fixes to make it work

This commit is contained in:
Alex
2023-09-26 13:00:17 +01:00
parent e85a583f0a
commit 025549ebf8
3 changed files with 335 additions and 339 deletions

View File

@@ -1,20 +1,44 @@
import asyncio
import os
from flask import Blueprint, request, jsonify, Response
import requests
import json
import datetime
import logging
import traceback
from celery.result import AsyncResult
from langchain.chat_models import AzureChatOpenAI
from pymongo import MongoClient
from bson.objectid import ObjectId
from werkzeug.utils import secure_filename
import http.client
from transformers import GPT2TokenizerFast
from langchain import FAISS
from langchain import VectorDBQA, Cohere, OpenAI
from langchain.chains import LLMChain, ConversationalRetrievalChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
from langchain.embeddings import (
OpenAIEmbeddings,
HuggingFaceHubEmbeddings,
CohereEmbeddings,
HuggingFaceInstructEmbeddings,
)
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
AIMessagePromptTemplate,
)
from langchain.schema import HumanMessage, AIMessage
from application.app import (logger, count_tokens, chat_combine_template, gpt_model,
api_key_set, embeddings_key_set, get_docsearch, get_vectorstore)
from application.core.settings import settings
from application.llm.openai import OpenAILLM
from application.core.settings import settings
from application.error import bad_request
logger = logging.getLogger(__name__)
mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
@@ -22,28 +46,118 @@ conversations_collection = db["conversations"]
vectors_collection = db["vectors"]
answer = Blueprint('answer', __name__)
if settings.LLM_NAME == "gpt4":
gpt_model = 'gpt-4'
else:
gpt_model = 'gpt-3.5-turbo'
if settings.SELF_HOSTED_MODEL:
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = settings.LLM_NAME # hf model id (Arc53/docsgpt-7b-falcon, Arc53/docsgpt-14b)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=2000,
device_map="auto", eos_token_id=tokenizer.eos_token_id
)
hf = HuggingFacePipeline(pipeline=pipe)
# load the prompts
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
with open(os.path.join(current_dir, "prompts", "combine_prompt.txt"), "r") as f:
template = f.read()
with open(os.path.join(current_dir, "prompts", "combine_prompt_hist.txt"), "r") as f:
template_hist = f.read()
with open(os.path.join(current_dir, "prompts", "question_prompt.txt"), "r") as f:
template_quest = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_prompt.txt"), "r") as f:
chat_combine_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
chat_reduce_template = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
async def async_generate(chain, question, chat_history):
result = await chain.arun({"question": question, "chat_history": chat_history})
return result
def count_tokens(string):
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
return len(tokenizer(string)['input_ids'])
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = {}
try:
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
finally:
loop.close()
result["answer"] = answer
return result
def get_vectorstore(data):
if "active_docs" in data:
if data["active_docs"].split("/")[0] == "local":
if data["active_docs"].split("/")[1] == "default":
vectorstore = ""
else:
vectorstore = "indexes/" + data["active_docs"]
else:
vectorstore = "vectors/" + data["active_docs"]
if data["active_docs"] == "default":
vectorstore = ""
else:
vectorstore = ""
vectorstore = os.path.join("application", vectorstore)
return vectorstore
def get_docsearch(vectorstore, embeddings_key):
if settings.EMBEDDINGS_NAME == "openai_text-embedding-ada-002":
if is_azure_configured():
os.environ["OPENAI_API_TYPE"] = "azure"
openai_embeddings = OpenAIEmbeddings(model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME)
else:
openai_embeddings = OpenAIEmbeddings(openai_api_key=embeddings_key)
docsearch = FAISS.load_local(vectorstore, openai_embeddings)
elif settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
