This commit is contained in:
ManishMadan2882
2025-08-05 15:28:51 +05:30
25 changed files with 1139 additions and 1058 deletions

View File

@@ -19,10 +19,10 @@
<a href="https://discord.gg/n5BX8dh8rU">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://twitter.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/n5BX8dh8rU">💬 Discord</a>
<br>
<a href="https://docs.docsgpt.cloud/">📖 Documentation</a><a href="https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md">👫 Contribute</a><a href="https://blog.docsgpt.cloud/">🗞 Blog</a>
<br>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/n5BX8dh8rU">💬 Discord</a>
<br>
<a href="https://docs.docsgpt.cloud/">📖 Documentation</a><a href="https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md">👫 Contribute</a><a href="https://blog.docsgpt.cloud/">🗞 Blog</a>
<br>
</div>
<div align="center">
@@ -71,11 +71,10 @@ We're eager to provide personalized assistance when deploying your DocsGPT to a
## Join the Lighthouse Program 🌟
Calling all developers and GenAI innovators! The **DocsGPT Lighthouse Program** connects technical leaders actively deploying or extending DocsGPT in real-world scenarios. Collaborate directly with our team to shape the roadmap, access priority support, and build enterprise-ready solutions with exclusive community insights.
Calling all developers and GenAI innovators! The **DocsGPT Lighthouse Program** connects technical leaders actively deploying or extending DocsGPT in real-world scenarios. Collaborate directly with our team to shape the roadmap, access priority support, and build enterprise-ready solutions with exclusive community insights.
[Learn More & Apply →](https://docs.google.com/forms/d/1KAADiJinUJ8EMQyfTXUIGyFbqINNClNR3jBNWq7DgTE)
## QuickStart
> [!Note]
@@ -106,7 +105,7 @@ A more detailed [Quickstart](https://docs.docsgpt.cloud/quickstart) is available
PowerShell -ExecutionPolicy Bypass -File .\setup.ps1
```
Either script will guide you through setting up DocsGPT. Four options available: using the public API, running locally, connecting to a local inference engine, or using a cloud API provider. Scripts will automatically configure your `.env` file and handle necessary downloads and installations based on your chosen option.
Either script will guide you through setting up DocsGPT. Four options available: using the public API, running locally, connecting to a local inference engine, or using a cloud API provider. Scripts will automatically configure your `.env` file and handle necessary downloads and installations based on your chosen option.
**Navigate to http://localhost:5173/**
@@ -115,6 +114,7 @@ To stop DocsGPT, open a terminal in the `DocsGPT` directory and run:
```bash
docker compose -f deployment/docker-compose.yaml down
```
(or use the specific `docker compose down` command shown after running the setup script).
> [!Note]
@@ -142,7 +142,6 @@ Please refer to the [CONTRIBUTING.md](CONTRIBUTING.md) file for information abou
We as members, contributors, and leaders, pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. Please refer to the [CODE_OF_CONDUCT.md](CODE_OF_CONDUCT.md) file for more information about contributing.
## Many Thanks To Our Contributors⚡
<a href="https://github.com/arc53/DocsGPT/graphs/contributors" alt="View Contributors">

View File

@@ -0,0 +1,7 @@
from flask_restx import Api
api = Api(
version="1.0",
title="DocsGPT API",
description="API for DocsGPT",
)

View File

@@ -0,0 +1,19 @@
from flask import Blueprint
from application.api import api
from application.api.answer.routes.answer import AnswerResource
from application.api.answer.routes.base import answer_ns
from application.api.answer.routes.stream import StreamResource
answer = Blueprint("answer", __name__)
api.add_namespace(answer_ns)
def init_answer_routes():
api.add_resource(StreamResource, "/stream")
api.add_resource(AnswerResource, "/api/answer")
init_answer_routes()

View File

@@ -1,914 +0,0 @@
import asyncio
import datetime
import json
import logging
import os
import traceback
from bson.dbref import DBRef
from bson.objectid import ObjectId
from flask import Blueprint, make_response, request, Response
from flask_restx import fields, Namespace, Resource
from application.agents.agent_creator import AgentCreator
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.error import bad_request
from application.extensions import api
from application.llm.llm_creator import LLMCreator
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import check_required_fields, limit_chat_history
logger = logging.getLogger(__name__)
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
conversations_collection = db["conversations"]
sources_collection = db["sources"]
prompts_collection = db["prompts"]
agents_collection = db["agents"]
user_logs_collection = db["user_logs"]
attachments_collection = db["attachments"]
answer = Blueprint("answer", __name__)
answer_ns = Namespace("answer", description="Answer related operations", path="/")
api.add_namespace(answer_ns)
gpt_model = ""
# to have some kind of default behaviour
if settings.LLM_PROVIDER == "openai":
gpt_model = "gpt-4o-mini"
elif settings.LLM_PROVIDER == "anthropic":
gpt_model = "claude-2"
elif settings.LLM_PROVIDER == "groq":
gpt_model = "llama3-8b-8192"
elif settings.LLM_PROVIDER == "novita":
gpt_model = "deepseek/deepseek-r1"
if settings.LLM_NAME: # in case there is particular model name configured
gpt_model = settings.LLM_NAME
# load the prompts
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
chat_combine_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
chat_reduce_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r") as f:
chat_combine_creative = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
chat_combine_strict = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
async def async_generate(chain, question, chat_history):
result = await chain.arun({"question": question, "chat_history": chat_history})
return result
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = {}
try:
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
finally:
loop.close()
result["answer"] = answer
return result
def get_agent_key(agent_id, user_id):
if not agent_id:
return None, False, None
try:
agent = agents_collection.find_one({"_id": ObjectId(agent_id)})
if agent is None:
raise Exception("Agent not found", 404)
is_owner = agent.get("user") == user_id
if is_owner:
agents_collection.update_one(
{"_id": ObjectId(agent_id)},
{"$set": {"lastUsedAt": datetime.datetime.now(datetime.timezone.utc)}},
)
return str(agent["key"]), False, None
is_shared_with_user = agent.get(
"shared_publicly", False
) or user_id in agent.get("shared_with", [])
if is_shared_with_user:
return str(agent["key"]), True, agent.get("shared_token")
raise Exception("Unauthorized access to the agent", 403)
except Exception as e:
logger.error(f"Error in get_agent_key: {str(e)}", exc_info=True)
raise
def get_data_from_api_key(api_key):
data = agents_collection.find_one({"key": api_key})
if not data:
raise Exception("Invalid API Key, please generate a new key", 401)
source = data.get("source")
if isinstance(source, DBRef):
source_doc = db.dereference(source)
data["source"] = str(source_doc["_id"])
data["retriever"] = source_doc.get("retriever", data.get("retriever"))
else:
data["source"] = {}
return data
def get_retriever(source_id: str):
doc = sources_collection.find_one({"_id": ObjectId(source_id)})
if doc is None:
raise Exception("Source document does not exist", 404)
retriever_name = None if "retriever" not in doc else doc["retriever"]
return retriever_name
def is_azure_configured():
return (
settings.OPENAI_API_BASE
and settings.OPENAI_API_VERSION
and settings.AZURE_DEPLOYMENT_NAME
)
def save_conversation(
conversation_id,
question,
response,
thought,
source_log_docs,
tool_calls,
llm,
decoded_token,
index=None,
api_key=None,
agent_id=None,
is_shared_usage=False,
shared_token=None,
attachment_ids=None,
):
current_time = datetime.datetime.now(datetime.timezone.utc)
if conversation_id is not None and index is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id), f"queries.{index}": {"$exists": True}},
{
"$set": {
f"queries.{index}.prompt": question,
f"queries.{index}.response": response,
f"queries.{index}.thought": thought,
f"queries.{index}.sources": source_log_docs,
f"queries.{index}.tool_calls": tool_calls,
f"queries.{index}.timestamp": current_time,
f"queries.{index}.attachments": attachment_ids,
}
},
)
##remove following queries from the array
conversations_collection.update_one(
{"_id": ObjectId(conversation_id), f"queries.{index}": {"$exists": True}},
{"$push": {"queries": {"$each": [], "$slice": index + 1}}},
)
elif conversation_id is not None and conversation_id != "None":
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{
"$push": {
"queries": {
"prompt": question,
"response": response,
"thought": thought,
"sources": source_log_docs,
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
}
}
},
)
else:
# create new conversation
# generate summary
messages_summary = [
{
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the user query",
},
{
"role": "user",
"content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"user query \n\nUser: " + question + "\n\n" + "AI: " + response,
},
]
completion = llm.gen(model=gpt_model, messages=messages_summary, max_tokens=30)
conversation_data = {
"user": decoded_token.get("sub"),
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [
{
"prompt": question,
"response": response,
"thought": thought,
"sources": source_log_docs,
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
}
],
}
if api_key:
if agent_id:
conversation_data["agent_id"] = agent_id
if is_shared_usage:
conversation_data["is_shared_usage"] = is_shared_usage
conversation_data["shared_token"] = shared_token
api_key_doc = agents_collection.find_one({"key": api_key})
if api_key_doc:
conversation_data["api_key"] = api_key_doc["key"]
conversation_id = conversations_collection.insert_one(
conversation_data
).inserted_id
return conversation_id
def get_prompt(prompt_id):
if prompt_id == "default":
prompt = chat_combine_template
elif prompt_id == "creative":
prompt = chat_combine_creative
elif prompt_id == "strict":
prompt = chat_combine_strict
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
return prompt
def complete_stream(
question,
agent,
retriever,
conversation_id,
user_api_key,
decoded_token,
isNoneDoc=False,
index=None,
should_save_conversation=True,
attachment_ids=None,
agent_id=None,
is_shared_usage=False,
shared_token=None,
):
try:
response_full, thought, source_log_docs, tool_calls = "", "", [], []
answer = agent.gen(query=question, retriever=retriever)
for line in answer:
if "answer" in line:
response_full += str(line["answer"])
data = json.dumps({"type": "answer", "answer": line["answer"]})
yield f"data: {data}\n\n"
elif "sources" in line:
truncated_sources = []
source_log_docs = line["sources"]
for source in line["sources"]:
truncated_source = source.copy()
if "text" in truncated_source:
truncated_source["text"] = (
truncated_source["text"][:100].strip() + "..."
