mirror of
https://github.com/freqtrade/freqtrade.git
synced 2026-02-19 10:50:50 +00:00
Merge branch 'develop' into feature/proceed-exit-while-open-order
This commit is contained in:
22
.github/workflows/ci.yml
vendored
22
.github/workflows/ci.yml
vendored
@@ -46,7 +46,7 @@ jobs:
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
|
||||
key: pip-${{ matrix.python-version }}-ubuntu
|
||||
|
||||
- name: TA binary *nix
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
@@ -68,6 +68,12 @@ jobs:
|
||||
python build_helpers/freqtrade_client_version_align.py
|
||||
|
||||
- name: Tests
|
||||
if: (!(runner.os == 'Linux' && matrix.python-version == '3.12' && matrix.os == 'ubuntu-22.04'))
|
||||
run: |
|
||||
pytest --random-order
|
||||
|
||||
- name: Tests with Coveralls
|
||||
if: (runner.os == 'Linux' && matrix.python-version == '3.12' && matrix.os == 'ubuntu-22.04')
|
||||
run: |
|
||||
pytest --random-order --cov=freqtrade --cov=freqtrade_client --cov-config=.coveragerc
|
||||
|
||||
@@ -138,7 +144,7 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ "macos-12", "macos-13", "macos-14" ]
|
||||
os: [ "macos-13", "macos-14", "macos-15" ]
|
||||
python-version: ["3.10", "3.11", "3.12"]
|
||||
|
||||
steps:
|
||||
@@ -161,7 +167,7 @@ jobs:
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/Library/Caches/pip
|
||||
key: ${{ matrix.os }}-${{ matrix.python-version }}-pip
|
||||
key: pip-${{ matrix.os }}-${{ matrix.python-version }}
|
||||
|
||||
- name: TA binary *nix
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
@@ -190,7 +196,7 @@ jobs:
|
||||
rm /usr/local/bin/python3.11-config || true
|
||||
rm /usr/local/bin/python3.12-config || true
|
||||
|
||||
brew install hdf5 c-blosc libomp
|
||||
brew install libomp
|
||||
|
||||
- name: Installation (python)
|
||||
run: |
|
||||
@@ -274,7 +280,7 @@ jobs:
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~\AppData\Local\pip\Cache
|
||||
key: ${{ matrix.os }}-${{ matrix.python-version }}-pip
|
||||
key: pip-${{ matrix.os }}-${{ matrix.python-version }}
|
||||
|
||||
- name: Installation
|
||||
run: |
|
||||
@@ -414,7 +420,7 @@ jobs:
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
|
||||
key: pip-3.12-ubuntu
|
||||
|
||||
- name: TA binary *nix
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
@@ -534,12 +540,12 @@ jobs:
|
||||
|
||||
|
||||
- name: Publish to PyPI (Test)
|
||||
uses: pypa/gh-action-pypi-publish@v1.10.3
|
||||
uses: pypa/gh-action-pypi-publish@v1.12.2
|
||||
with:
|
||||
repository-url: https://test.pypi.org/legacy/
|
||||
|
||||
- name: Publish to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@v1.10.3
|
||||
uses: pypa/gh-action-pypi-publish@v1.12.2
|
||||
|
||||
|
||||
deploy-docker:
|
||||
|
||||
@@ -9,17 +9,17 @@ repos:
|
||||
# stages: [push]
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: "v1.11.2"
|
||||
rev: "v1.13.0"
|
||||
hooks:
|
||||
- id: mypy
|
||||
exclude: build_helpers
|
||||
additional_dependencies:
|
||||
- types-cachetools==5.5.0.20240820
|
||||
- types-filelock==3.2.7
|
||||
- types-requests==2.32.0.20240914
|
||||
- types-requests==2.32.0.20241016
|
||||
- types-tabulate==0.9.0.20240106
|
||||
- types-python-dateutil==2.9.0.20241003
|
||||
- SQLAlchemy==2.0.35
|
||||
- SQLAlchemy==2.0.36
|
||||
# stages: [push]
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
@@ -31,7 +31,7 @@ repos:
|
||||
|
||||
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
||||
# Ruff version.
|
||||
rev: 'v0.6.9'
|
||||
rev: 'v0.8.0'
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-format
|
||||
|
||||
@@ -33,6 +33,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
|
||||
- [X] [Bybit](https://bybit.com/)
|
||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||
- [X] [HTX](https://www.htx.com/) (Former Huobi)
|
||||
- [X] [Hyperliquid](https://hyperliquid.xyz/) (A decentralized exchange, or DEX)
|
||||
- [X] [Kraken](https://kraken.com/)
|
||||
- [X] [OKX](https://okx.com/) (Former OKEX)
|
||||
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
|
||||
@@ -41,6 +42,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
|
||||
|
||||
- [X] [Binance](https://www.binance.com/)
|
||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||
- [X] [Hyperliquid](https://hyperliquid.xyz/) (A decentralized exchange, or DEX)
|
||||
- [X] [OKX](https://okx.com/)
|
||||
- [X] [Bybit](https://bybit.com/)
|
||||
|
||||
|
||||
Binary file not shown.