docsearch = FAISS.load_local(vectorstore, HuggingFaceHubEmbeddings())
elif settings.EMBEDDINGS_NAME == "huggingface_hkunlp/instructor-large":
docsearch = FAISS.load_local(vectorstore, HuggingFaceInstructEmbeddings())
elif settings.EMBEDDINGS_NAME == "cohere_medium":
docsearch = FAISS.load_local(vectorstore, CohereEmbeddings(cohere_api_key=embeddings_key))
return docsearch
def is_azure_configured():
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
def complete_stream(question, docsearch, chat_history, api_key, conversation_id):
# openai.api_key = api_key
if is_azure_configured():
# logger.debug("in Azure")
# openai.api_type = "azure"
# openai.api_version = settings.OPENAI_API_VERSION
# openai.api_base = settings.OPENAI_API_BASE
# llm = AzureChatOpenAI(
# openai_api_key=api_key,
# openai_api_base=settings.OPENAI_API_BASE,
# openai_api_version=settings.OPENAI_API_VERSION,
# deployment_name=settings.AZURE_DEPLOYMENT_NAME,
# )
llm = OpenAILLM(api_key=api_key)
llm = AzureChatOpenAI(
openai_api_key=api_key,
openai_api_base=settings.OPENAI_API_BASE,
openai_api_version=settings.OPENAI_API_VERSION,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
else:
logger.debug("plain OpenAI")
llm = OpenAILLM(api_key=api_key)
# llm = ChatOpenAI(openai_api_key=api_key)
docs = docsearch.similarity_search(question, k=2)
# join all page_content together with a newline
docs_together = "\n".join([doc.page_content for doc in docs])
@@ -71,33 +185,20 @@ def complete_stream(question, docsearch, chat_history, api_key, conversation_id)
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "system", "content": i["response"]})
messages_combine.append({"role": "user", "content": question})
# completion = openai.ChatCompletion.create(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
# messages=messages_combine, stream=True, max_tokens=500, temperature=0)
import sys
print(api_key)
reponse_full = ""
# for line in completion:
# if "content" in line["choices"][0]["delta"]:
# # check if the delta contains content
# data = json.dumps({"answer": str(line["choices"][0]["delta"]["content"])})
# reponse_full += str(line["choices"][0]["delta"]["content"])
# yield f"data: {data}\n\n"
# reponse_full = ""
print(llm)
response_full = ""
completion = llm.gen_stream(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine)
messages=messages_combine)
for line in completion:
data = json.dumps({"answer": str(line)})
reponse_full += str(line)
response_full += str(line)
yield f"data: {data}\n\n"
# save conversation to database
if conversation_id is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question, "response": reponse_full, "sources": source_log_docs}}},
{"$push": {"queries": {"prompt": question, "response": response_full, "sources": source_log_docs}}},
)
else:
@@ -107,19 +208,18 @@ def complete_stream(question, docsearch, chat_history, api_key, conversation_id)
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: " + question + "\n\n" +
"AI: " +
reponse_full},
response_full},
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system"}]
# completion = openai.ChatCompletion.create(model='gpt-3.5-turbo', engine=settings.AZURE_DEPLOYMENT_NAME,
# messages=messages_summary, max_tokens=30, temperature=0)
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine, max_tokens=30)
messages=messages_summary, max_tokens=30)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion["choices"][0]["message"]["content"],
"queries": [{"prompt": question, "response": reponse_full, "sources": source_log_docs}]}
"name": completion,
"queries": [{"prompt": question, "response": response_full, "sources": source_log_docs}]}
).inserted_id
# send data.type = "end" to indicate that the stream has ended as json
@@ -160,4 +260,165 @@ def stream():
complete_stream(question, docsearch,
chat_history=history, api_key=api_key,
conversation_id=conversation_id), mimetype="text/event-stream"
)
)
@answer.route("/api/answer", methods=["POST"])
def api_answer():
data = request.get_json()
question = data["question"]
history = data["history"]