)
truncated_sources.append(truncated_source)
if len(truncated_sources) > 0:
data = json.dumps({"type": "source", "source": truncated_sources})
yield f"data: {data}\n\n"
elif "tool_calls" in line:
tool_calls = line["tool_calls"]
elif "thought" in line:
thought += line["thought"]
data = json.dumps({"type": "thought", "thought": line["thought"]})
yield f"data: {data}\n\n"
elif "type" in line:
data = json.dumps(line)
yield f"data: {data}\n\n"
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_PROVIDER,
api_key=settings.API_KEY,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
if should_save_conversation:
conversation_id = save_conversation(
conversation_id,
question,
response_full,
thought,
source_log_docs,
tool_calls,
llm,
decoded_token,
index,
api_key=user_api_key,
attachment_ids=attachment_ids,
agent_id=agent_id,
is_shared_usage=is_shared_usage,
shared_token=shared_token,
)
else:
conversation_id = None
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
yield f"data: {data}\n\n"
retriever_params = retriever.get_params()
user_logs_collection.insert_one(
{
"action": "stream_answer",
"level": "info",
"user": decoded_token.get("sub"),
"api_key": user_api_key,
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"attachments": attachment_ids,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
)
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except Exception as e:
logger.error(f"Error in stream: {str(e)}", exc_info=True)
data = json.dumps(
{
"type": "error",
"error": "Please try again later. We apologize for any inconvenience.",
}
)
yield f"data: {data}\n\n"
return
@answer_ns.route("/stream")
class Stream(Resource):
stream_model = api.model(
"StreamModel",
{
"question": fields.String(
required=True, description="Question to be asked"
),
"history": fields.List(
fields.String, required=False, description="Chat history"
),
"conversation_id": fields.String(
required=False, description="Conversation ID"
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
"index": fields.Integer(
required=False, description="Index of the query to update"
),
"save_conversation": fields.Boolean(
required=False,
default=True,
description="Whether to save the conversation",
),
"attachments": fields.List(
fields.String, required=False, description="List of attachment IDs"
),
},
)
@api.expect(stream_model)
@api.doc(description="Stream a response based on the question and retriever")
def post(self):
data = request.get_json()
required_fields = ["question"]
if "index" in data:
required_fields = ["question", "conversation_id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
save_conv = data.get("save_conversation", True)
try:
question = data["question"]
history = limit_chat_history(
json.loads(data.get("history", "[]")), gpt_model=gpt_model
)
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")
attachment_ids = data.get("attachments", [])
index = data.get("index", None)
chunks = int(data.get("chunks", 2))
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
agent_id = data.get("agent_id", None)
agent_type = settings.AGENT_NAME
decoded_token = getattr(request, "decoded_token", None)
user_sub = decoded_token.get("sub") if decoded_token else None
agent_key, is_shared_usage, shared_token = get_agent_key(agent_id, user_sub)
if agent_key:
data.update({"api_key": agent_key})
else:
agent_id = None
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key.get("chunks", 2))
prompt_id = data_key.get("prompt_id", "default")
source = {"active_docs": data_key.get("source")}
retriever_name = data_key.get("retriever", retriever_name)
user_api_key = data["api_key"]
agent_type = data_key.get("agent_type", agent_type)
if is_shared_usage:
decoded_token = request.decoded_token
else:
decoded_token = {"sub": data_key.get("user")}
is_shared_usage = False
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
retriever_name = get_retriever(data["active_docs"]) or retriever_name
user_api_key = None
decoded_token = request.decoded_token
else:
source = {}
user_api_key = None
decoded_token = request.decoded_token
if not decoded_token:
return make_response({"error": "Unauthorized"}, 401)
attachments = get_attachments_content(
attachment_ids, decoded_token.get("sub")
)
logger.info(
f"/stream - request_data: {data}, source: {source}, attachments: {len(attachments)}",
extra={"data": json.dumps({"request_data": data, "source": source})},
)
prompt = get_prompt(prompt_id)
if "isNoneDoc" in data and data["isNoneDoc"] is True:
chunks = 0
agent = AgentCreator.create_agent(
agent_type,
endpoint="stream",
llm_name=settings.LLM_PROVIDER,
gpt_model=gpt_model,
api_key=settings.API_KEY,
user_api_key=user_api_key,
prompt=prompt,
chat_history=history,
decoded_token=decoded_token,
attachments=attachments,
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
return Response(
complete_stream(
question=question,
agent=agent,
retriever=retriever,
conversation_id=conversation_id,
user_api_key=user_api_key,
decoded_token=decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=index,
should_save_conversation=save_conv,
attachment_ids=attachment_ids,
agent_id=agent_id,
is_shared_usage=is_shared_usage,
shared_token=shared_token,
),
mimetype="text/event-stream",
)
except ValueError:
message = "Malformed request body"
logger.error(f"/stream - error: {message}")
return Response(
error_stream_generate(message),
status=400,
mimetype="text/event-stream",
)
except Exception as e:
logger.error(
f"/stream - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
status_code = 400
return Response(
error_stream_generate("Unknown error occurred"),
status=status_code,
mimetype="text/event-stream",
)
def error_stream_generate(err_response):
data = json.dumps({"type": "error", "error": err_response})
yield f"data: {data}\n\n"
@answer_ns.route("/api/answer")
class Answer(Resource):
answer_model = api.model(
"AnswerModel",
{
"question": fields.String(
required=True, description="The question to answer"
),
"history": fields.List(
fields.String, required=False, description="Conversation history"
),
"conversation_id": fields.String(
required=False, description="Conversation ID"
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
},
)
@api.expect(answer_model)
@api.doc(description="Provide an answer based on the question and retriever")
def post(self):
data = request.get_json()
required_fields = ["question"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
question = data["question"]
history = limit_chat_history(
json.loads(data.get("history", "[]")), gpt_model=gpt_model
)
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")
chunks = int(data.get("chunks", 2))
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
agent_type = settings.AGENT_NAME
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key.get("chunks", 2))
prompt_id = data_key.get("prompt_id", "default")
source = {"active_docs": data_key.get("source")}
retriever_name = data_key.get("retriever", retriever_name)
user_api_key = data["api_key"]
agent_type = data_key.get("agent_type", agent_type)
decoded_token = {"sub": data_key.get("user")}
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
retriever_name = get_retriever(data["active_docs"]) or retriever_name
user_api_key = None
decoded_token = request.decoded_token
else:
source = {}
user_api_key = None
decoded_token = request.decoded_token
if not decoded_token:
return make_response({"error": "Unauthorized"}, 401)
prompt = get_prompt(prompt_id)
logger.info(
f"/api/answer - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})},
)
agent = AgentCreator.create_agent(
agent_type,
endpoint="api/answer",
llm_name=settings.LLM_PROVIDER,
gpt_model=gpt_model,
api_key=settings.API_KEY,
user_api_key=user_api_key,
prompt=prompt,
chat_history=history,
decoded_token=decoded_token,
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
response_full = ""
source_log_docs = []
tool_calls = []
stream_ended = False
thought = ""
for line in complete_stream(
question=question,
agent=agent,
retriever=retriever,
conversation_id=conversation_id,
user_api_key=user_api_key,
decoded_token=decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=None,
should_save_conversation=False,
):
try:
event_data = line.replace("data: ", "").strip()
event = json.loads(event_data)
if event["type"] == "answer":
response_full += event["answer"]
elif event["type"] == "source":
source_log_docs = event["source"]
elif event["type"] == "tool_calls":
tool_calls = event["tool_calls"]
elif event["type"] == "thought":
thought = event["thought"]
elif event["type"] == "error":
logger.error(f"Error from stream: {event['error']}")
return bad_request(500, event["error"])
elif event["type"] == "end":
stream_ended = True
except (json.JSONDecodeError, KeyError) as e:
logger.warning(f"Error parsing stream event: {e}, line: {line}")
continue
if not stream_ended:
logger.error("Stream ended unexpectedly without an 'end' event.")