@@ -682,12 +682,18 @@
|
||||
},
|
||||
"exit_fill": {
|
||||
"description": "Telegram setting for exit fill signals.",
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"on",
|
||||
"off",
|
||||
"silent"
|
||||
"type": [
|
||||
"string",
|
||||
"object"
|
||||
],
|
||||
"additionalProperties": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"on",
|
||||
"off",
|
||||
"silent"
|
||||
]
|
||||
},
|
||||
"default": "on"
|
||||
},
|
||||
"exit_cancel": {
|
||||
@@ -1383,6 +1389,11 @@
|
||||
"type": "string",
|
||||
"default": "example"
|
||||
},
|
||||
"wait_for_training_iteration_on_reload": {
|
||||
"description": "Wait for the next training iteration to complete after /reload or ctrl+c.",
|
||||
"type": "boolean",
|
||||
"default": true
|
||||
},
|
||||
"feature_parameters": {
|
||||
"description": "The parameters used to engineer the feature set",
|
||||
"type": "object",
|
||||
|
||||
@@ -37,8 +37,8 @@ class SuperDuperHyperOptLoss(IHyperOptLoss):
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
config: Config,
|
||||
processed: Dict[str, DataFrame],
|
||||
backtest_stats: Dict[str, Any],
|
||||
processed: dict[str, DataFrame],
|
||||
backtest_stats: dict[str, Any],
|
||||
**kwargs,
|
||||
) -> float:
|
||||
"""
|
||||
@@ -103,7 +103,7 @@ class MyAwesomeStrategy(IStrategy):
|
||||
SKDecimal(0.01, 0.20, decimals=3, name='roi_p3'),
|
||||
]
|
||||
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
def generate_roi_table(params: Dict) -> dict[int, float]:
|
||||
|
||||
roi_table = {}
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
|
||||
@@ -10,12 +10,14 @@ To learn how to get data for the pairs and exchange you're interested in, head o
|
||||
```
|
||||
usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH] [-s NAME]
|
||||
[--strategy-path PATH] [-i TIMEFRAME]
|
||||
[--timerange TIMERANGE]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
[--strategy-path PATH]
|
||||
[--recursive-strategy-search]
|
||||
[--freqaimodel NAME] [--freqaimodel-path PATH]
|
||||
[-i TIMEFRAME] [--timerange TIMERANGE]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
|
||||
[--max-open-trades INT]
|
||||
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
|
||||
[-p PAIRS [PAIRS ...]] [--eps] [--dmmp]
|
||||
[-p PAIRS [PAIRS ...]] [--eps]
|
||||
[--enable-protections]
|
||||
[--dry-run-wallet DRY_RUN_WALLET]
|
||||
[--timeframe-detail TIMEFRAME_DETAIL]
|
||||
@@ -24,8 +26,9 @@ usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[--export-filename PATH]
|
||||
[--breakdown {day,week,month} [{day,week,month} ...]]
|
||||
[--cache {none,day,week,month}]
|
||||
[--freqai-backtest-live-models]
|
||||
|
||||
optional arguments:
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME
|
||||
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
|
||||
@@ -48,10 +51,6 @@ optional arguments:
|
||||
--eps, --enable-position-stacking
|
||||
Allow buying the same pair multiple times (position
|
||||
stacking).
|
||||
--dmmp, --disable-max-market-positions
|
||||
Disable applying `max_open_trades` during backtest
|
||||
(same as setting `max_open_trades` to a very high
|
||||
number).
|
||||
--enable-protections, --enableprotections
|
||||
Enable protections for backtesting.Will slow
|
||||
backtesting down by a considerable amount, but will
|
||||
@@ -80,10 +79,13 @@ optional arguments:
|
||||
--cache {none,day,week,month}
|
||||
Load a cached backtest result no older than specified
|
||||
age (default: day).
|
||||
--freqai-backtest-live-models
|
||||
Run backtest with ready models.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
--logfile FILE Log to the file specified. Special values are:
|
||||
--logfile FILE, --log-file FILE
|
||||
Log to the file specified. Special values are:
|
||||
'syslog', 'journald'. See the documentation for more
|
||||
details.
|
||||
-V, --version show program's version number and exit
|
||||
@@ -92,7 +94,7 @@ Common arguments:
|
||||
`userdir/config.json` or `config.json` whichever
|
||||
exists). Multiple --config options may be used. Can be
|
||||
set to `-` to read config from stdin.
|
||||
-d PATH, --datadir PATH
|
||||
-d PATH, --datadir PATH, --data-dir PATH
|
||||
Path to directory with historical backtesting data.
|
||||
--userdir PATH, --user-data-dir PATH
|
||||
Path to userdata directory.
|
||||
@@ -102,6 +104,12 @@ Strategy arguments:
|
||||
Specify strategy class name which will be used by the
|
||||
bot.
|
||||
--strategy-path PATH Specify additional strategy lookup path.
|
||||
--recursive-strategy-search
|
||||
Recursively search for a strategy in the strategies
|
||||
folder.
