refactor: remove outdated vector store tests

This commit is contained in:
Siddhant Rai
2025-03-20 17:27:18 +05:30
parent 0732d9b6c8
commit 3be6e2132b

View File

@@ -1,41 +0,0 @@
"""
Tests regarding the vector store class, including checking
compatibility between different transformers and local vector
stores (index.faiss)
"""
import pytest
from application.vectorstore.faiss import FaissStore
from application.core.settings import settings
def test_init_local_faiss_store_huggingface():
"""
Test that asserts that initializing a FaissStore with
the huggingface sentence transformer below together with the
index.faiss file in the application/ folder results in a
dimension mismatch error.
"""
import os
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
from langchain_community.vectorstores import FAISS
# Ensure application directory exists
index_path = os.path.join("application")
os.makedirs(index_path, exist_ok=True)
# Create an index.faiss with a different embeddings dimension
# Use a different embedding model with a smaller dimension
other_embedding_model = "sentence-transformers/all-MiniLM-L6-v2" # Dimension 384
other_embeddings = HuggingFaceEmbeddings(model_name=other_embedding_model)
# Create some dummy documents
docs = [Document(page_content="Test document")]
# Create index using the other embeddings
other_docsearch = FAISS.from_documents(docs, other_embeddings)
# Save index to application/
other_docsearch.save_local(index_path)
# Now set the EMBEDDINGS_NAME to the one with a different dimension
settings.EMBEDDINGS_NAME = "huggingface_sentence-transformers/all-mpnet-base-v2" # Dimension 768
with pytest.raises(ValueError) as exc_info:
FaissStore("", None)
assert "Embedding dimension mismatch" in str(exc_info.value)