return bad_request(500, "Stream ended unexpectedly.")
if data.get("isNoneDoc"):
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_PROVIDER,
api_key=settings.API_KEY,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
result = {"answer": response_full, "sources": source_log_docs}
result["conversation_id"] = str(
save_conversation(
conversation_id,
question,
response_full,
thought,
source_log_docs,
tool_calls,
llm,
decoded_token,
api_key=user_api_key,
)
)
retriever_params = retriever.get_params()
user_logs_collection.insert_one(
{
"action": "api_answer",
"level": "info",
"user": decoded_token.get("sub"),
"api_key": user_api_key,
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
)
except Exception as e:
logger.error(
f"/api/answer - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return bad_request(500, str(e))
return make_response(result, 200)
@answer_ns.route("/api/search")
class Search(Resource):
search_model = api.model(
"SearchModel",
{
"question": fields.String(
required=True, description="The question to search"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"api_key": fields.String(
required=False, description="API key for authentication"
),
"active_docs": fields.String(
required=False, description="Active documents for retrieval"
),
"retriever": fields.String(required=False, description="Retriever type"),
"token_limit": fields.Integer(
required=False, description="Limit for tokens"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
},
)
@api.expect(search_model)
@api.doc(
description="Search for relevant documents based on the question and retriever"
)
def post(self):
data = request.get_json()
required_fields = ["question"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
question = data["question"]
chunks = int(data.get("chunks", 2))
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key.get("chunks", 2))
source = {"active_docs": data_key.get("source")}
user_api_key = data["api_key"]
decoded_token = {"sub": data_key.get("user")}
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
user_api_key = None
decoded_token = request.decoded_token
else:
source = {}
user_api_key = None
decoded_token = request.decoded_token
if not decoded_token:
return make_response({"error": "Unauthorized"}, 401)
logger.info(
f"/api/answer - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})},
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
source=source,
chat_history=[],
prompt="default",
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
docs = retriever.search(question)
retriever_params = retriever.get_params()
user_logs_collection.insert_one(
{
"action": "api_search",
"level": "info",
"user": decoded_token.get("sub"),
"api_key": user_api_key,
"question": question,
"sources": docs,
"retriever_params": retriever_params,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
)
if data.get("isNoneDoc"):
for doc in docs:
doc["source"] = "None"
except Exception as e:
logger.error(
f"/api/search - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return bad_request(500, str(e))
return make_response(docs, 200)
def get_attachments_content(attachment_ids, user):
"""
Retrieve content from attachment documents based on their IDs.
Args:
attachment_ids (list): List of attachment document IDs
user (str): User identifier to verify ownership
Returns:
list: List of dictionaries containing attachment content and metadata
"""
if not attachment_ids:
return []
attachments = []
for attachment_id in attachment_ids:
try:
attachment_doc = attachments_collection.find_one(
{"_id": ObjectId(attachment_id), "user": user}
)
if attachment_doc:
attachments.append(attachment_doc)
except Exception as e:
logger.error(
f"Error retrieving attachment {attachment_id}: {e}", exc_info=True
)
return attachments

View File

@@ -0,0 +1,104 @@
import logging
import traceback
from flask import make_response, request
from flask_restx import fields, Resource
from application.api import api
from application.api.answer.routes.base import answer_ns, BaseAnswerResource
from application.api.answer.services.stream_processor import StreamProcessor
logger = logging.getLogger(__name__)
@answer_ns.route("/api/answer")
class AnswerResource(Resource, BaseAnswerResource):
def __init__(self, *args, **kwargs):
Resource.__init__(self, *args, **kwargs)
BaseAnswerResource.__init__(self)
answer_model = answer_ns.model(
"AnswerModel",
{
"question": fields.String(
required=True, description="Question to be asked"
),
"history": fields.List(
fields.String,
required=False,
description="Conversation history (only for new conversations)",
),
"conversation_id": fields.String(
required=False,
description="Existing conversation ID (loads history)",
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
"save_conversation": fields.Boolean(
required=False,
default=True,
description="Whether to save the conversation",
),
},
)
@api.expect(answer_model)
@api.doc(description="Provide a response based on the question and retriever")
def post(self):
data = request.get_json()
if error := self.validate_request(data):
return error
decoded_token = getattr(request, "decoded_token", None)
processor = StreamProcessor(data, decoded_token)
try:
processor.initialize()
if not processor.decoded_token:
return make_response({"error": "Unauthorized"}, 401)
agent = processor.create_agent()
retriever = processor.create_retriever()
stream = self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=None,
should_save_conversation=data.get("save_conversation", True),
)
conversation_id, response, sources, tool_calls, thought, error = (
self.process_response_stream(stream)
)
if error:
return make_response({"error": error}, 400)
result = {
"conversation_id": conversation_id,
"answer": response,
"sources": sources,
"tool_calls": tool_calls,
"thought": thought,
}
except Exception as e:
logger.error(
f"/api/answer - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return make_response({"error": str(e)}, 500)
return make_response(result, 200)

View File

@@ -0,0 +1,226 @@
import datetime
import json
import logging
from typing import Any, Dict, Generator, List, Optional
from flask import Response
from flask_restx import Namespace
from application.api.answer.services.conversation_service import ConversationService
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import check_required_fields, get_gpt_model
logger = logging.getLogger(__name__)
answer_ns = Namespace("answer", description="Answer related operations", path="/")
class BaseAnswerResource:
"""Shared base class for answer endpoints"""
def __init__(self):
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
self.user_logs_collection = db["user_logs"]
self.gpt_model = get_gpt_model()
self.conversation_service = ConversationService()
def validate_request(
self, data: Dict[str, Any], require_conversation_id: bool = False
) -> Optional[Response]:
"""Common request validation"""
required_fields = ["question"]
if require_conversation_id:
required_fields.append("conversation_id")
if missing_fields := check_required_fields(data, required_fields):
return missing_fields
return None
def complete_stream(
self,
question: str,
agent: Any,
retriever: Any,
conversation_id: Optional[str],
user_api_key: Optional[str],
decoded_token: Dict[str, Any],
isNoneDoc: bool = False,
index: Optional[int] = None,
should_save_conversation: bool = True,
attachment_ids: Optional[List[str]] = None,
agent_id: Optional[str] = None,
is_shared_usage: bool = False,
shared_token: Optional[str] = None,
) -> Generator[str, None, None]:
"""
Generator function that streams the complete conversation response.
Args:
question: The user's question
agent: The agent instance
retriever: The retriever instance
conversation_id: Existing conversation ID
user_api_key: User's API key if any
decoded_token: Decoded JWT token
isNoneDoc: Flag for document-less responses
index: Index of message to update
should_save_conversation: Whether to persist the conversation
attachment_ids: List of attachment IDs
agent_id: ID of agent used
is_shared_usage: Flag for shared agent usage
shared_token: Token for shared agent
Yields:
Server-sent event strings
"""
try:
response_full, thought, source_log_docs, tool_calls = "", "", [], []
for line in agent.gen(query=question, retriever=retriever):
if "answer" in line:
response_full += str(line["answer"])
data = json.dumps({"type": "answer", "answer": line["answer"]})
yield f"data: {data}\n\n"
elif "sources" in line:
truncated_sources = []
source_log_docs = line["sources"]
for source in line["sources"]:
truncated_source = source.copy()
if "text" in truncated_source:
truncated_source["text"] = (
truncated_source["text"][:100].strip() + "..."