|
||||
--freqaimodel NAME Specify a custom freqaimodels.
|
||||
--freqaimodel-path PATH
|
||||
Specify additional lookup path for freqaimodels.
|
||||
|
||||
```
|
||||
|
||||
@@ -558,6 +566,7 @@ Since backtesting lacks some detailed information about what happens within a ca
|
||||
- Stoploss
|
||||
- ROI
|
||||
- Trailing stoploss
|
||||
- Position reversals (futures only) happen if an entry signal in the other direction than the closing trade triggers at the candle the existing trade closes.
|
||||
|
||||
Taking these assumptions, backtesting tries to mirror real trading as closely as possible. However, backtesting will **never** replace running a strategy in dry-run mode.
|
||||
Also, keep in mind that past results don't guarantee future success.
|
||||
@@ -572,7 +581,7 @@ These limits are usually listed in the exchange documentation as "trading rules"
|
||||
Backtesting (as well as live and dry-run) does honor these limits, and will ensure that a stoploss can be placed below this value - so the value will be slightly higher than what the exchange specifies.
|
||||
Freqtrade has however no information about historic limits.
|
||||
|
||||
This can lead to situations where trading-limits are inflated by using a historic price, resulting in minimum amounts > 50$.
|
||||
This can lead to situations where trading-limits are inflated by using a historic price, resulting in minimum amounts > 50\$.
|
||||
|
||||
For example:
|
||||
|
||||
|
||||
@@ -146,10 +146,10 @@ Freqtrade can also load many options via command line (CLI) arguments (check out
|
||||
|
||||
The prevalence for all Options is as follows:
|
||||
|
||||
- CLI arguments override any other option
|
||||
- [Environment Variables](#environment-variables)
|
||||
- Configuration files are used in sequence (the last file wins) and override Strategy configurations.
|
||||
- Strategy configurations are only used if they are not set via configuration or command-line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
|
||||
* CLI arguments override any other option
|
||||
* [Environment Variables](#environment-variables)
|
||||
* Configuration files are used in sequence (the last file wins) and override Strategy configurations.
|
||||
* Strategy configurations are only used if they are not set via configuration or command-line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
|
||||
|
||||
### Parameters table
|
||||
|
||||
@@ -183,7 +183,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
||||
| `margin_mode` | When trading with leverage, this determines if the collateral owned by the trader will be shared or isolated to each trading pair [leverage documentation](leverage.md). <br> **Datatype:** String
|
||||
| `liquidation_buffer` | A ratio specifying how large of a safety net to place between the liquidation price and the stoploss to prevent a position from reaching the liquidation price [leverage documentation](leverage.md). <br>*Defaults to `0.05`.* <br> **Datatype:** Float
|
||||
| | **Unfilled timeout**
|
||||
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.exit` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled exit order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `"minutes"`.* <br> **Datatype:** String
|
||||
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency exit is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
|
||||
@@ -295,10 +295,10 @@ Values set in the configuration file always overwrite values set in the strategy
|
||||
* `order_time_in_force`
|
||||
* `unfilledtimeout`
|
||||
* `disable_dataframe_checks`
|
||||
- `use_exit_signal`
|
||||
* `use_exit_signal`
|
||||
* `exit_profit_only`
|
||||
- `exit_profit_offset`
|
||||
- `ignore_roi_if_entry_signal`
|
||||
* `exit_profit_offset`
|
||||
* `ignore_roi_if_entry_signal`
|
||||
* `ignore_buying_expired_candle_after`
|
||||
* `position_adjustment_enable`
|
||||
* `max_entry_position_adjustment`
|
||||
@@ -311,12 +311,12 @@ There are several methods to configure how much of the stake currency the bot wi
|
||||
|
||||
The minimum stake amount will depend on exchange and pair and is usually listed in the exchange support pages.
|
||||
|
||||
Assuming the minimum tradable amount for XRP/USD is 20 XRP (given by the exchange), and the price is 0.6$, the minimum stake amount to buy this pair is `20 * 0.6 ~= 12`.
|
||||
This exchange has also a limit on USD - where all orders must be > 10$ - which however does not apply in this case.
|
||||
Assuming the minimum tradable amount for XRP/USD is 20 XRP (given by the exchange), and the price is 0.6\$, the minimum stake amount to buy this pair is `20 * 0.6 ~= 12`.
|
||||
This exchange has also a limit on USD - where all orders must be > 10\$ - which however does not apply in this case.
|
||||
|
||||
To guarantee safe execution, freqtrade will not allow buying with a stake-amount of 10.1$, instead, it'll make sure that there's enough space to place a stoploss below the pair (+ an offset, defined by `amount_reserve_percent`, which defaults to 5%).
|
||||
To guarantee safe execution, freqtrade will not allow buying with a stake-amount of 10.1\$, instead, it'll make sure that there's enough space to place a stoploss below the pair (+ an offset, defined by `amount_reserve_percent`, which defaults to 5%).
|
||||
|
||||
With a reserve of 5%, the minimum stake amount would be ~12.6$ (`12 * (1 + 0.05)`). If we take into account a stoploss of 10% on top of that - we'd end up with a value of ~14$ (`12.6 / (1 - 0.1)`).
