This commit is contained in:
GH Action - Upstream Sync
2025-03-13 01:25:22 +00:00
9 changed files with 221 additions and 67 deletions

View File

@@ -72,9 +72,9 @@ class OpenAILLMHandler(LLMHandler):
while True:
tool_calls = {}
for chunk in resp:
if isinstance(chunk, str):
if isinstance(chunk, str) and len(chunk) > 0:
return
else:
elif hasattr(chunk, "delta"):
chunk_delta = chunk.delta
if (
@@ -113,6 +113,8 @@ class OpenAILLMHandler(LLMHandler):
tool_response, call_id = agent._execute_tool_action(
tools_dict, call
)
if isinstance(call["function"]["arguments"], str):
call["function"]["arguments"] = json.loads(call["function"]["arguments"])
function_call_dict = {
"function_call": {
@@ -156,6 +158,8 @@ class OpenAILLMHandler(LLMHandler):
and chunk.finish_reason == "stop"
):
return
elif isinstance(chunk, str) and len(chunk) == 0:
continue
resp = agent.llm.gen_stream(
model=agent.gpt_model, messages=messages, tools=agent.tools

View File

@@ -42,6 +42,8 @@ elif settings.LLM_NAME == "anthropic":
gpt_model = "claude-2"
elif settings.LLM_NAME == "groq":
gpt_model = "llama3-8b-8192"
elif settings.LLM_NAME == "novita":
gpt_model = "deepseek/deepseek-r1"
if settings.MODEL_NAME: # in case there is particular model name configured
gpt_model = settings.MODEL_NAME
@@ -706,7 +708,6 @@ class Search(Resource):
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=[],
prompt="default",
@@ -716,7 +717,7 @@ class Search(Resource):
user_api_key=user_api_key,
)
docs = retriever.search()
docs = retriever.search(question)
retriever_params = retriever.get_params()
user_logs_collection.insert_one(

View File

@@ -11,21 +11,25 @@ from application.utils import get_hash
logger = logging.getLogger(__name__)
_redis_instance = None
_redis_creation_failed = False
_instance_lock = Lock()
def get_redis_instance():
global _redis_instance
if _redis_instance is None:
global _redis_instance, _redis_creation_failed
if _redis_instance is None and not _redis_creation_failed:
with _instance_lock:
if _redis_instance is None:
if _redis_instance is None and not _redis_creation_failed:
try:
_redis_instance = redis.Redis.from_url(
settings.CACHE_REDIS_URL, socket_connect_timeout=2
)
except ValueError as e:
logger.error(f"Invalid Redis URL: {e}")
_redis_creation_failed = True # Stop future attempts
_redis_instance = None
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
_redis_instance = None
_redis_instance = None # Keep trying for connection errors
return _redis_instance
@@ -41,36 +45,48 @@ def gen_cache_key(messages, model="docgpt", tools=None):
def gen_cache(func):
def wrapper(self, model, messages, stream, tools=None, *args, **kwargs):
if tools is not None:
return func(self, model, messages, stream, tools, *args, **kwargs)
try:
cache_key = gen_cache_key(messages, model, tools)
redis_client = get_redis_instance()
if redis_client:
try:
cached_response = redis_client.get(cache_key)
if cached_response:
return cached_response.decode("utf-8")
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
result = func(self, model, messages, stream, tools, *args, **kwargs)
if redis_client and isinstance(result, str):
try:
redis_client.set(cache_key, result, ex=1800)
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
return result
except ValueError as e:
logger.error(e)
return "Error: No user message found in the conversation to generate a cache key."
logger.error(f"Cache key generation failed: {e}")
return func(self, model, messages, stream, tools, *args, **kwargs)
redis_client = get_redis_instance()
if redis_client:
try:
cached_response = redis_client.get(cache_key)
if cached_response:
return cached_response.decode("utf-8")
except Exception as e:
logger.error(f"Error getting cached response: {e}")
result = func(self, model, messages, stream, tools, *args, **kwargs)
if redis_client and isinstance(result, str):
try:
redis_client.set(cache_key, result, ex=1800)
except Exception as e:
logger.error(f"Error setting cache: {e}")
return result
return wrapper
def stream_cache(func):
def wrapper(self, model, messages, stream, tools=None, *args, **kwargs):
cache_key = gen_cache_key(messages, model, tools)
logger.info(f"Stream cache key: {cache_key}")
if tools is not None:
yield from func(self, model, messages, stream, tools, *args, **kwargs)
return
try:
cache_key = gen_cache_key(messages, model, tools)
except ValueError as e:
logger.error(f"Cache key generation failed: {e}")
yield from func(self, model, messages, stream, tools, *args, **kwargs)
return
redis_client = get_redis_instance()
if redis_client:
@@ -81,23 +97,21 @@ def stream_cache(func):
cached_response = json.loads(cached_response.decode("utf-8"))
for chunk in cached_response:
yield chunk
time.sleep(0.03)
time.sleep(0.03) # Simulate streaming delay
return
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
except Exception as e:
logger.error(f"Error getting cached stream: {e}")
result = func(self, model, messages, stream, tools=tools, *args, **kwargs)
stream_cache_data = []
for chunk in result:
stream_cache_data.append(chunk)
for chunk in func(self, model, messages, stream, tools, *args, **kwargs):
yield chunk
stream_cache_data.append(str(chunk))
if redis_client:
try:
redis_client.set(cache_key, json.dumps(stream_cache_data), ex=1800)
logger.info(f"Stream cache saved for key: {cache_key}")
except redis.ConnectionError as e:
logger.error(f"Redis connection error: {e}")
except Exception as e:
logger.error(f"Error setting stream cache: {e}")
return wrapper