)
truncated_sources.append(truncated_source)
if truncated_sources:
data = json.dumps(
{"type": "source", "source": truncated_sources}
)
yield f"data: {data}\n\n"
elif "tool_calls" in line:
tool_calls = line["tool_calls"]
elif "thought" in line:
thought += line["thought"]
data = json.dumps({"type": "thought", "thought": line["thought"]})
yield f"data: {data}\n\n"
elif "type" in line:
data = json.dumps(line)
yield f"data: {data}\n\n"
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_PROVIDER,
api_key=settings.API_KEY,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
if should_save_conversation:
conversation_id = self.conversation_service.save_conversation(
conversation_id,
question,
response_full,
thought,
source_log_docs,
tool_calls,
llm,
self.gpt_model,
decoded_token,
index=index,
api_key=user_api_key,
agent_id=agent_id,
is_shared_usage=is_shared_usage,
shared_token=shared_token,
attachment_ids=attachment_ids,
)
else:
conversation_id = None
# Send conversation ID
data = json.dumps({"type": "id", "id": str(conversation_id)})
yield f"data: {data}\n\n"
# Log the interaction
retriever_params = retriever.get_params()
self.user_logs_collection.insert_one(
{
"action": "stream_answer",
"level": "info",
"user": decoded_token.get("sub"),
"api_key": user_api_key,
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"attachments": attachment_ids,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
)
# End of stream
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except Exception as e:
logger.error(f"Error in stream: {str(e)}", exc_info=True)
data = json.dumps(
{
"type": "error",
"error": "Please try again later. We apologize for any inconvenience.",
}
)
yield f"data: {data}\n\n"
return
def process_response_stream(self, stream):
"""Process the stream response for non-streaming endpoint"""
conversation_id = ""
response_full = ""
source_log_docs = []
tool_calls = []
thought = ""
stream_ended = False
for line in stream:
try:
event_data = line.replace("data: ", "").strip()
event = json.loads(event_data)
if event["type"] == "id":
conversation_id = event["id"]
elif event["type"] == "answer":
response_full += event["answer"]
elif event["type"] == "source":
source_log_docs = event["source"]
elif event["type"] == "tool_calls":
tool_calls = event["tool_calls"]
elif event["type"] == "thought":
thought = event["thought"]
elif event["type"] == "error":
logger.error(f"Error from stream: {event['error']}")
return None, None, None, None, event["error"]
elif event["type"] == "end":
stream_ended = True
except (json.JSONDecodeError, KeyError) as e:
logger.warning(f"Error parsing stream event: {e}, line: {line}")
continue
if not stream_ended:
logger.error("Stream ended unexpectedly without an 'end' event.")
return None, None, None, None, "Stream ended unexpectedly"
return (
conversation_id,
response_full,
source_log_docs,
tool_calls,
thought,
None,
)
def error_stream_generate(self, err_response):
data = json.dumps({"type": "error", "error": err_response})
yield f"data: {data}\n\n"

View File

@@ -0,0 +1,117 @@
import logging
import traceback
from flask import make_response, request, Response
from flask_restx import fields, Resource
from application.api import api
from application.api.answer.routes.base import answer_ns, BaseAnswerResource
from application.api.answer.services.stream_processor import StreamProcessor
logger = logging.getLogger(__name__)
@answer_ns.route("/stream")
class StreamResource(Resource, BaseAnswerResource):
def __init__(self, *args, **kwargs):
Resource.__init__(self, *args, **kwargs)
BaseAnswerResource.__init__(self)
stream_model = answer_ns.model(
"StreamModel",
{
"question": fields.String(
required=True, description="Question to be asked"
),
"history": fields.List(
fields.String,
required=False,
description="Conversation history (only for new conversations)",
),
"conversation_id": fields.String(
required=False,
description="Existing conversation ID (loads history)",
),
"prompt_id": fields.String(
required=False, default="default", description="Prompt ID"
),
"chunks": fields.Integer(
required=False, default=2, description="Number of chunks"
),
"token_limit": fields.Integer(required=False, description="Token limit"),
"retriever": fields.String(required=False, description="Retriever type"),
"api_key": fields.String(required=False, description="API key"),
"active_docs": fields.String(
required=False, description="Active documents"
),
"isNoneDoc": fields.Boolean(
required=False, description="Flag indicating if no document is used"
),
"index": fields.Integer(
required=False, description="Index of the query to update"
),
"save_conversation": fields.Boolean(
required=False,
default=True,
description="Whether to save the conversation",
),
"attachments": fields.List(
fields.String, required=False, description="List of attachment IDs"
),
},
)
@api.expect(stream_model)
@api.doc(description="Stream a response based on the question and retriever")
def post(self):
data = request.get_json()
if error := self.validate_request(data, "index" in data):
return error
decoded_token = getattr(request, "decoded_token", None)
processor = StreamProcessor(data, decoded_token)
try:
processor.initialize()
agent = processor.create_agent()
retriever = processor.create_retriever()
return Response(
self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=data.get("index"),
should_save_conversation=data.get("save_conversation", True),
attachment_ids=data.get("attachments", []),
agent_id=data.get("agent_id"),
is_shared_usage=processor.is_shared_usage,
shared_token=processor.shared_token,
),
mimetype="text/event-stream",
)
except ValueError as e:
message = "Malformed request body"
logger.error(
f"/stream - error: {message} - specific error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return Response(
self.error_stream_generate(message),
status=400,
mimetype="text/event-stream",
)
except Exception as e:
logger.error(
f"/stream - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()},
)
return Response(
self.error_stream_generate("Unknown error occurred"),
status=400,
mimetype="text/event-stream",
)

View File

@@ -0,0 +1,175 @@
import logging
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from bson import ObjectId
logger = logging.getLogger(__name__)
class ConversationService:
def __init__(self):
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
self.conversations_collection = db["conversations"]
self.agents_collection = db["agents"]
def get_conversation(
self, conversation_id: str, user_id: str
) -> Optional[Dict[str, Any]]:
"""Retrieve a conversation with proper access control"""
if not conversation_id or not user_id:
return None
try:
conversation = self.conversations_collection.find_one(
{
"_id": ObjectId(conversation_id),
"$or": [{"user": user_id}, {"shared_with": user_id}],
}
)
if not conversation:
logger.warning(
f"Conversation not found or unauthorized - ID: {conversation_id}, User: {user_id}"
)
return None
conversation["_id"] = str(conversation["_id"])
return conversation
except Exception as e:
logger.error(f"Error fetching conversation: {str(e)}", exc_info=True)
return None
def save_conversation(
self,
conversation_id: Optional[str],
question: str,
response: str,
thought: str,
sources: List[Dict[str, Any]],
tool_calls: List[Dict[str, Any]],
llm: Any,
gpt_model: str,
decoded_token: Dict[str, Any],
index: Optional[int] = None,
api_key: Optional[str] = None,
agent_id: Optional[str] = None,
is_shared_usage: bool = False,
shared_token: Optional[str] = None,
attachment_ids: Optional[List[str]] = None,
) -> str:
"""Save or update a conversation in the database"""
user_id = decoded_token.get("sub")
if not user_id:
raise ValueError("User ID not found in token")
current_time = datetime.now(timezone.utc)
if conversation_id is not None and index is not None:
# Update existing conversation with new query
result = self.conversations_collection.update_one(
{
"_id": ObjectId(conversation_id),
"user": user_id,
f"queries.{index}": {"$exists": True},
},
{
"$set": {
f"queries.{index}.prompt": question,
f"queries.{index}.response": response,
f"queries.{index}.thought": thought,
f"queries.{index}.sources": sources,
f"queries.{index}.tool_calls": tool_calls,
f"queries.{index}.timestamp": current_time,
f"queries.{index}.attachments": attachment_ids,
}
},
)
if result.matched_count == 0:
raise ValueError("Conversation not found or unauthorized")
self.conversations_collection.update_one(
{
"_id": ObjectId(conversation_id),
"user": user_id,
f"queries.{index}": {"$exists": True},
},
{"$push": {"queries": {"$each": [], "$slice": index + 1}}},
)
return conversation_id
elif conversation_id:
# Append new message to existing conversation
result = self.conversations_collection.update_one(
{"_id": ObjectId(conversation_id), "user": user_id},
{
"$push": {
"queries": {
"prompt": question,
"response": response,
"thought": thought,
"sources": sources,
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
}
}
},
)
if result.matched_count == 0:
raise ValueError("Conversation not found or unauthorized")
return conversation_id
else:
# Create new conversation
messages_summary = [
{
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the user query",