|
||||
With a reserve of 5%, the minimum stake amount would be ~12.6\$ (`12 * (1 + 0.05)`). If we take into account a stoploss of 10% on top of that - we'd end up with a value of ~14\$ (`12.6 / (1 - 0.1)`).
|
||||
|
||||
To limit this calculation in case of large stoploss values, the calculated minimum stake-limit will never be more than 50% above the real limit.
|
||||
|
||||
@@ -362,9 +362,9 @@ To overcome this, the option `amend_last_stake_amount` can be set to `True`, whi
|
||||
|
||||
In the example above this would mean:
|
||||
|
||||
- Trade1: 400 USDT
|
||||
- Trade2: 400 USDT
|
||||
- Trade3: 200 USDT
|
||||
* Trade1: 400 USDT
|
||||
* Trade2: 400 USDT
|
||||
* Trade3: 200 USDT
|
||||
|
||||
!!! Note
|
||||
This option only applies with [Static stake amount](#static-stake-amount) - since [Dynamic stake amount](#dynamic-stake-amount) divides the balances evenly.
|
||||
|
||||
@@ -11,9 +11,8 @@ Without provided configuration, `--exchange` becomes mandatory.
|
||||
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
|
||||
|
||||
!!! Tip "Tip: Updating existing data"
|
||||
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, freqtrade will automatically calculate the data missing for the existing pairs and the download will occur from the latest available point until "now", neither --days or --timerange parameters are required. Freqtrade will keep the available data and only download the missing data.
|
||||
If you are updating existing data after inserting new pairs that you have no data for, use `--new-pairs-days xx` parameter. Specified number of days will be downloaded for new pairs while old pairs will be updated with missing data only.
|
||||
If you use `--days xx` parameter alone - data for specified number of days will be downloaded for _all_ pairs. Be careful, if specified number of days is smaller than gap between now and last downloaded candle - freqtrade will delete all existing data to avoid gaps in candle data.
|
||||
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, freqtrade will automatically calculate the missing timerange for the existing pairs and the download will occur from the latest available point until "now", neither `--days` or `--timerange` parameters are required. Freqtrade will keep the available data and only download the missing data.
|
||||
If you are updating existing data after inserting new pairs that you have no data for, use the `--new-pairs-days xx` parameter. Specified number of days will be downloaded for new pairs while old pairs will be updated with missing data only.
|
||||
|
||||
### Usage
|
||||
|
||||
@@ -90,7 +89,7 @@ Common arguments:
|
||||
|
||||
!!! Tip "Downloading all data for one quote currency"
|
||||
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
|
||||
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
|
||||
`freqtrade download-data --exchange binance --pairs ".*/USDT" <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
|
||||
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
|
||||
|
||||
!!! Note "Startup period"
|
||||
@@ -117,16 +116,17 @@ freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT
|
||||
or as regex (in this case, to download all active USDT pairs)
|
||||
|
||||
```bash
|
||||
freqtrade download-data --exchange binance --pairs .*/USDT
|
||||
freqtrade download-data --exchange binance --pairs ".*/USDT"
|
||||
```
|
||||
|
||||
### Other Notes
|
||||
|
||||
* To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
|
||||
* To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
|
||||
* To change the exchange used to download the historical data from, either use `--exchange <exchange>` - or specify a different configuration file.
|
||||
* To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
|
||||
* To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
|
||||
* To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
|
||||
* Given starting points are ignored if data is already available, downloading only missing data up to today.
|
||||
* Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
|
||||
* To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
|
||||
|
||||
|
||||
@@ -116,7 +116,7 @@ A similar setup can also be taken for Pycharm - using `freqtrade` as module name
|
||||

|
||||
|
||||
!!! Note "Startup directory"
|
||||
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
|
||||
This assumes that you have the repository checked out, and the editor is started at the repository root level (so pyproject.toml is at the top level of your repository).
|
||||
|
||||
## ErrorHandling
|
||||
|
||||
@@ -162,7 +162,7 @@ Hopefully you also want to contribute this back upstream.
|
||||
|
||||
Whatever your motivations are - This should get you off the ground in trying to develop a new Pairlist Handler.
|
||||
|
||||
First of all, have a look at the [VolumePairList](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/pairlist/VolumePairList.py) Handler, and best copy this file with a name of your new Pairlist Handler.
|
||||
First of all, have a look at the [VolumePairList](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/plugins/pairlist/VolumePairList.py) Handler, and best copy this file with a name of your new Pairlist Handler.
|
||||
|
||||
This is a simple Handler, which however serves as a good example on how to start developing.