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
print("-" * 5)
if not api_key_set:
api_key = data["api_key"]
else:
api_key = settings.API_KEY
if not embeddings_key_set:
embeddings_key = data["embeddings_key"]
else:
embeddings_key = settings.EMBEDDINGS_KEY
# use try and except to check for exception
try:
# check if the vectorstore is set
vectorstore = get_vectorstore(data)
# loading the index and the store and the prompt template
# Note if you have used other embeddings than OpenAI, you need to change the embeddings
docsearch = get_docsearch(vectorstore, embeddings_key)
q_prompt = PromptTemplate(
input_variables=["context", "question"], template=template_quest, template_format="jinja2"
)
if settings.LLM_NAME == "openai_chat":
if is_azure_configured():
logger.debug("in Azure")
llm = AzureChatOpenAI(
openai_api_key=api_key,
openai_api_base=settings.OPENAI_API_BASE,
openai_api_version=settings.OPENAI_API_VERSION,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
else:
logger.debug("plain OpenAI")
llm = ChatOpenAI(openai_api_key=api_key, model_name=gpt_model) # optional parameter: model_name="gpt-4"
messages_combine = [SystemMessagePromptTemplate.from_template(chat_combine_template)]
if history:
tokens_current_history = 0
# count tokens in history
history.reverse()
for i in history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
tokens_current_history += tokens_batch
messages_combine.append(HumanMessagePromptTemplate.from_template(i["prompt"]))
messages_combine.append(AIMessagePromptTemplate.from_template(i["response"]))
messages_combine.append(HumanMessagePromptTemplate.from_template("{question}"))
p_chat_combine = ChatPromptTemplate.from_messages(messages_combine)
elif settings.LLM_NAME == "openai":
llm = OpenAI(openai_api_key=api_key, temperature=0)
elif settings.SELF_HOSTED_MODEL:
llm = hf
elif settings.LLM_NAME == "cohere":
llm = Cohere(model="command-xlarge-nightly", cohere_api_key=api_key)
else:
raise ValueError("unknown LLM model")
if settings.LLM_NAME == "openai_chat":
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
chain = ConversationalRetrievalChain(
retriever=docsearch.as_retriever(k=2),
question_generator=question_generator,
combine_docs_chain=doc_chain,
)
chat_history = []
# result = chain({"question": question, "chat_history": chat_history})
# generate async with async generate method
result = run_async_chain(chain, question, chat_history)
elif settings.SELF_HOSTED_MODEL:
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
chain = ConversationalRetrievalChain(
retriever=docsearch.as_retriever(k=2),
question_generator=question_generator,
combine_docs_chain=doc_chain,
)
chat_history = []
# result = chain({"question": question, "chat_history": chat_history})
# generate async with async generate method
result = run_async_chain(chain, question, chat_history)
else:
qa_chain = load_qa_chain(
llm=llm, chain_type="map_reduce", combine_prompt=chat_combine_template, question_prompt=q_prompt
)
chain = VectorDBQA(combine_documents_chain=qa_chain, vectorstore=docsearch, k=3)
result = chain({"query": question})
print(result)
# some formatting for the frontend
if "result" in result:
result["answer"] = result["result"]
result["answer"] = result["answer"].replace("\\n", "\n")
try:
result["answer"] = result["answer"].split("SOURCES:")[0]
except Exception:
pass
sources = docsearch.similarity_search(question, k=2)
sources_doc = []
for doc in sources:
if doc.metadata:
sources_doc.append({'title': doc.metadata['title'], 'text': doc.page_content})
else:
sources_doc.append({'title': doc.page_content, 'text': doc.page_content})
result['sources'] = sources_doc
# generate conversationId
if conversation_id is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question,
"response": result["answer"], "sources": result['sources']}}},
)
else:
# create new conversation
# generate summary
messages_summary = [AIMessage(content="Summarise following conversation in no more than 3 " +
"words, respond ONLY with the summary, use the same " +