},
{
"role": "user",
"content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"user query \n\nUser: " + question + "\n\n" + "AI: " + response,
},
]
completion = llm.gen(
model=gpt_model, messages=messages_summary, max_tokens=30
)
conversation_data = {
"user": user_id,
"date": current_time,
"name": completion,
"queries": [
{
"prompt": question,
"response": response,
"thought": thought,
"sources": sources,
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
}
],
}
if api_key:
if agent_id:
conversation_data["agent_id"] = agent_id
if is_shared_usage:
conversation_data["is_shared_usage"] = is_shared_usage
conversation_data["shared_token"] = shared_token
agent = self.agents_collection.find_one({"key": api_key})
if agent:
conversation_data["api_key"] = agent["key"]
result = self.conversations_collection.insert_one(conversation_data)
return str(result.inserted_id)

View File

@@ -0,0 +1,260 @@
import datetime
import json
import logging
import os
from pathlib import Path
from typing import Any, Dict, Optional
from bson.dbref import DBRef
from bson.objectid import ObjectId
from application.agents.agent_creator import AgentCreator
from application.api.answer.services.conversation_service import ConversationService
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import get_gpt_model, limit_chat_history
logger = logging.getLogger(__name__)
def get_prompt(prompt_id: str, prompts_collection=None) -> str:
"""
Get a prompt by preset name or MongoDB ID
"""
current_dir = Path(__file__).resolve().parents[3]
prompts_dir = current_dir / "prompts"
preset_mapping = {
"default": "chat_combine_default.txt",
"creative": "chat_combine_creative.txt",
"strict": "chat_combine_strict.txt",
"reduce": "chat_reduce_prompt.txt",
}
if prompt_id in preset_mapping:
file_path = os.path.join(prompts_dir, preset_mapping[prompt_id])
try:
with open(file_path, "r") as f:
return f.read()
except FileNotFoundError:
raise FileNotFoundError(f"Prompt file not found: {file_path}")
try:
if prompts_collection is None:
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
prompts_collection = db["prompts"]
prompt_doc = prompts_collection.find_one({"_id": ObjectId(prompt_id)})
if not prompt_doc:
raise ValueError(f"Prompt with ID {prompt_id} not found")
return prompt_doc["content"]
except Exception as e:
raise ValueError(f"Invalid prompt ID: {prompt_id}") from e
class StreamProcessor:
def __init__(
self, request_data: Dict[str, Any], decoded_token: Optional[Dict[str, Any]]
):
mongo = MongoDB.get_client()
self.db = mongo[settings.MONGO_DB_NAME]
self.agents_collection = self.db["agents"]
self.attachments_collection = self.db["attachments"]
self.prompts_collection = self.db["prompts"]
self.data = request_data
self.decoded_token = decoded_token
self.initial_user_id = (
self.decoded_token.get("sub") if self.decoded_token is not None else None
)
self.conversation_id = self.data.get("conversation_id")
self.source = (
{"active_docs": self.data["active_docs"]}
if "active_docs" in self.data
else {}
)
self.attachments = []
self.history = []
self.agent_config = {}
self.retriever_config = {}
self.is_shared_usage = False
self.shared_token = None
self.gpt_model = get_gpt_model()
self.conversation_service = ConversationService()
def initialize(self):
"""Initialize all required components for processing"""
self._configure_agent()
self._configure_retriever()
self._load_conversation_history()
self._process_attachments()
def _load_conversation_history(self):
"""Load conversation history either from DB or request"""
if self.conversation_id and self.initial_user_id:
conversation = self.conversation_service.get_conversation(
self.conversation_id, self.initial_user_id
)
if not conversation:
raise ValueError("Conversation not found or unauthorized")
self.history = [
{"prompt": query["prompt"], "response": query["response"]}
for query in conversation.get("queries", [])
]
else:
self.history = limit_chat_history(
json.loads(self.data.get("history", "[]")), gpt_model=self.gpt_model
)
def _process_attachments(self):
"""Process any attachments in the request"""
attachment_ids = self.data.get("attachments", [])
self.attachments = self._get_attachments_content(
attachment_ids, self.initial_user_id
)
def _get_attachments_content(self, attachment_ids, user_id):
"""
Retrieve content from attachment documents based on their IDs.
"""
if not attachment_ids:
return []
attachments = []
for attachment_id in attachment_ids:
try:
attachment_doc = self.attachments_collection.find_one(
{"_id": ObjectId(attachment_id), "user": user_id}
)
if attachment_doc:
attachments.append(attachment_doc)
except Exception as e:
logger.error(
f"Error retrieving attachment {attachment_id}: {e}", exc_info=True
)
return attachments
def _get_agent_key(self, agent_id: Optional[str], user_id: Optional[str]) -> tuple:
"""Get API key for agent with access control"""
if not agent_id:
return None, False, None
try:
agent = self.agents_collection.find_one({"_id": ObjectId(agent_id)})
if agent is None:
raise Exception("Agent not found")
is_owner = agent.get("user") == user_id
is_shared_with_user = agent.get(
"shared_publicly", False
) or user_id in agent.get("shared_with", [])
if not (is_owner or is_shared_with_user):
raise Exception("Unauthorized access to the agent")
if is_owner:
self.agents_collection.update_one(
{"_id": ObjectId(agent_id)},
{
"$set": {
"lastUsedAt": datetime.datetime.now(datetime.timezone.utc)
}
},
)
return str(agent["key"]), not is_owner, agent.get("shared_token")
except Exception as e:
logger.error(f"Error in get_agent_key: {str(e)}", exc_info=True)
raise
def _get_data_from_api_key(self, api_key: str) -> Dict[str, Any]:
data = self.agents_collection.find_one({"key": api_key})
if not data:
raise Exception("Invalid API Key, please generate a new key", 401)
source = data.get("source")
if isinstance(source, DBRef):
source_doc = self.db.dereference(source)
data["source"] = str(source_doc["_id"])
data["retriever"] = source_doc.get("retriever", data.get("retriever"))
else:
data["source"] = {}
return data
def _configure_agent(self):
"""Configure the agent based on request data"""
agent_id = self.data.get("agent_id")
self.agent_key, self.is_shared_usage, self.shared_token = self._get_agent_key(
agent_id, self.initial_user_id
)
api_key = self.data.get("api_key")
if api_key:
data_key = self._get_data_from_api_key(api_key)
self.agent_config.update(
{
"prompt_id": data_key.get("prompt_id", "default"),
"agent_type": data_key.get("agent_type", settings.AGENT_NAME),
"user_api_key": api_key,
}
)
self.initial_user_id = data_key.get("user")
self.decoded_token = {"sub": data_key.get("user")}
elif self.agent_key:
data_key = self._get_data_from_api_key(self.agent_key)
self.agent_config.update(
{
"prompt_id": data_key.get("prompt_id", "default"),
"agent_type": data_key.get("agent_type", settings.AGENT_NAME),
"user_api_key": self.agent_key,
}
)
self.decoded_token = (
self.decoded_token
if self.is_shared_usage
else {"sub": data_key.get("user")}
)
else:
self.agent_config.update(
{
"prompt_id": self.data.get("prompt_id", "default"),
"agent_type": settings.AGENT_NAME,
"user_api_key": None,
}
)
def _configure_retriever(self):
"""Configure the retriever based on request data"""
self.retriever_config = {
"retriever_name": self.data.get("retriever", "classic"),
"chunks": int(self.data.get("chunks", 2)),
"token_limit": self.data.get("token_limit", settings.DEFAULT_MAX_HISTORY),
}
if "isNoneDoc" in self.data and self.data["isNoneDoc"]:
self.retriever_config["chunks"] = 0
def create_agent(self):
"""Create and return the configured agent"""
return AgentCreator.create_agent(
self.agent_config["agent_type"],
endpoint="stream",
llm_name=settings.LLM_PROVIDER,
gpt_model=self.gpt_model,
api_key=settings.API_KEY,
user_api_key=self.agent_config["user_api_key"],
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chat_history=self.history,
decoded_token=self.decoded_token,
attachments=self.attachments,
)
def create_retriever(self):
"""Create and return the configured retriever"""
return RetrieverCreator.create_retriever(
self.retriever_config["retriever_name"],
source=self.source,
chat_history=self.history,
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chunks=self.retriever_config["chunks"],
token_limit=self.retriever_config["token_limit"],
gpt_model=self.gpt_model,
user_api_key=self.agent_config["user_api_key"],
decoded_token=self.decoded_token,
)

View File

@@ -35,7 +35,7 @@ from application.api.user.tasks import (
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.extensions import api
from application.api import api
from application.storage.storage_creator import StorageCreator
from application.tts.google_tts import GoogleTTS
from application.utils import (
@@ -3746,14 +3746,18 @@ class StoreAttachment(Resource):
"AttachmentModel",
{
"file": fields.Raw(required=True, description="File to upload"),
"api_key": fields.String(
required=False, description="API key (optional)"
),
},
)
)
@api.doc(description="Stores a single attachment without vectorization or training")
@api.doc(
description="Stores a single attachment without vectorization or training. Supports user or API key authentication."
