Merge pull request #1861 from arc53/docs-agents-update

Agent docs upd
This commit is contained in:
Alex
2025-06-25 09:23:09 +01:00
committed by GitHub
4 changed files with 389 additions and 2 deletions

View File

@@ -614,7 +614,7 @@ class Answer(Resource):
try:
question = data["question"]
history = limit_chat_history(
json.loads(data.get("history", [])), gpt_model=gpt_model
json.loads(data.get("history", "[]")), gpt_model=gpt_model
)
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")

View File

@@ -2,5 +2,13 @@
"basics": {
"title": "🤖 Agent Basics",
"href": "/Agents/basics"
},
"api": {
"title": "🔌 Agent API",
"href": "/Agents/api"
},
"webhooks": {
"title": "🪝 Agent Webhooks",
"href": "/Agents/webhooks"
}
}
}

227
docs/pages/Agents/api.mdx Normal file
View File

@@ -0,0 +1,227 @@
---
title: Interacting with Agents via API
description: Learn how to programmatically interact with DocsGPT Agents using the streaming and non-streaming API endpoints.
---
import { Callout, Tabs } from 'nextra/components';
# Interacting with Agents via API
DocsGPT Agents can be accessed programmatically through a dedicated API, allowing you to integrate their specialized capabilities into your own applications, scripts, and workflows. This guide covers the two primary methods for interacting with an agent: the streaming API for real-time responses and the non-streaming API for a single, consolidated answer.
When you use an API key generated for a specific agent, you do not need to pass `prompt`, `tools` etc. The agent's configuration (including its prompt, selected tools, and knowledge sources) is already associated with its unique API key.
### API Endpoints
- **Non-Streaming:** `http://localhost:7091/api/answer`
- **Streaming:** `http://localhost:7091/stream`
<Callout type="info">
For DocsGPT Cloud, use `https://gptcloud.arc53.com/` as the base URL.
</Callout>
For more technical details, you can explore the API swagger documentation available for the cloud version or your local instance.
---
## Non-Streaming API (`/api/answer`)
This is a standard synchronous endpoint. It waits for the agent to fully process the request and returns a single JSON object with the complete answer. This is the simplest method and is ideal for backend processes where a real-time feed is not required.
### Request
- **Endpoint:** `/api/answer`
- **Method:** `POST`
- **Payload:**
- `question` (string, required): The user's query or input for the agent.
- `api_key` (string, required): The unique API key for the agent you wish to interact with.
- `history` (string, optional): A JSON string representing the conversation history, e.g., `[{\"prompt\": \"first question\", \"answer\": \"first answer\"}]`.
### Response
A single JSON object containing:
- `answer`: The complete, final answer from the agent.
- `sources`: A list of sources the agent consulted.
- `conversation_id`: The unique ID for the interaction.
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/api/answer \
-H "Content-Type: application/json" \
-d '{
"question": "your question here",
"api_key": "your_agent_api_key"
}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
API_URL = "http://localhost:7091/api/answer"
API_KEY = "your_agent_api_key"
QUESTION = "your question here"
response = requests.post(
API_URL,
json={"question": QUESTION, "api_key": API_KEY}
)
if response.status_code == 200:
print(response.json())
else:
print(f"Error: {response.status_code}")
print(response.text)
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/api/answer';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getAnswer() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const data = await response.json();
console.log(data);
} catch (error) {
console.error("Failed to fetch answer:", error);
}
}
getAnswer();
```
</Tabs.Tab>
</Tabs>
---
## Streaming API (`/stream`)
The `/stream` endpoint uses Server-Sent Events (SSE) to push data in real-time. This is ideal for applications where you want to display the response as it's being generated, such as in a live chatbot interface.
### Request
- **Endpoint:** `/stream`
- **Method:** `POST`
- **Payload:** Same as the non-streaming API.
### Response (SSE Stream)
The stream consists of multiple `data:` events, each containing a JSON object. Your client should listen for these events and process them based on their `type`.
**Event Types:**
- `answer`: A chunk of the agent's final answer.
- `source`: A document or source used by the agent.
- `thought`: A reasoning step from the agent (for ReAct agents).
- `id`: The unique `conversation_id` for the interaction.
- `error`: An error message.
- `end`: A final message indicating the stream has concluded.
### Examples
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST http://localhost:7091/stream \
-H "Content-Type: application/json" \
-H "Accept: text/event-stream" \
-d '{
"question": "your question here",
"api_key": "your_agent_api_key"
}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
import json
API_URL = "http://localhost:7091/stream"
payload = {
"question": "your question here",
"api_key": "your_agent_api_key"
}
with requests.post(API_URL, json=payload, stream=True) as r:
for line in r.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith('data: '):
try:
data = json.loads(decoded_line[6:])
print(data)
except json.JSONDecodeError:
pass
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const apiUrl = 'http://localhost:7091/stream';
const apiKey = 'your_agent_api_key';
const question = 'your question here';
async function getStream() {
try {
const response = await fetch(apiUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Accept': 'text/event-stream'
},
// Corrected line: 'apiKey' is changed to 'api_key'
body: JSON.stringify({ question, api_key: apiKey }),
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value, { stream: true });
// Note: This parsing method assumes each chunk contains whole lines.
// For a more robust production implementation, buffer the chunks
// and process them line by line.
const lines = chunk.split('\n');
for (const line of lines) {
if (line.startsWith('data: ')) {
try {
const data = JSON.parse(line.substring(6));
console.log(data);
} catch (e) {
console.error("Failed to parse JSON from SSE event:", e);
}
}
}
}
} catch (error) {
console.error("Failed to fetch stream:", error);
}
}
getStream();
```
</Tabs.Tab>
</Tabs>

