mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
anthropic working
This commit is contained in:
@@ -29,6 +29,8 @@ answer = Blueprint('answer', __name__)
|
||||
|
||||
if settings.LLM_NAME == "gpt4":
|
||||
gpt_model = 'gpt-4'
|
||||
elif settings.LLM_NAME == "anthropic":
|
||||
gpt_model = 'claude-2'
|
||||
else:
|
||||
gpt_model = 'gpt-3.5-turbo'
|
||||
|
||||
|
||||
40
application/llm/anthropic.py
Normal file
40
application/llm/anthropic.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from application.llm.base import BaseLLM
|
||||
from application.core.settings import settings
|
||||
|
||||
class AnthropicLLM(BaseLLM):
|
||||
|
||||
def __init__(self, api_key=None):
|
||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
||||
self.api_key = api_key or settings.ANTHROPIC_API_KEY # If not provided, use a default from settings
|
||||
self.anthropic = Anthropic(api_key=self.api_key)
|
||||
self.HUMAN_PROMPT = HUMAN_PROMPT
|
||||
self.AI_PROMPT = AI_PROMPT
|
||||
|
||||
def gen(self, model, messages, engine=None, max_tokens=300, stream=False, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
|
||||
if stream:
|
||||
return self.gen_stream(model, prompt, max_tokens, **kwargs)
|
||||
|
||||
completion = self.anthropic.completions.create(
|
||||
model=model,
|
||||
max_tokens_to_sample=max_tokens,
|
||||
stream=stream,
|
||||
prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}",
|
||||
)
|
||||
return completion.completion
|
||||
|
||||
def gen_stream(self, model, messages, engine=None, max_tokens=300, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
|
||||
stream_response = self.anthropic.completions.create(
|
||||
model=model,
|
||||
prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}",
|
||||
max_tokens_to_sample=max_tokens,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
for completion in stream_response:
|
||||
yield completion.completion
|
||||
@@ -2,6 +2,7 @@ from application.llm.openai import OpenAILLM, AzureOpenAILLM
|
||||
from application.llm.sagemaker import SagemakerAPILLM
|
||||
from application.llm.huggingface import HuggingFaceLLM
|
||||
from application.llm.llama_cpp import LlamaCpp
|
||||
from application.llm.anthropic import AnthropicLLM
|
||||
|
||||
|
||||
|
||||
@@ -11,7 +12,8 @@ class LLMCreator:
|
||||
'azure_openai': AzureOpenAILLM,
|
||||
'sagemaker': SagemakerAPILLM,
|
||||
'huggingface': HuggingFaceLLM,
|
||||
'llama.cpp': LlamaCpp
|
||||
'llama.cpp': LlamaCpp,
|
||||
'anthropic': AnthropicLLM
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -4,6 +4,7 @@ aiohttp-retry==2.8.3
|
||||
aiosignal==1.3.1
|
||||
aleph-alpha-client==2.16.1
|
||||
amqp==5.1.1
|
||||
anthropic==0.5.0
|
||||
async-timeout==4.0.2
|
||||
attrs==22.2.0
|
||||
billiard==3.6.4.0
|
||||
|
||||
@@ -16,6 +16,7 @@ services:
|
||||
environment:
|
||||
- API_KEY=$API_KEY
|
||||
- EMBEDDINGS_KEY=$API_KEY
|
||||
- LLM_NAME=$LLM_NAME
|
||||
- CELERY_BROKER_URL=redis://redis:6379/0
|
||||
- CELERY_RESULT_BACKEND=redis://redis:6379/1
|
||||
- MONGO_URI=mongodb://mongo:27017/docsgpt
|
||||
@@ -35,6 +36,7 @@ services:
|
||||
environment:
|
||||
- API_KEY=$API_KEY
|
||||
- EMBEDDINGS_KEY=$API_KEY
|
||||
- LLM_NAME=$LLM_NAME
|
||||
- CELERY_BROKER_URL=redis://redis:6379/0
|
||||
- CELERY_RESULT_BACKEND=redis://redis:6379/1
|
||||
- MONGO_URI=mongodb://mongo:27017/docsgpt
|
||||
|
||||
57
tests/llm/test_anthropic.py
Normal file
57
tests/llm/test_anthropic.py
Normal file
@@ -0,0 +1,57 @@
|
||||
import unittest
|
||||
from unittest.mock import patch, Mock
|
||||
from application.llm.anthropic import AnthropicLLM
|
||||
|
||||
class TestAnthropicLLM(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
self.api_key = "TEST_API_KEY"
|
||||
self.llm = AnthropicLLM(api_key=self.api_key)
|
||||
|
||||
@patch("application.llm.anthropic.settings")
|
||||
def test_init_default_api_key(self, mock_settings):
|
||||
mock_settings.ANTHROPIC_API_KEY = "DEFAULT_API_KEY"
|
||||
llm = AnthropicLLM()
|
||||
self.assertEqual(llm.api_key, "DEFAULT_API_KEY")
|
||||
|
||||
def test_gen(self):
|
||||
messages = [
|
||||
{"content": "context"},
|
||||
{"content": "question"}
|
||||
]
|
||||
mock_response = Mock()
|
||||
mock_response.completion = "test completion"
|
||||
|
||||
with patch.object(self.llm.anthropic.completions, "create", return_value=mock_response) as mock_create:
|
||||
response = self.llm.gen("test_model", messages)
|
||||
self.assertEqual(response, "test completion")
|
||||
|
||||
prompt_expected = "### Context \n context \n ### Question \n question"
|
||||
mock_create.assert_called_with(
|
||||
model="test_model",
|
||||
max_tokens_to_sample=300,
|
||||
stream=False,
|
||||
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}"
|
||||
)
|
||||
|
||||
def test_gen_stream(self):
|
||||
messages = [
|
||||
{"content": "context"},
|
||||
{"content": "question"}
|
||||
]
|
||||
mock_responses = [Mock(completion="response_1"), Mock(completion="response_2")]
|
||||
|
||||
with patch.object(self.llm.anthropic.completions, "create", return_value=iter(mock_responses)) as mock_create:
|
||||
responses = list(self.llm.gen_stream("test_model", messages))
|
||||
self.assertListEqual(responses, ["response_1", "response_2"])
|
||||
|
||||
prompt_expected = "### Context \n context \n ### Question \n question"
|
||||
mock_create.assert_called_with(
|
||||
model="test_model",
|
||||
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}",
|
||||
max_tokens_to_sample=300,
|
||||
stream=True
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user