"language as the system \n\nUser: " + question + "\n\nAI: " +
result["answer"]),
HumanMessage(content="Summarise following conversation in no more than 3 words, " +
"respond ONLY with the summary, use the same language as the " +
"system")]
# completion = openai.ChatCompletion.create(model='gpt-3.5-turbo', engine=settings.AZURE_DEPLOYMENT_NAME,
# messages=messages_summary, max_tokens=30, temperature=0)
completion = llm.predict_messages(messages_summary)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion.content,
"queries": [{"prompt": question, "response": result["answer"], "sources": result['sources']}]}
).inserted_id
result["conversation_id"] = str(conversation_id)
# mock result
# result = {
# "answer": "The answer is 42",
# "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
# }
return result
except Exception as e:
# print whole traceback
traceback.print_exc()
print(str(e))
return bad_request(500, str(e))

View File

@@ -1,69 +1,18 @@
import asyncio
import datetime
import json
import logging
import os
import platform
import traceback
import dotenv
import openai
import requests
from celery import Celery
from celery.result import AsyncResult
from flask import Flask, request, send_from_directory, jsonify, Response, redirect
from langchain import FAISS
from langchain import VectorDBQA, Cohere, OpenAI
from langchain.chains import LLMChain, ConversationalRetrievalChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
from langchain.embeddings import (
OpenAIEmbeddings,
HuggingFaceHubEmbeddings,
CohereEmbeddings,
HuggingFaceInstructEmbeddings,
)
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
AIMessagePromptTemplate,
)
from langchain.schema import HumanMessage, AIMessage
from flask import Flask, request, redirect
from pymongo import MongoClient
from werkzeug.utils import secure_filename
from application.core.settings import settings
from application.error import bad_request
from application.worker import ingest_worker
from bson.objectid import ObjectId
from application.api.user.routes import user
from application.api.answer.routes import answer
from transformers import GPT2TokenizerFast
# os.environ["LANGCHAIN_HANDLER"] = "langchain"
logger = logging.getLogger(__name__)
if settings.LLM_NAME == "gpt4":
gpt_model = 'gpt-4'
else:
gpt_model = 'gpt-3.5-turbo'
if settings.SELF_HOSTED_MODEL:
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = settings.LLM_NAME # hf model id (Arc53/docsgpt-7b-falcon, Arc53/docsgpt-14b)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=2000,
device_map="auto", eos_token_id=tokenizer.eos_token_id
)
hf = HuggingFacePipeline(pipeline=pipe)
# Redirect PosixPath to WindowsPath on Windows
@@ -76,25 +25,7 @@ if platform.system() == "Windows":
# loading the .env file
dotenv.load_dotenv()
# load the prompts
current_dir = os.path.dirname(os.path.abspath(__file__))
with open(os.path.join(current_dir, "prompts", "combine_prompt.txt"), "r") as f:
template = f.read()
with open(os.path.join(current_dir, "prompts", "combine_prompt_hist.txt"), "r") as f:
template_hist = f.read()
with open(os.path.join(current_dir, "prompts", "question_prompt.txt"), "r") as f:
template_quest = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_prompt.txt"), "r") as f:
chat_combine_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
chat_reduce_template = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
app = Flask(__name__)
app.register_blueprint(user)
@@ -105,65 +36,9 @@ app.config["CELERY_RESULT_BACKEND"] = settings.CELERY_RESULT_BACKEND
app.config["MONGO_URI"] = settings.MONGO_URI
celery = Celery()
celery.config_from_object("application.celeryconfig")
mongo = MongoClient(app.config["MONGO_URI"])
db = mongo["docsgpt"]
vectors_collection = db["vectors"]
conversations_collection = db["conversations"]
async def async_generate(chain, question, chat_history):
result = await chain.arun({"question": question, "chat_history": chat_history})
return result
def count_tokens(string):
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