|
||||
|
||||
@@ -226,7 +226,7 @@ In `VolumePairList`, this implements different methods of sorting, does early va
|
||||
##### sample
|
||||
|
||||
``` python
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
def filter_pairlist(self, pairlist: list[str], tickers: dict) -> List[str]:
|
||||
# Generate dynamic whitelist
|
||||
pairs = self._calculate_pairlist(pairlist, tickers)
|
||||
return pairs
|
||||
|
||||
@@ -252,6 +252,14 @@ OKX requires a passphrase for each api key, you will therefore need to add this
|
||||
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
|
||||
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
|
||||
|
||||
Gate API keys require the following permissions on top of the market type you want to trade:
|
||||
|
||||
* "Spot Trade" _or_ "Perpetual Futures" (Read and Write) (either select both, or the one matching the market you want to trade)
|
||||
* "Wallet" (read only)
|
||||
* "Account" (read only)
|
||||
|
||||
Without these permissions, the bot will not start correctly and show errors like "permission missing".
|
||||
|
||||
## Bybit
|
||||
|
||||
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
|
||||
@@ -261,6 +269,7 @@ On startup, freqtrade will set the position mode to "One-way Mode" for the whole
|
||||
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
|
||||
|
||||
API Keys for live futures trading must have the following permissions:
|
||||
|
||||
* Read-write
|
||||
* Contract - Orders
|
||||
* Contract - Positions
|
||||
@@ -295,6 +304,41 @@ It's therefore required to pass the UID as well.
|
||||
!!! Warning "Necessary Verification"
|
||||
Bitmart requires Verification Lvl2 to successfully trade on the spot market through the API - even though trading via UI works just fine with just Lvl1 verification.
|
||||
|
||||
## Hyperliquid
|
||||
|
||||
!!! Tip "Stoploss on Exchange"
|
||||
Hyperliquid supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it.
|
||||
|
||||
Hyperliquid is a Decentralized Exchange (DEX). Decentralized exchanges work a bit different compared to normal exchanges. Instead of authenticating private API calls using an API key, private API calls need to be signed with the private key of your wallet (We recommend using an api Wallet for this, generated either on Hyperliquid or in your wallet of choice).
|
||||
This needs to be configured like this:
|
||||
|
||||
```json
|
||||
"exchange": {
|
||||
"name": "hyperliquid",
|
||||
"walletAddress": "your_eth_wallet_address",
|
||||
"privateKey": "your_api_private_key",
|
||||
// ...
|
||||
}
|
||||
```
|
||||
|
||||
* walletAddress in hex format: `0x<40 hex characters>` - Can be easily copied from your wallet - and should be your wallet address, not your API Wallet Address.
|
||||
* privateKey in hex format: `0x<64 hex characters>` - Use the key the API Wallet shows on creation.
|
||||
|
||||
Hyperliquid handles deposits and withdrawals on the Arbitrum One chain, a Layer 2 scaling solution built on top of Ethereum. Hyperliquid uses USDC as quote / collateral. The process of depositing USDC on Hyperliquid requires a couple of steps, see [how to start trading](https://hyperliquid.gitbook.io/hyperliquid-docs/onboarding/how-to-start-trading) for details on what steps are needed.
|
||||
|
||||
!!! Note "Hyperliquid general usage Notes"
|
||||
Hyperliquid does not support market orders, however ccxt will simulate market orders by placing limit orders with a maximum slippage of 5%.
|
||||
Unfortunately, hyperliquid only offers 5000 historic candles, so backtesting will either need to build candles historically (by waiting and downloading the data incrementally over time) - or will be limited to the last 5000 candles.
|
||||
|
||||
!!! Info "Some general best practices (non exhaustive)"
|
||||
* Beware of supply chain attacks, like pip package poisoning etcetera. Whenever you use your private key, make sure your environment is safe.
|
||||
* Don't use your actual wallet private key for trading. Use the Hyperliquid [API generator](https://app.hyperliquid.xyz/API) to create a separate API wallet.
|
||||
* Don't store your actual wallet private key on the server you use for freqtrade. Use the API wallet private key instead. This key won't allow withdrawals, only trading.
|
||||
* Always keep your mnemonic phrase and private key private.
|
||||
* Don't use the same mnemonic as the one you had to backup when initializing a hardware wallet, using the same mnemonic basically deletes the security of your hardware wallet.
|
||||
* Create a different software wallet, only transfer the funds you want to trade with to that wallet, and use that wallet to trade on Hyperliquid.
|
||||
* If you have funds you don't want to use for trading (after making a profit for example), transfer them back to your hardware wallet.
|
||||
|
||||
## All exchanges
|
||||
|
||||
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
|
||||
@@ -304,7 +348,7 @@ Should you experience constant errors with Nonce (like `InvalidNonce`), it is be
|
||||
* The Ocean (exchange id: `theocean`) exchange uses Web3 functionality and requires `web3` python package to be installed:
|
||||
|
||||
```shell
|
||||
$ pip3 install web3
|
||||
pip3 install web3
|
||||
```
|
||||
|
||||
### Getting latest price / Incomplete candles
|
||||
|
||||
19
docs/faq.md
19
docs/faq.md
@@ -100,6 +100,19 @@ You can use the `/stopentry` command in Telegram to prevent future trade entry,
|
||||
|
||||
Please look at the [advanced setup documentation Page](advanced-setup.md#running-multiple-instances-of-freqtrade).