View File

@@ -1,34 +1,131 @@
from application.llm.base import BaseLLM
import json
import requests
from application.core.settings import settings
from application.llm.base import BaseLLM
class DocsGPTAPILLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from openai import OpenAI
super().__init__(*args, **kwargs)
self.api_key = api_key
self.client = OpenAI(api_key="sk-docsgpt-public", base_url="https://oai.arc53.com")
self.user_api_key = user_api_key
self.endpoint = "https://llm.arc53.com"
self.api_key = api_key
def _raw_gen(self, baseself, model, messages, stream=False, *args, **kwargs):
response = requests.post(
f"{self.endpoint}/answer", json={"messages": messages, "max_new_tokens": 30}
)
response_clean = response.json()["a"].replace("###", "")
def _clean_messages_openai(self, messages):
cleaned_messages = []
for message in messages:
role = message.get("role")
content = message.get("content")
return response_clean
if role == "model":
role = "assistant"
def _raw_gen_stream(self, baseself, model, messages, stream=True, *args, **kwargs):
response = requests.post(
f"{self.endpoint}/stream",
json={"messages": messages, "max_new_tokens": 256},
stream=True,
)
if role and content is not None:
if isinstance(content, str):
cleaned_messages.append({"role": role, "content": content})
elif isinstance(content, list):
for item in content:
if "text" in item:
cleaned_messages.append(
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(
item["function_call"]["args"]
),
},
}
cleaned_messages.append(
{
"role": "assistant",
"content": None,
"tool_calls": [tool_call],
}
)
elif "function_response" in item:
cleaned_messages.append(
{
"role": "tool",
"tool_call_id": item["function_response"][
"call_id"
],
"content": json.dumps(
item["function_response"]["response"]["result"]
),
}
)
else:
raise ValueError(
f"Unexpected content dictionary format: {item}"
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
for line in response.iter_lines():
if line:
data_str = line.decode("utf-8")
if data_str.startswith("data: "):
data = json.loads(data_str[6:])
yield data["a"]
return cleaned_messages
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
tools=None,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs,
):
messages = self._clean_messages_openai(messages)
if tools:
response = self.client.chat.completions.create(
model="docsgpt",
messages=messages,
stream=stream,
tools=tools,
**kwargs,
)
return response.choices[0]
else:
response = self.client.chat.completions.create(
model="docsgpt", messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
tools=None,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs,
):
messages = self._clean_messages_openai(messages)
if tools:
response = self.client.chat.completions.create(
model="docsgpt",
messages=messages,
stream=stream,
tools=tools,
**kwargs,
)
else:
response = self.client.chat.completions.create(
model="docsgpt", messages=messages, stream=stream, **kwargs
)
for line in response:
if len(line.choices) > 0 and line.choices[0].delta.content is not None and len(line.choices[0].delta.content) > 0:
yield line.choices[0].delta.content
elif len(line.choices) > 0:
yield line.choices[0]
def _supports_tools(self):
return True