return len(tokenizer(string)['input_ids'])
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = {}
try:
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
finally:
loop.close()
result["answer"] = answer
return result
def get_vectorstore(data):
if "active_docs" in data:
if data["active_docs"].split("/")[0] == "local":
if data["active_docs"].split("/")[1] == "default":
vectorstore = ""
else:
vectorstore = "indexes/" + data["active_docs"]
else:
vectorstore = "vectors/" + data["active_docs"]
if data["active_docs"] == "default":
vectorstore = ""
else:
vectorstore = ""
vectorstore = os.path.join("application", vectorstore)
return vectorstore
def get_docsearch(vectorstore, embeddings_key):
if settings.EMBEDDINGS_NAME == "openai_text-embedding-ada-002":
if is_azure_configured():
os.environ["OPENAI_API_TYPE"] = "azure"
openai_embeddings = OpenAIEmbeddings(model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME)
else:
openai_embeddings = OpenAIEmbeddings(openai_api_key=embeddings_key)
docsearch = FAISS.load_local(vectorstore, openai_embeddings)
elif settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
docsearch = FAISS.load_local(vectorstore, HuggingFaceHubEmbeddings())
elif settings.EMBEDDINGS_NAME == "huggingface_hkunlp/instructor-large":
docsearch = FAISS.load_local(vectorstore, HuggingFaceInstructEmbeddings())
elif settings.EMBEDDINGS_NAME == "cohere_medium":
docsearch = FAISS.load_local(vectorstore, CohereEmbeddings(cohere_api_key=embeddings_key))
return docsearch
@celery.task(bind=True)
@@ -188,170 +63,8 @@ def home():
def is_azure_configured():
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
@app.route("/api/answer", methods=["POST"])
def api_answer():
data = request.get_json()
question = data["question"]
history = data["history"]
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
print("-" * 5)
if not api_key_set:
api_key = data["api_key"]
else:
api_key = settings.API_KEY
if not embeddings_key_set:
embeddings_key = data["embeddings_key"]
else:
embeddings_key = settings.EMBEDDINGS_KEY
# use try and except to check for exception
try:
# check if the vectorstore is set
vectorstore = get_vectorstore(data)
# loading the index and the store and the prompt template
# Note if you have used other embeddings than OpenAI, you need to change the embeddings
docsearch = get_docsearch(vectorstore, embeddings_key)
q_prompt = PromptTemplate(
input_variables=["context", "question"], template=template_quest, template_format="jinja2"
)
if settings.LLM_NAME == "openai_chat":
if is_azure_configured():
logger.debug("in Azure")
llm = AzureChatOpenAI(
openai_api_key=api_key,
openai_api_base=settings.OPENAI_API_BASE,
openai_api_version=settings.OPENAI_API_VERSION,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
else:
logger.debug("plain OpenAI")
llm = ChatOpenAI(openai_api_key=api_key, model_name=gpt_model) # optional parameter: model_name="gpt-4"
messages_combine = [SystemMessagePromptTemplate.from_template(chat_combine_template)]
if history:
tokens_current_history = 0
# count tokens in history
history.reverse()
for i in history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
tokens_current_history += tokens_batch
messages_combine.append(HumanMessagePromptTemplate.from_template(i["prompt"]))
messages_combine.append(AIMessagePromptTemplate.from_template(i["response"]))
messages_combine.append(HumanMessagePromptTemplate.from_template("{question}"))
p_chat_combine = ChatPromptTemplate.from_messages(messages_combine)
elif settings.LLM_NAME == "openai":
llm = OpenAI(openai_api_key=api_key, temperature=0)
elif settings.SELF_HOSTED_MODEL:
llm = hf
elif settings.LLM_NAME == "cohere":
llm = Cohere(model="command-xlarge-nightly", cohere_api_key=api_key)
else:
raise ValueError("unknown LLM model")
if settings.LLM_NAME == "openai_chat":
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
chain = ConversationalRetrievalChain(
retriever=docsearch.as_retriever(k=2),
question_generator=question_generator,
combine_docs_chain=doc_chain,
)
chat_history = []