View File

@@ -0,0 +1,152 @@
---
title: Triggering Agents with Webhooks
description: Learn how to automate and integrate DocsGPT Agents using webhooks for asynchronous task execution.
---
import { Callout, Tabs } from 'nextra/components';
# Triggering Agents with Webhooks
Agent Webhooks provide a powerful mechanism to trigger an agent's execution from external systems. Unlike the direct API which provides an immediate response, webhooks are designed for **asynchronous** operations. When you call a webhook, DocsGPT enqueues the agent's task for background processing and immediately returns a `task_id`. You then use this ID to poll for the result.
This workflow is ideal for integrating with services that expect a quick initial response (e.g., form submissions) or for triggering long-running tasks without tying up a client connection.
Each agent has its own unique webhook URL, which can be generated from the agent's edit page in the DocsGPT UI. This URL includes a secure token for authentication.
### API Endpoints
- **Webhook URL:** `http://localhost:7091/api/webhooks/agents/{AGENT_WEBHOOK_TOKEN}`
- **Task Status URL:** `http://localhost:7091/api/task_status`
<Callout type="info">
For DocsGPT Cloud, use `https://gptcloud.arc53.com/` as the base URL.
</Callout>
For more technical details, you can explore the API swagger documentation available for the cloud version or your local instance.
---
## The Webhook Workflow
The process involves two main steps: triggering the task and polling for the result.
### Step 1: Trigger the Webhook
Send an HTTP `POST` request to the agent's unique webhook URL with the required payload. The structure of this payload should match what the agent's prompt and tools are designed to handle.
- **Method:** `POST`
- **Response:** A JSON object with a `task_id`. `{"task_id": "a1b2c3d4-e5f6-..."}`
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
curl -X POST \
http://localhost:7091/api/webhooks/agents/your_webhook_token \
-H "Content-Type: application/json" \
-d '{"question": "Your message to agent"}'
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
WEBHOOK_URL = "http://localhost:7091/api/webhooks/agents/your_webhook_token"
payload = {"question": "Your message to agent"}
try:
response = requests.post(WEBHOOK_URL, json=payload)
response.raise_for_status()
task_id = response.json().get("task_id")
print(f"Task successfully created with ID: {task_id}")
except requests.exceptions.RequestException as e:
print(f"Error triggering webhook: {e}")
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const webhookUrl = 'http://localhost:7091/api/webhooks/agents/your_webhook_token';
const payload = { question: 'Your message to agent' };
async function triggerWebhook() {
try {
const response = await fetch(webhookUrl, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload)
});
if (!response.ok) throw new Error(`HTTP error! ${response.status}`);
const data = await response.json();
console.log(`Task successfully created with ID: ${data.task_id}`);
return data.task_id;
} catch (error) {
console.error('Error triggering webhook:', error);
}
}
triggerWebhook();
```
</Tabs.Tab>
</Tabs>
### Step 2: Poll for the Result
Once you have the `task_id`, periodically send a `GET` request to the `/api/task_status` endpoint until the task `status` is `SUCCESS` or `FAILURE`.
- **`status`**: The current state of the task (`PENDING`, `STARTED`, `SUCCESS`, `FAILURE`).
- **`result`**: The final output from the agent, available when the status is `SUCCESS` or `FAILURE`.
<Tabs items={['cURL', 'Python', 'JavaScript']}>
<Tabs.Tab>
```bash
# Replace the task_id with the one you received
curl http://localhost:7091/api/task_status?task_id=YOUR_TASK_ID
```
</Tabs.Tab>
<Tabs.Tab>
```python
import requests
import time
STATUS_URL = "http://localhost:7091/api/task_status"
task_id = "YOUR_TASK_ID"
while True:
response = requests.get(STATUS_URL, params={"task_id": task_id})
data = response.json()
status = data.get("status")
print(f"Current task status: {status}")
if status in ["SUCCESS", "FAILURE"]:
print("Final Result:")
print(data.get("result"))
break
time.sleep(2)
```
</Tabs.Tab>
<Tabs.Tab>
```javascript
const statusUrl = 'http://localhost:7091/api/task_status';
const taskId = 'YOUR_TASK_ID';
const sleep = (ms) => new Promise(resolve => setTimeout(resolve, ms));
async function pollForResult() {
while (true) {
const response = await fetch(`${statusUrl}?task_id=${taskId}`);
const data = await response.json();
const status = data.status;
console.log(`Current task status: ${status}`);
if (status === 'SUCCESS' || status === 'FAILURE') {
console.log('Final Result:', data.result);
break;
}
await sleep(2000);
}
}
pollForResult();
```
</Tabs.Tab>
</Tabs>