|
||||
|
||||
### I'm getting "Impossible to load Strategy" when starting the bot
|
||||
|
||||
This error message is shown when the bot cannot load the strategy.
|
||||
Usually, you can use `freqtrade list-strategies` to list all available strategies.
|
||||
The output of this command will also include a status column, showing if the strategy can be loaded.
|
||||
|
||||
Please check the following:
|
||||
|
||||
* Are you using the correct strategy name? The strategy name is case-sensitive and must correspond to the Strategy class name (not the filename!).
|
||||
* Is the strategy in the `user_data/strategies` directory, and has the file-ending `.py`?
|
||||
* Does the bot show other warnings before this error? Maybe you're missing some dependencies for the strategy - which would be highlighted in the log.
|
||||
* In case of docker - is the strategy directory mounted correctly (check the volumes part of the docker-compose file)?
|
||||
|
||||
### I'm getting "Missing data fillup" messages in the log
|
||||
|
||||
This message is just a warning that the latest candles had missing candles in them.
|
||||
@@ -146,9 +159,9 @@ The same fix should be applied in the configuration file, if order types are def
|
||||
|
||||
### I'm trying to start the bot live, but get an API permission error
|
||||
|
||||
Errors like `Invalid API-key, IP, or permissions for action` mean exactly what they actually say.
|
||||
Your API key is either invalid (copy/paste error? check for leading/trailing spaces in the config), expired, or the IP you're running the bot from is not enabled in the Exchange's API console.
|
||||
Usually, the permission "Spot Trading" (or the equivalent in the exchange you use) will be necessary.
|
||||
Errors like `Invalid API-key, IP, or permissions for action` mean exactly what they actually say.
|
||||
Your API key is either invalid (copy/paste error? check for leading/trailing spaces in the config), expired, or the IP you're running the bot from is not enabled in the Exchange's API console.
|
||||
Usually, the permission "Spot Trading" (or the equivalent in the exchange you use) will be necessary.
|
||||
Futures will usually have to be enabled specifically.
|
||||
|
||||
### How do I search the bot logs for something?
|
||||
|
||||
@@ -293,10 +293,10 @@ class MyCoolPyTorchClassifier(BasePyTorchClassifier):
|
||||
super().__init__(**kwargs)
|
||||
config = self.freqai_info.get("model_training_parameters", {})
|
||||
self.learning_rate: float = config.get("learning_rate", 3e-4)
|
||||
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
|
||||
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
|
||||
self.model_kwargs: dict[str, Any] = config.get("model_kwargs", {})
|
||||
self.trainer_kwargs: dict[str, Any] = config.get("trainer_kwargs", {})
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
def fit(self, data_dictionary: dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary holding all data for train, test,
|
||||
@@ -359,10 +359,10 @@ class PyTorchMLPRegressor(BasePyTorchRegressor):
|
||||
super().__init__(**kwargs)
|
||||
config = self.freqai_info.get("model_training_parameters", {})
|
||||
self.learning_rate: float = config.get("learning_rate", 3e-4)
|
||||
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
|
||||
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
|
||||
self.model_kwargs: dict[str, Any] = config.get("model_kwargs", {})
|
||||
self.trainer_kwargs: dict[str, Any] = config.get("trainer_kwargs", {})
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
def fit(self, data_dictionary: dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
n_features = data_dictionary["train_features"].shape[-1]
|
||||
model = PyTorchMLPModel(
|
||||
input_dim=n_features,
|
||||
@@ -393,7 +393,7 @@ Here we create a `PyTorchMLPRegressor` class that implements the `fit` method. T
|
||||
|
||||
For example, if you are using a binary classifier to predict price movements as up or down, you can set the class names as follows:
|
||||
```python
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs) -> DataFrame:
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
self.freqai.class_names = ["down", "up"]
|
||||
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
|
||||
dataframe["close"], 'up', 'down')
|
||||
|
||||
@@ -22,6 +22,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
||||
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
|
||||
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
|
||||
| `activate_tensorboard` | <br> Indicate whether or not to activate tensorboard for the tensorboard enabled modules (currently Reinforcment Learning, XGBoost, Catboost, and PyTorch). Tensorboard needs Torch installed, which means you will need the torch/RL docker image or you need to answer "yes" to the install question about whether or not you wish to install Torch. <br> **Datatype:** Boolean. <br> Default: `True`.
|
||||
| `wait_for_training_iteration_on_reload` | <br> When using /reload or ctrl-c, wait for the current training iteration to finish before completing graceful shutdown. If set to `False`, FreqAI will break the current training iteration, allowing you to shutdown gracefully more quickly, but you will lose your current training iteration. <br> **Datatype:** Boolean. <br> Default: `True`.
|
||||
|
||||
### Feature parameters
|
||||
|
||||
|
||||
@@ -42,11 +42,11 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--recursive-strategy-search] [--freqaimodel NAME]
|
||||
[--freqaimodel-path PATH] [-i TIMEFRAME]
|
||||
[--timerange TIMERANGE]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
|
||||
[--max-open-trades INT]
|
||||
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
|
||||
[-p PAIRS [PAIRS ...]] [--hyperopt-path PATH]
|
||||
[--eps] [--dmmp] [--enable-protections]
|
||||
[--eps] [--enable-protections]
|
||||
[--dry-run-wallet DRY_RUN_WALLET]
|
||||
[--timeframe-detail TIMEFRAME_DETAIL] [-e INT]
|
||||
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,trades,default} [{all,buy,sell,roi,stoploss,trailing,protection,trades,default} ...]]
