mirror of
https://github.com/freqtrade/freqtrade.git
synced 2026-01-20 14:00:38 +00:00
Merge pull request #8565 from vinistation/develop
GPU Enable in docker-compose
This commit is contained in:
@@ -6,6 +6,15 @@ services:
|
||||
# image: freqtradeorg/freqtrade:develop
|
||||
# Use plotting image
|
||||
# image: freqtradeorg/freqtrade:develop_plot
|
||||
# # Enable GPU Image and GPU Resources (only relevant for freqAI)
|
||||
# # Make sure to uncomment the whole deploy section
|
||||
# deploy:
|
||||
# resources:
|
||||
# reservations:
|
||||
# devices:
|
||||
# - driver: nvidia
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
# Build step - only needed when additional dependencies are needed
|
||||
# build:
|
||||
# context: .
|
||||
@@ -16,7 +25,7 @@ services:
|
||||
- "./user_data:/freqtrade/user_data"
|
||||
# Expose api on port 8080 (localhost only)
|
||||
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
|
||||
# before enabling this.
|
||||
# for more information.
|
||||
ports:
|
||||
- "127.0.0.1:8080:8080"
|
||||
# Default command used when running `docker compose up`
|
||||
|
||||
36
docker/docker-compose-freqai.yml
Normal file
36
docker/docker-compose-freqai.yml
Normal file
@@ -0,0 +1,36 @@
|
||||
---
|
||||
version: '3'
|
||||
services:
|
||||
freqtrade:
|
||||
image: freqtradeorg/freqtrade:stable_freqaitorch
|
||||
# # Enable GPU Image and GPU Resources
|
||||
# # Make sure to uncomment the whole deploy section
|
||||
# deploy:
|
||||
# resources:
|
||||
# reservations:
|
||||
# devices:
|
||||
# - driver: nvidia
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
|
||||
# Build step - only needed when additional dependencies are needed
|
||||
# build:
|
||||
# context: .
|
||||
# dockerfile: "./docker/Dockerfile.custom"
|
||||
restart: unless-stopped
|
||||
container_name: freqtrade
|
||||
volumes:
|
||||
- "./user_data:/freqtrade/user_data"
|
||||
# Expose api on port 8080 (localhost only)
|
||||
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
|
||||
# for more information.
|
||||
ports:
|
||||
- "127.0.0.1:8080:8080"
|
||||
# Default command used when running `docker compose up`
|
||||
command: >
|
||||
trade
|
||||
--logfile /freqtrade/user_data/logs/freqtrade.log
|
||||
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
|
||||
--config /freqtrade/user_data/config.json
|
||||
--freqai-model XGBoostClassifier
|
||||
--strategy SampleStrategy
|
||||
@@ -248,9 +248,11 @@ The easiest way to quickly run a pytorch model is with the following command (fo
|
||||
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel PyTorchMLPRegressor --strategy-path freqtrade/templates
|
||||
```
|
||||
|
||||
!!! note "Installation/docker"
|
||||
!!! Note "Installation/docker"
|
||||
The PyTorch module requires large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl or PyTorch (~700mb additional space required) [y/N]?".
|
||||
Users who prefer docker should ensure they use the docker image appended with `_freqaitorch`.
|
||||
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file.
|
||||
This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
|
||||
|
||||
### Structure
|
||||
|
||||
|
||||
@@ -78,6 +78,9 @@ pip install -r requirements-freqai.txt
|
||||
|
||||
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
|
||||
|
||||
!!! note "docker-compose-freqai.yml"
|
||||
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file. This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
|
||||
|
||||
### FreqAI position in open-source machine learning landscape
|
||||
|
||||
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
|
||||
|
||||
@@ -47,4 +47,5 @@ class BasePyTorchRegressor(BasePyTorchModel):
|
||||
self.model.model.eval()
|
||||
y = self.model.model(x)
|
||||
pred_df = DataFrame(y.detach().tolist(), columns=[dk.label_list[0]])
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
@@ -119,11 +119,11 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor):
|
||||
x = x.unsqueeze(0)
|
||||
# create empty torch tensor
|
||||
self.model.model.eval()
|
||||
yb = torch.empty(0)
|
||||
yb = torch.empty(0).to(self.device)
|
||||
if x.shape[1] > 1:
|
||||
ws = self.window_size
|
||||
for i in range(0, x.shape[1] - ws):
|
||||
xb = x[:, i:i + ws, :]
|
||||
xb = x[:, i:i + ws, :].to(self.device)
|
||||
y = self.model.model(xb)
|
||||
yb = torch.cat((yb, y), dim=0)
|
||||
else:
|
||||
|
||||
Reference in New Issue
Block a user