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
decoded_token = getattr(request, "decoded_token", None)
api_key = request.form.get("api_key") or request.args.get("api_key")
file = request.files.get("file")
if not file or file.filename == "":
@@ -3761,7 +3765,21 @@ class StoreAttachment(Resource):
jsonify({"status": "error", "message": "Missing file"}),
400,
)
user = safe_filename(decoded_token.get("sub"))
user = None
if decoded_token:
user = safe_filename(decoded_token.get("sub"))
elif api_key:
agent = agents_collection.find_one({"key": api_key})
if not agent:
return make_response(
jsonify({"success": False, "message": "Invalid API key"}), 401
)
user = safe_filename(agent.get("user"))
else:
return make_response(
jsonify({"success": False, "message": "Authentication required"}), 401
)
try:
attachment_id = ObjectId()

View File

@@ -12,19 +12,18 @@ from application.core.logging_config import setup_logging
setup_logging()
from application.api.answer.routes import answer # noqa: E402
from application.api import api # noqa: E402
from application.api.answer import answer # noqa: E402
from application.api.internal.routes import internal # noqa: E402
from application.api.user.routes import user # noqa: E402
from application.celery_init import celery # noqa: E402
from application.core.settings import settings # noqa: E402
from application.extensions import api # noqa: E402
if platform.system() == "Windows":
import pathlib
pathlib.PosixPath = pathlib.WindowsPath
dotenv.load_dotenv()
app = Flask(__name__)
@@ -52,7 +51,6 @@ if settings.AUTH_TYPE in ("simple_jwt", "session_jwt") and not settings.JWT_SECR
settings.JWT_SECRET_KEY = new_key
except Exception as e:
raise RuntimeError(f"Failed to setup JWT_SECRET_KEY: {e}")
SIMPLE_JWT_TOKEN = None
if settings.AUTH_TYPE == "simple_jwt":
payload = {"sub": "local"}
@@ -92,7 +90,6 @@ def generate_token():
def authenticate_request():
if request.method == "OPTIONS":
return "", 200
decoded_token = handle_auth(request)
if not decoded_token:
request.decoded_token = None

View File

@@ -10,7 +10,7 @@ current_dir = os.path.dirname(
class Settings(BaseSettings):
AUTH_TYPE: Optional[str] = None
AUTH_TYPE: Optional[str] = None # simple_jwt, session_jwt, or None
LLM_PROVIDER: str = "docsgpt"
LLM_NAME: Optional[str] = (
None # if LLM_PROVIDER is openai, LLM_NAME can be gpt-4 or gpt-3.5-turbo

View File

@@ -1,7 +0,0 @@
from flask_restx import Api
api = Api(
version="1.0",
title="DocsGPT API",
description="API for DocsGPT",
)

View File

View File

@@ -6,6 +6,7 @@ import uuid
import tiktoken
from flask import jsonify, make_response
from werkzeug.utils import secure_filename
from application.core.settings import settings
@@ -19,6 +20,17 @@ def get_encoding():
return _encoding
def get_gpt_model() -> str:
"""Get the appropriate GPT model based on provider"""
model_map = {
"openai": "gpt-4o-mini",
"anthropic": "claude-2",
"groq": "llama3-8b-8192",
"novita": "deepseek/deepseek-r1",
}
return settings.LLM_NAME or model_map.get(settings.LLM_PROVIDER, "")
def safe_filename(filename):
"""
Creates a safe filename that preserves the original extension.
@@ -32,15 +44,14 @@ def safe_filename(filename):
"""
if not filename:
return str(uuid.uuid4())
_, extension = os.path.splitext(filename)
safe_name = secure_filename(filename)
# If secure_filename returns just the extension or an empty string
if not safe_name or safe_name == extension.lstrip("."):
return f"{str(uuid.uuid4())}{extension}"
return safe_name
@@ -68,7 +79,6 @@ def count_tokens_docs(docs):
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens = num_tokens_from_string(docs_content)
return tokens
@@ -97,13 +107,11 @@ def validate_required_fields(data, required_fields):
missing_fields.append(field)
elif not data[field]:
empty_fields.append(field)
errors = []
if missing_fields:
errors.append(f"Missing required fields: {', '.join(missing_fields)}")
if empty_fields:
errors.append(f"Empty values in required fields: {', '.join(empty_fields)}")
if errors:
return make_response(
jsonify({"success": False, "message": " | ".join(errors)}), 400
@@ -132,7 +140,6 @@ def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
if not history:
return []
trimmed_history = []
tokens_current_history = 0
@@ -141,18 +148,15 @@ def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
if "prompt" in message and "response" in message:
tokens_batch += num_tokens_from_string(message["prompt"])
tokens_batch += num_tokens_from_string(message["response"])
if "tool_calls" in message:
for tool_call in message["tool_calls"]:
tool_call_string = f"Tool: {tool_call.get('tool_name')} | Action: {tool_call.get('action_name')} | Args: {tool_call.get('arguments')} | Response: {tool_call.get('result')}"
tokens_batch += num_tokens_from_string(tool_call_string)
if tokens_current_history + tokens_batch < max_token_limit:
tokens_current_history += tokens_batch
trimmed_history.insert(0, message)
else:
break
return trimmed_history

View File

@@ -16,7 +16,7 @@ from bson.dbref import DBRef
from bson.objectid import ObjectId
from application.agents.agent_creator import AgentCreator
from application.api.answer.routes import get_prompt
from application.api.answer.services.stream_processor import get_prompt
from application.core.mongo_db import MongoDB
from application.core.settings import settings
@@ -35,17 +35,22 @@ db = mongo[settings.MONGO_DB_NAME]
sources_collection = db["sources"]
# Constants
MIN_TOKENS = 150
MAX_TOKENS = 1250
RECURSION_DEPTH = 2
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
return {"title": title}
# Define a function to generate a random string of a given length.
def generate_random_string(length):
return "".join([string.ascii_letters[i % 52] for i in range(length)])
@@ -68,7 +73,6 @@ def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
if current_depth > max_depth:
logging.warning(f"Reached maximum recursion depth of {max_depth}")
return
try:
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
@@ -76,12 +80,13 @@ def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
except Exception as e:
logging.error(f"Error extracting zip file {zip_path}: {e}", exc_info=True)
return
# Check for nested zip files and extract them
for root, dirs, files in os.walk(extract_to):
for file in files:
if file.endswith(".zip"):
# If a nested zip file is found, extract it recursively
file_path = os.path.join(root, file)
extract_zip_recursive(file_path, root, current_depth + 1, max_depth)
@@ -151,7 +156,7 @@ def run_agent_logic(agent_config, input_data):
user_api_key = agent_config["key"]
agent_type = agent_config.get("agent_type", "classic")
decoded_token = {"sub": agent_config.get("user")}
prompt = get_prompt(prompt_id)
prompt = get_prompt(prompt_id, db["prompts"])
agent = AgentCreator.create_agent(
agent_type,
endpoint="webhook",
@@ -190,7 +195,6 @@ def run_agent_logic(agent_config, input_data):
tool_calls.extend(line["tool_calls"])
elif "thought" in line:
thought += line["thought"]
result = {
"answer": response_full,
"sources": source_log_docs,
@@ -205,6 +209,8 @@ def run_agent_logic(agent_config, input_data):
# Define the main function for ingesting and processing documents.
def ingest_worker(
self, directory, formats, job_name, file_path, filename, user,
retriever="classic"
@@ -230,12 +236,13 @@ def ingest_worker(
limit = None
exclude = True
sample = False
storage = StorageCreator.get_storage()
logging.info(f"Ingest path: {file_path}", extra={"user": user, "job": job_name})
# Create temporary working directory
with tempfile.TemporaryDirectory() as temp_dir:
try:
os.makedirs(temp_dir, exist_ok=True)
@@ -282,7 +289,6 @@ def ingest_worker(
self.update_state(state="PROGRESS", meta={"current": 1})
if sample:
logging.info(f"Sample mode enabled. Using {limit} documents.")
reader = SimpleDirectoryReader(
input_dir=temp_dir,
input_files=input_files,
@@ -333,11 +339,9 @@ def ingest_worker(
}
upload_index(vector_store_path, file_data)
except Exception as e:
logging.error(f"Error in ingest_worker: {e}", exc_info=True)
raise
return {
"directory": directory,
"formats": formats,
@@ -609,7 +613,6 @@ def remote_worker(
full_path = os.path.join(directory, user, name_job)
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state="PROGRESS", meta={"current": 1})
try:
logging.info("Initializing remote loader with type: %s", loader)
@@ -636,7 +639,6 @@ def remote_worker(
raise ValueError("doc_id must be provided for sync operation.")
id = ObjectId(doc_id)
embed_and_store_documents(docs, full_path, id, self)
self.update_state(state="PROGRESS", meta={"current": 100})
file_data = {
@@ -650,15 +652,12 @@ def remote_worker(
"sync_frequency": sync_frequency,
}
upload_index(full_path, file_data)
except Exception as e:
logging.error("Error in remote_worker task: %s", str(e), exc_info=True)
raise
finally:
if os.path.exists(full_path):
shutil.rmtree(full_path)
logging.info("remote_worker task completed successfully")
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
@@ -711,7 +710,6 @@ def sync_worker(self, frequency):
sync_counts[
"sync_success" if resp["status"] == "success" else "sync_failure"
] += 1
return {
key: sync_counts[key]
for key in ["total_sync_count", "sync_success", "sync_failure"]
@@ -786,7 +784,6 @@ def attachment_worker(self, file_info, user):
"mime_type": mime_type,
"metadata": metadata,
}
except Exception as e:
logging.error(
f"Error processing file {filename}: {e}",
@@ -822,7 +819,6 @@ def agent_webhook_worker(self, agent_id, payload):
except Exception as e:
logging.error(f"Error processing agent webhook: {e}", exc_info=True)
return {"status": "error", "error": str(e)}
self.update_state(state="PROGRESS", meta={"current": 50})
try:
result = run_agent_logic(agent_config, input_data)

View File

@@ -37,33 +37,33 @@ While modifying `settings.py` offers more flexibility, it's generally recommende
Here are some of the most fundamental settings you'll likely want to configure:
- **`LLM_PROVIDER`**: This setting determines which Large Language Model (LLM) provider DocsGPT will use. It tells DocsGPT which API to interact with.