|
||||
@@ -55,15 +55,15 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--hyperopt-loss NAME] [--disable-param-export]
|
||||
[--ignore-missing-spaces] [--analyze-per-epoch]
|
||||
|
||||
optional arguments:
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME
|
||||
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
--data-format-ohlcv {json,jsongz,hdf5}
|
||||
--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}
|
||||
Storage format for downloaded candle (OHLCV) data.
|
||||
(default: `json`).
|
||||
(default: `feather`).
|
||||
--max-open-trades INT
|
||||
Override the value of the `max_open_trades`
|
||||
configuration setting.
|
||||
@@ -80,10 +80,6 @@ optional arguments:
|
||||
--eps, --enable-position-stacking
|
||||
Allow buying the same pair multiple times (position
|
||||
stacking).
|
||||
--dmmp, --disable-max-market-positions
|
||||
Disable applying `max_open_trades` during backtest
|
||||
(same as setting `max_open_trades` to a very high
|
||||
number).
|
||||
--enable-protections, --enableprotections
|
||||
Enable protections for backtesting.Will slow
|
||||
backtesting down by a considerable amount, but will
|
||||
@@ -133,7 +129,8 @@ optional arguments:
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
--logfile FILE Log to the file specified. Special values are:
|
||||
--logfile FILE, --log-file FILE
|
||||
Log to the file specified. Special values are:
|
||||
'syslog', 'journald'. See the documentation for more
|
||||
details.
|
||||
-V, --version show program's version number and exit
|
||||
@@ -142,7 +139,7 @@ Common arguments:
|
||||
`userdir/config.json` or `config.json` whichever
|
||||
exists). Multiple --config options may be used. Can be
|
||||
set to `-` to read config from stdin.
|
||||
-d PATH, --datadir PATH
|
||||
-d PATH, --datadir PATH, --data-dir PATH
|
||||
Path to directory with historical backtesting data.
|
||||
--userdir PATH, --user-data-dir PATH
|
||||
Path to userdata directory.
|
||||
@@ -588,14 +585,15 @@ Currently, the following loss functions are builtin:
|
||||
|
||||
* `ShortTradeDurHyperOptLoss` - (default legacy Freqtrade hyperoptimization loss function) - Mostly for short trade duration and avoiding losses.
|
||||
* `OnlyProfitHyperOptLoss` - takes only amount of profit into consideration.
|
||||
* `SharpeHyperOptLoss` - optimizes Sharpe Ratio calculated on trade returns relative to standard deviation.
|
||||
* `SharpeHyperOptLossDaily` - optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation.
|
||||
* `SortinoHyperOptLoss` - optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
|
||||
* `SharpeHyperOptLoss` - Optimizes Sharpe Ratio calculated on trade returns relative to standard deviation.
|
||||
* `SharpeHyperOptLossDaily` - Optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation.
|
||||
* `SortinoHyperOptLoss` - Optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
|
||||
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
|
||||
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum absolute drawdown.
|
||||
* `MaxDrawDownRelativeHyperOptLoss` - Optimizes both maximum absolute drawdown while also adjusting for maximum relative drawdown.
|
||||
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
|
||||
* `ProfitDrawDownHyperOptLoss` - Optimizes by max Profit & min Drawdown objective. `DRAWDOWN_MULT` variable within the hyperoptloss file can be adjusted to be stricter or more flexible on drawdown purposes.
|
||||
* `MultiMetricHyperOptLoss` - Optimizes by several key metrics to achieve balanced performance. The primary focus is on maximizing Profit and minimizing Drawdown, while also considering additional metrics such as Profit Factor, Expectancy Ratio and Winrate. Moreover, it applies a penalty for epochs with a low number of trades, encouraging strategies with adequate trade frequency.
|
||||
|
||||
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
|
||||
|
||||
@@ -866,18 +864,15 @@ You can use the `--print-all` command line option if you would like to see all r
|
||||
|
||||
## Position stacking and disabling max market positions
|
||||
|
||||
In some situations, you may need to run Hyperopt (and Backtesting) with the
|
||||
`--eps`/`--enable-position-staking` and `--dmmp`/`--disable-max-market-positions` arguments.
|
||||
In some situations, you may need to run Hyperopt (and Backtesting) with the `--eps`/`--enable-position-staking` argument, or you may need to set `max_open_trades` to a very high number to disable the limit on the number of open trades.
|
||||
|
||||
By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one
|
||||
open trade is allowed for every traded pair. The total number of trades open for all pairs
|
||||
open trade per pair is allowed. The total number of trades open for all pairs
|
||||
is also limited by the `max_open_trades` setting. During Hyperopt/Backtesting this may lead to
|
||||
some potential trades to be hidden (or masked) by previously open trades.