# result = chain({"question": question, "chat_history": chat_history})
# generate async with async generate method
result = run_async_chain(chain, question, chat_history)
elif settings.SELF_HOSTED_MODEL:
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
chain = ConversationalRetrievalChain(
retriever=docsearch.as_retriever(k=2),
question_generator=question_generator,
combine_docs_chain=doc_chain,
)
chat_history = []
# result = chain({"question": question, "chat_history": chat_history})
# generate async with async generate method
result = run_async_chain(chain, question, chat_history)
else:
qa_chain = load_qa_chain(
llm=llm, chain_type="map_reduce", combine_prompt=chat_combine_template, question_prompt=q_prompt
)
chain = VectorDBQA(combine_documents_chain=qa_chain, vectorstore=docsearch, k=3)
result = chain({"query": question})
print(result)
# some formatting for the frontend
if "result" in result:
result["answer"] = result["result"]
result["answer"] = result["answer"].replace("\\n", "\n")
try:
result["answer"] = result["answer"].split("SOURCES:")[0]
except Exception:
pass
sources = docsearch.similarity_search(question, k=2)
sources_doc = []
for doc in sources:
if doc.metadata:
sources_doc.append({'title': doc.metadata['title'], 'text': doc.page_content})
else:
sources_doc.append({'title': doc.page_content, 'text': doc.page_content})
result['sources'] = sources_doc
# generate conversationId
if conversation_id is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question,
"response": result["answer"], "sources": result['sources']}}},
)
else:
# create new conversation
# generate summary
messages_summary = [AIMessage(content="Summarise following conversation in no more than 3 " +
"words, respond ONLY with the summary, use the same " +
"language as the system \n\nUser: " + question + "\n\nAI: " +
result["answer"]),
HumanMessage(content="Summarise following conversation in no more than 3 words, " +
"respond ONLY with the summary, use the same language as the " +
"system")]
# completion = openai.ChatCompletion.create(model='gpt-3.5-turbo', engine=settings.AZURE_DEPLOYMENT_NAME,
# messages=messages_summary, max_tokens=30, temperature=0)
completion = llm.predict_messages(messages_summary)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion.content,
"queries": [{"prompt": question, "response": result["answer"], "sources": result['sources']}]}
).inserted_id
result["conversation_id"] = str(conversation_id)
# mock result
# result = {
# "answer": "The answer is 42",
# "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
# }
return result
except Exception as e:
# print whole traceback
traceback.print_exc()
print(str(e))
return bad_request(500, str(e))
# handling CORS
@app.after_request

View File

@@ -15,12 +15,18 @@ class OpenAILLM(BaseLLM):
openai.api_key = self.api_key
return openai
def gen(self, *args, **kwargs):
# This is just a stub. In the real implementation, you'd hit the OpenAI API or any other service.
return "Non-streaming response from OpenAI."
def gen(self, model, engine, messages, stream=False, **kwargs):
response = openai.ChatCompletion.create(
model=model,
engine=engine,
messages=messages,
stream=stream,
**kwargs
)
return response["choices"][0]["message"]["content"]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
# openai = self._get_openai() # Get the openai module with the API key set
response = openai.ChatCompletion.create(
model=model,
engine=engine,
@@ -32,3 +38,19 @@ class OpenAILLM(BaseLLM):
for line in response:
if "content" in line["choices"][0]["delta"]:
yield line["choices"][0]["delta"]["content"]
class AzureOpenAILLM(OpenAILLM):
def __init__(self, openai_api_key, openai_api_base, openai_api_version, deployment_name):
super().__init__(openai_api_key)
self.api_base = openai_api_base
self.api_version = openai_api_version
self.deployment_name = deployment_name
def _get_openai(self):
openai = super()._get_openai()
openai.api_base = self.api_base
openai.api_version = self.api_version
openai.api_type = "azure"
return openai