- **`LLM_PROVIDER`**: This setting determines which Large Language Model (LLM) provider DocsGPT will use. It tells DocsGPT which API to interact with.
- **Common values:**
- `docsgpt`: Use the DocsGPT Public API Endpoint (simple and free, as offered in `setup.sh` option 1).
- `openai`: Use OpenAI's API (requires an API key).
- `google`: Use Google's Vertex AI or Gemini models.
- `anthropic`: Use Anthropic's Claude models.
- `groq`: Use Groq's models.
- `huggingface`: Use HuggingFace Inference API.
- `azure_openai`: Use Azure OpenAI Service.
- `openai` (when using local inference engines like Ollama, Llama.cpp, TGI, etc.): This signals DocsGPT to use an OpenAI-compatible API format, even if the actual LLM is running locally.
- **Common values:**
- `docsgpt`: Use the DocsGPT Public API Endpoint (simple and free, as offered in `setup.sh` option 1).
- `openai`: Use OpenAI's API (requires an API key).
- `google`: Use Google's Vertex AI or Gemini models.
- `anthropic`: Use Anthropic's Claude models.
- `groq`: Use Groq's models.
- `huggingface`: Use HuggingFace Inference API.
- `azure_openai`: Use Azure OpenAI Service.
- `openai` (when using local inference engines like Ollama, Llama.cpp, TGI, etc.): This signals DocsGPT to use an OpenAI-compatible API format, even if the actual LLM is running locally.
- **`LLM_NAME`**: Specifies the specific model to use from the chosen LLM provider. The available models depend on the `LLM_PROVIDER` you've selected.
- **`LLM_NAME`**: Specifies the specific model to use from the chosen LLM provider. The available models depend on the `LLM_PROVIDER` you've selected.
- **Examples:**
- For `LLM_PROVIDER=openai`: `gpt-4o`
- For `LLM_PROVIDER=google`: `gemini-2.0-flash`
- For local models (e.g., Ollama): `llama3.2:1b` (or any model name available in your setup).
- **Examples:**
- For `LLM_PROVIDER=openai`: `gpt-4o`
- For `LLM_PROVIDER=google`: `gemini-2.0-flash`
- For local models (e.g., Ollama): `llama3.2:1b` (or any model name available in your setup).
- **`EMBEDDINGS_NAME`**: This setting defines which embedding model DocsGPT will use to generate vector embeddings for your documents. Embeddings are numerical representations of text that allow DocsGPT to understand the semantic meaning of your documents for efficient search and retrieval.
- **`EMBEDDINGS_NAME`**: This setting defines which embedding model DocsGPT will use to generate vector embeddings for your documents. Embeddings are numerical representations of text that allow DocsGPT to understand the semantic meaning of your documents for efficient search and retrieval.
- **Default value:** `huggingface_sentence-transformers/all-mpnet-base-v2` (a good general-purpose embedding model).
- **Other options:** You can explore other embedding models from Hugging Face Sentence Transformers or other providers if needed.
- **Default value:** `huggingface_sentence-transformers/all-mpnet-base-v2` (a good general-purpose embedding model).
- **Other options:** You can explore other embedding models from Hugging Face Sentence Transformers or other providers if needed.
- **`API_KEY`**: Required for most cloud-based LLM providers. This is your authentication key to access the LLM provider's API. You'll need to obtain this key from your chosen provider's platform.
- **`API_KEY`**: Required for most cloud-based LLM providers. This is your authentication key to access the LLM provider's API. You'll need to obtain this key from your chosen provider's platform.
- **`OPENAI_BASE_URL`**: Specifically used when `LLM_PROVIDER` is set to `openai` but you are connecting to a local inference engine (like Ollama, Llama.cpp, etc.) that exposes an OpenAI-compatible API. This setting tells DocsGPT where to find your local LLM server.
- **`OPENAI_BASE_URL`**: Specifically used when `LLM_PROVIDER` is set to `openai` but you are connecting to a local inference engine (like Ollama, Llama.cpp, etc.) that exposes an OpenAI-compatible API. This setting tells DocsGPT where to find your local LLM server.
## Configuration Examples
@@ -93,51 +93,82 @@ OPENAI_BASE_URL=http://host.docker.internal:11434/v1 # Default Ollama API URL wi
EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2 # You can also run embeddings locally if needed
```
In this case, even though you are using Ollama locally, `LLM_PROVIDER` is set to `openai` because Ollama (and many other local inference engines) are designed to be API-compatible with OpenAI. `OPENAI_BASE_URL` points DocsGPT to the local Ollama server.
In this case, even though you are using Ollama locally, `LLM_PROVIDER` is set to `openai` because Ollama (and many other local inference engines) are designed to be API-compatible with OpenAI. `OPENAI_BASE_URL` points DocsGPT to the local Ollama server.
## Authentication Settings
DocsGPT includes a JWT (JSON Web Token) based authentication feature for managing sessions or securing local deployments while allowing access.
- **`AUTH_TYPE`**: This setting in your `.env` file or `settings.py` determines the authentication method.
- **Possible values:**
- `None` (or not set): No authentication is used.
- `simple_jwt`: A single, long-lived JWT token is generated and used for all authenticated requests. This is useful for securing a local deployment with a shared secret.
- `session_jwt`: Unique JWT tokens are generated for sessions, typically for individual users or temporary access.
- If `AUTH_TYPE` is set to `simple_jwt` or `session_jwt`, then a `JWT_SECRET_KEY` is required.
- **`JWT_SECRET_KEY`**: This is a crucial secret key used to sign and verify JWTs.
- It can be set directly in your `.env` file or `settings.py`.
- **Automatic Key Generation**: If `AUTH_TYPE` is `simple_jwt` or `session_jwt` and `JWT_SECRET_KEY` is _not_ set in your environment variables or `settings.py`, DocsGPT will attempt to:
1. Read the key from a file named `.jwt_secret_key` in the project's root directory.
2. If the file doesn't exist, it will generate a new 32-byte random key, save it to `.jwt_secret_key`, and use it for the session. This ensures that the key persists across application restarts.
- **Security Note**: It's vital to keep this key secure. If you set it manually, choose a strong, random string.
### `AUTH_TYPE` Overview
**How it works:**
The `AUTH_TYPE` setting in your `.env` file or `settings.py` determines the authentication method used by DocsGPT. This allows you to control how users authenticate with your DocsGPT instance.
- When `AUTH_TYPE` is set to `simple_jwt`, a token is generated at startup (if not already present or configured) and printed to the console. This token should be included in the `Authorization` header of your API requests as a Bearer token (e.g., `Authorization: Bearer YOUR_SIMPLE_JWT_TOKEN`).
- When `AUTH_TYPE` is set to `session_jwt`:
- Clients can request a new token from the `/api/generate_token` endpoint.
- This token should then be included in the `Authorization` header for subsequent requests.
- The backend verifies the JWT token provided in the `Authorization` header for protected routes.
- The `/api/config` endpoint can be used to check the current `auth_type` and whether authentication is required.
| Value | Description |
| ------------- | ------------------------------------------------------------------------------------------- |
| `None` | No authentication is used. Anyone can access the app. |
| `simple_jwt` | A single, long-lived JWT token is generated at startup. All requests use this shared token. |
| `session_jwt` | Unique JWT tokens are generated for each session/user. |
**Frontend Token Input for `simple_jwt`:**
#### How to Configure
<img
src="/jwt-input.png"
alt="Frontend prompt for JWT Token"
style={{
width: '500px',
maxWidth: '100%',
display: 'block',
margin: '1em auto'
}}
Add the following to your `.env` file (or set in `settings.py`):
```env
# No authentication (default)
AUTH_TYPE=None
# OR: Simple JWT (shared token)
AUTH_TYPE=simple_jwt
JWT_SECRET_KEY=your_secret_key_here
# OR: Session JWT (per-user/session tokens)
AUTH_TYPE=session_jwt
JWT_SECRET_KEY=your_secret_key_here
```
- If `AUTH_TYPE` is set to `simple_jwt` or `session_jwt`, a `JWT_SECRET_KEY` is required.
- If `JWT_SECRET_KEY` is not set, DocsGPT will generate one and store it in `.jwt_secret_key` in the project root.
#### How Each Method Works
- **None**: No authentication. All API and UI access is open.
