Path("pandasdocs/").glob("**/*.rst"))
|
||||
ps = list(Path("scikit-learn").glob("**/*.rst"))
|
||||
# parse all child directories
|
||||
|
||||
data = []
|
||||
@@ -37,4 +36,4 @@ store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
pickle.dump(store, f)
|
||||
71
scripts/ingest_rst_sphinx.py
Normal file
71
scripts/ingest_rst_sphinx.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import os
|
||||
import pickle
|
||||
import dotenv
|
||||
import faiss
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from sphinx.cmd.build import main as sphinx_main
|
||||
|
||||
|
||||
def convert_rst_to_txt(src_dir, dst_dir):
|
||||
# Check if the source directory exists
|
||||
if not os.path.exists(src_dir):
|
||||
raise Exception("Source directory does not exist")
|
||||
# Walk through the source directory
|
||||
for root, dirs, files in os.walk(src_dir):
|
||||
for file in files:
|
||||
# Check if the file has .rst extension
|
||||
if file.endswith(".rst"):
|
||||
# Construct the full path of the file
|
||||
src_file = os.path.join(root, file.replace(".rst", ""))
|
||||
# Convert the .rst file to .txt file using sphinx-build
|
||||
args = f". -b text -D extensions=sphinx.ext.autodoc " \
|
||||
f"-D master_doc={src_file} " \
|
||||
f"-D source_suffix=.rst " \
|
||||
f"-C {dst_dir} "
|
||||
sphinx_main(args.split())
|
||||
|
||||
#Load .env file
|
||||
dotenv.load_dotenv()
|
||||
|
||||
#Directory to vector
|
||||
src_dir = "scikit-learn"
|
||||
dst_dir = "tmp"
|
||||
|
||||
convert_rst_to_txt(src_dir, dst_dir)
|
||||
|
||||
# Here we load in the data in the format that Notion exports it in.
|
||||
ps = list(Path("tmp/"+ src_dir).glob("**/*.txt"))
|
||||
|
||||
# parse all child directories
|
||||
data = []
|
||||
sources = []
|
||||
for p in ps:
|
||||
with open(p) as f:
|
||||
data.append(f.read())
|
||||
sources.append(p)
|
||||
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
|
||||
docs = []
|
||||
metadatas = []
|
||||
for i, d in enumerate(data):
|
||||
splits = text_splitter.split_text(d)
|
||||
docs.extend(splits)
|
||||
metadatas.extend([{"source": sources[i]}] * len(splits))
|
||||
|
||||
|
||||
# Here we create a vector store from the documents and save it to disk.
|
||||
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
|
||||
# Delete tmp folder
|
||||
# Commented out for now
|
||||
#shutil.rmtree(dst_dir)
|
||||
Reference in New Issue
Block a user