View File

@@ -7,7 +7,7 @@ from application.llm.anthropic import AnthropicLLM
from application.llm.docsgpt_provider import DocsGPTAPILLM
from application.llm.premai import PremAILLM
from application.llm.google_ai import GoogleLLM
from application.llm.novita import NovitaLLM
class LLMCreator:
llms = {
@@ -20,7 +20,8 @@ class LLMCreator:
"docsgpt": DocsGPTAPILLM,
"premai": PremAILLM,
"groq": GroqLLM,
"google": GoogleLLM
"google": GoogleLLM,
"novita": NovitaLLM
}
@classmethod

32
application/llm/novita.py Normal file
View File

@@ -0,0 +1,32 @@
from application.llm.base import BaseLLM
from openai import OpenAI
class NovitaLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.client = OpenAI(api_key=api_key, base_url="https://api.novita.ai/v3/openai")
self.api_key = api_key
self.user_api_key = user_api_key
def _raw_gen(self, baseself, model, messages, stream=False, tools=None, **kwargs):
if tools:
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, tools=tools, **kwargs
)
return response.choices[0]
else:
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def _raw_gen_stream(
self, baseself, model, messages, stream=True, tools=None, **kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
for line in response:
if line.choices[0].delta.content is not None:
yield line.choices[0].delta.content

View File

@@ -125,9 +125,9 @@ class OpenAILLM(BaseLLM):
)
for line in response:
if line.choices[0].delta.content is not None:
if len(line.choices) > 0 and line.choices[0].delta.content is not None and len(line.choices[0].delta.content) > 0:
yield line.choices[0].delta.content
else:
elif len(line.choices) > 0:
yield line.choices[0]
def _supports_tools(self):

View File

@@ -148,6 +148,7 @@ prompt_cloud_api_provider_options() {
echo -e "${YELLOW}4) Groq${NC}"
echo -e "${YELLOW}5) HuggingFace Inference API${NC}"
echo -e "${YELLOW}6) Azure OpenAI${NC}"
echo -e "${YELLOW}7) Novita${NC}"
echo -e "${YELLOW}b) Back to Main Menu${NC}"
echo
read -p "$(echo -e "${DEFAULT_FG}Choose option (1-6, or b): ${NC}")" provider_choice
@@ -428,6 +429,12 @@ connect_cloud_api_provider() {
model_name="gpt-4o"
get_api_key
break ;;
7) # Novita
provider_name="Novita"
llm_name="novita"
model_name="deepseek/deepseek-r1"
get_api_key
break ;;
b|B) clear; return ;; # Clear screen and Back to Main Menu
*) echo -e "\n${RED}Invalid choice. Please choose 1-6, or b.${NC}" ; sleep 1 ;;
esac

View File

@@ -64,7 +64,5 @@ class TestAnthropicLLM(unittest.TestCase):
max_tokens_to_sample=300,
stream=True
)
mock_redis_instance.set.assert_called_once()
if __name__ == "__main__":
unittest.main()