- **simple_jwt**:
- A single JWT token is generated at startup and printed to the console.
- Use this token in the `Authorization` header for all API requests:
```http
Authorization: Bearer <SIMPLE_JWT_TOKEN>
```
- The frontend will prompt for this token if not already set.
- **session_jwt**:
- Clients can request a new token from `/api/generate_token`.
- Use the received token in the `Authorization` header for subsequent requests.
- Each user/session gets a unique token.
#### Security Notes
- Always keep your `JWT_SECRET_KEY` secure and private.
- If you set it manually, use a strong, random string.
- If not set, DocsGPT will generate a secure key and persist it in `.jwt_secret_key`.
#### Checking Current Auth Type
- Use the `/api/config` endpoint to check the current `auth_type` and whether authentication is required.
#### Frontend Token Input for `simple_jwt`
If you have configured `AUTH_TYPE=simple_jwt`, the DocsGPT frontend will prompt you to enter the JWT token if it's not already set or is invalid. Paste the `SIMPLE_JWT_TOKEN` (printed to your console when the backend starts) into this field to access the application.
<img
src="/jwt-input.png"
alt="Frontend prompt for JWT Token"
style={{
width: "500px",
maxWidth: "100%",
display: "block",
margin: "1em auto",
}}
/>
If you have configured `AUTH_TYPE=simple_jwt`, the DocsGPT frontend will prompt you to enter the JWT token if it's not already set or is invalid. You'll need to paste the `SIMPLE_JWT_TOKEN` (which is printed to your console when the backend starts) into this field to access the application.
## Exploring More Settings
These are just the basic settings to get you started. The `settings.py` file contains many more advanced options that you can explore to further customize DocsGPT, such as:
@@ -147,4 +178,4 @@ These are just the basic settings to get you started. The `settings.py` file con
- Cache settings (`CACHE_REDIS_URL`)
- And many more!
For a complete list of available settings and their descriptions, refer to the `settings.py` file in `application/core`. Remember to restart your Docker containers after making changes to your `.env` file or `settings.py` for the changes to take effect.
For a complete list of available settings and their descriptions, refer to the `settings.py` file in `application/core`. Remember to restart your Docker containers after making changes to your `.env` file or `settings.py` for the changes to take effect.

View File

@@ -55,7 +55,7 @@
"postcss": "^8.4.49",
"prettier": "^3.5.3",
"prettier-plugin-tailwindcss": "^0.6.13",
"tailwindcss": "^4.1.10",
"tailwindcss": "^4.1.11",
"typescript": "^5.8.3",
"vite": "^6.3.5",
"vite-plugin-svgr": "^4.3.0"
@@ -1696,6 +1696,13 @@
"tailwindcss": "4.1.10"
}
},
"node_modules/@tailwindcss/node/node_modules/tailwindcss": {
"version": "4.1.10",
"resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.10.tgz",
"integrity": "sha512-P3nr6WkvKV/ONsTzj6Gb57sWPMX29EPNPopo7+FcpkQaNsrNpZ1pv8QmrYI2RqEKD7mlGqLnGovlcYnBK0IqUA==",
"dev": true,
"license": "MIT"
},
"node_modules/@tailwindcss/oxide": {
"version": "4.1.10",
"resolved": "https://registry.npmjs.org/@tailwindcss/oxide/-/oxide-4.1.10.tgz",
@@ -1908,6 +1915,66 @@
"node": ">=14.0.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/core": {
"version": "1.4.3",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"@emnapi/wasi-threads": "1.0.2",
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/runtime": {
"version": "1.4.3",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/wasi-threads": {
"version": "1.0.2",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@napi-rs/wasm-runtime": {
"version": "0.2.10",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"@emnapi/core": "^1.4.3",
"@emnapi/runtime": "^1.4.3",
"@tybys/wasm-util": "^0.9.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@tybys/wasm-util": {
"version": "0.9.0",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/tslib": {
"version": "2.8.0",
"dev": true,
"inBundle": true,
"license": "0BSD",
"optional": true
},
"node_modules/@tailwindcss/oxide-win32-arm64-msvc": {
"version": "4.1.10",
"resolved": "https://registry.npmjs.org/@tailwindcss/oxide-win32-arm64-msvc/-/oxide-win32-arm64-msvc-4.1.10.tgz",
@@ -1956,6 +2023,13 @@
"tailwindcss": "4.1.10"
}
},
"node_modules/@tailwindcss/postcss/node_modules/tailwindcss": {
"version": "4.1.10",
"resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.10.tgz",
"integrity": "sha512-P3nr6WkvKV/ONsTzj6Gb57sWPMX29EPNPopo7+FcpkQaNsrNpZ1pv8QmrYI2RqEKD7mlGqLnGovlcYnBK0IqUA==",
"dev": true,
"license": "MIT"
},
"node_modules/@types/babel__core": {
"version": "7.20.5",
"resolved": "https://registry.npmjs.org/@types/babel__core/-/babel__core-7.20.5.tgz",
@@ -10402,9 +10476,9 @@
}
},
"node_modules/tailwindcss": {
"version": "4.1.10",
"resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.10.tgz",
"integrity": "sha512-P3nr6WkvKV/ONsTzj6Gb57sWPMX29EPNPopo7+FcpkQaNsrNpZ1pv8QmrYI2RqEKD7mlGqLnGovlcYnBK0IqUA==",
"version": "4.1.11",
"resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.11.tgz",
"integrity": "sha512-2E9TBm6MDD/xKYe+dvJZAmg3yxIEDNRc0jwlNyDg/4Fil2QcSLjFKGVff0lAf1jjeaArlG/M75Ey/EYr/OJtBA==",
"dev": true,
"license": "MIT"
},

View File

@@ -66,7 +66,7 @@
"postcss": "^8.4.49",
"prettier": "^3.5.3",
"prettier-plugin-tailwindcss": "^0.6.13",
"tailwindcss": "^4.1.10",
"tailwindcss": "^4.1.11",
"typescript": "^5.8.3",
"vite": "^6.3.5",
"vite-plugin-svgr": "^4.3.0"

View File

@@ -8,7 +8,6 @@ export function handleFetchAnswer(
signal: AbortSignal,
token: string | null,
selectedDocs: Doc | null,
history: Array<any> = [],
conversationId: string | null,
promptId: string | null,
chunks: string,
@@ -37,16 +36,8 @@ export function handleFetchAnswer(
title: any;
}
> {
history = history.map((item) => {
return {
prompt: item.prompt,
response: item.response,
tool_calls: item.tool_calls,
};
});
const payload: RetrievalPayload = {
question: question,
history: JSON.stringify(history),
conversation_id: conversationId,
prompt_id: promptId,
chunks: chunks,
@@ -94,7 +85,6 @@ export function handleFetchAnswerSteaming(
signal: AbortSignal,
token: string | null,
selectedDocs: Doc | null,
history: Array<any> = [],
conversationId: string | null,
promptId: string | null,
chunks: string,
@@ -105,17 +95,8 @@ export function handleFetchAnswerSteaming(
attachments?: string[],
save_conversation = true,
): Promise<Answer> {
history = history.map((item) => {
return {
prompt: item.prompt,
response: item.response,
thought: item.thought,
tool_calls: item.tool_calls,
};
});
const payload: RetrievalPayload = {
question: question,
history: JSON.stringify(history),
conversation_id: conversationId,
prompt_id: promptId,
chunks: chunks,
@@ -192,20 +173,11 @@ export function handleSearch(
token: string | null,
selectedDocs: Doc | null,
conversation_id: string | null,
history: Array<any> = [],
chunks: string,
token_limit: number,
) {
history = history.map((item) => {
return {
prompt: item.prompt,
response: item.response,
tool_calls: item.tool_calls,
};
});
const payload: RetrievalPayload = {
question: question,
history: JSON.stringify(history),
conversation_id: conversation_id,
chunks: chunks,
token_limit: token_limit,

View File

@@ -52,7 +52,6 @@ export interface RetrievalPayload {
question: string;
active_docs?: string;
retriever?: string;
history: string;
conversation_id: string | null;
prompt_id?: string | null;
chunks: string;

View File

@@ -57,7 +57,6 @@ export const fetchAnswer = createAsyncThunk<
signal,
state.preference.token,
state.preference.selectedDocs!,
state.conversation.queries,
currentConversationId,
state.preference.prompt.id,
state.preference.chunks,
@@ -153,7 +152,6 @@ export const fetchAnswer = createAsyncThunk<
signal,
state.preference.token,
state.preference.selectedDocs!,
state.conversation.queries,
state.conversation.conversationId,
state.preference.prompt.id,
state.preference.chunks,

6
package-lock.json generated Normal file
View File

@@ -0,0 +1,6 @@
{
"name": "DocsGPT",
"lockfileVersion": 3,
"requires": true,
"packages": {}
}