|
||||
potential trades being hidden (or masked) by already open trades.
|
||||
|
||||
The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times,
|
||||
while `--dmmp`/`--disable-max-market-positions` disables applying `max_open_trades`
|
||||
during Hyperopt/Backtesting (which is equal to setting `max_open_trades` to a very high
|
||||
number).
|
||||
The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times.
|
||||
Using `--max-open-trades` with a very high number will disable the limit on the number of open trades.
|
||||
|
||||
!!! Note
|
||||
Dry/live runs will **NOT** use position stacking - therefore it does make sense to also validate the strategy without this as it's closer to reality.
|
||||
@@ -918,13 +913,39 @@ Your epochs should therefore be aligned to the possible values - or you should b
|
||||
|
||||
After you run Hyperopt for the desired amount of epochs, you can later list all results for analysis, select only best or profitable once, and show the details for any of the epochs previously evaluated. This can be done with the `hyperopt-list` and `hyperopt-show` sub-commands. The usage of these sub-commands is described in the [Utils](utils.md#list-hyperopt-results) chapter.
|
||||
|
||||
## Output debug messages from your strategy
|
||||
|
||||
If you want to output debug messages from your strategy, you can use the `logging` module. By default, Freqtrade will output all messages with a level of `INFO` or higher.
|
||||
|
||||
|
||||
``` python
|
||||
import logging
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
...
|
||||
|
||||
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
logger.info("This is a debug message")
|
||||
...
|
||||
|
||||
```
|
||||
|
||||
!!! Note "using print"
|
||||
Messages printed via `print()` will not be shown in the hyperopt output unless parallelism is disabled (`-j 1`).
|
||||
It is recommended to use the `logging` module instead.
|
||||
|
||||
## Validate backtesting results
|
||||
|
||||
Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.
|
||||
|
||||
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
|
||||
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt for Backtesting.
|
||||
|
||||
### Why do my backtest results not match my hyperopt results?
|
||||
|
||||
Should results not match, check the following factors:
|
||||
|
||||
* You may have added parameters to hyperopt in `populate_indicators()` where they will be calculated only once **for all epochs**. If you are, for example, trying to optimise multiple SMA timeperiod values, the hyperoptable timeperiod parameter should be placed in `populate_entry_trend()` which is calculated every epoch. See [Optimizing an indicator parameter](https://www.freqtrade.io/en/stable/hyperopt/#optimizing-an-indicator-parameter).
|
||||
|
||||
@@ -352,7 +352,7 @@ The optional `bearer_token` will be included in the requests Authorization Heade
|
||||
|
||||
#### MarketCapPairList
|
||||
|
||||
`MarketCapPairList` employs sorting/filtering of pairs by their marketcap rank based of CoinGecko. It will only recognize coins up to the coin placed at rank 250. The returned pairlist will be sorted based of their marketcap ranks.
|
||||
`MarketCapPairList` employs sorting/filtering of pairs by their marketcap rank based of CoinGecko. The returned pairlist will be sorted based of their marketcap ranks.
|
||||
|
||||
```json
|
||||
"pairlists": [
|
||||
@@ -366,7 +366,8 @@ The optional `bearer_token` will be included in the requests Authorization Heade
|
||||
]
|
||||
```
|
||||
|
||||
`number_assets` defines the maximum number of pairs returned by the pairlist. `max_rank` will determine the maximum rank used in creating/filtering the pairlist. It's expected that some coins within the top `max_rank` marketcap will not be included in the resulting pairlist since not all pairs will have active trading pairs in your preferred market/stake/exchange combination.
|
||||
`number_assets` defines the maximum number of pairs returned by the pairlist. `max_rank` will determine the maximum rank used in creating/filtering the pairlist. It's expected that some coins within the top `max_rank` marketcap will not be included in the resulting pairlist since not all pairs will have active trading pairs in your preferred market/stake/exchange combination.
|
||||
While using a `max_rank` bigger than 250 is supported, it's not recommended, as it'll cause multiple API calls to CoinGecko, which can lead to rate limit issues.
|
||||
|
||||
The `refresh_period` setting defines the interval (in seconds) at which the marketcap rank data will be refreshed. The default is 86,400 seconds (1 day). The pairlist cache (`refresh_period`) applies to both generating pairlists (when in the first position in the list) and filtering instances (when not in the first position in the list).
|
||||
|
||||
|
||||
@@ -28,7 +28,7 @@ Freqtrade is a free and open source crypto trading bot written in Python. It is
|
||||
- Develop your Strategy: Write your strategy in python, using [pandas](https://pandas.pydata.org/). Example strategies to inspire you are available in the [strategy repository](https://github.com/freqtrade/freqtrade-strategies).
|
||||
- Download market data: Download historical data of the exchange and the markets your may want to trade with.
|
||||
- Backtest: Test your strategy on downloaded historical data.
|
||||
- Optimize: Find the best parameters for your strategy using hyperoptimization which employs machining learning methods. You can optimize buy, sell, take profit (ROI), stop-loss and trailing stop-loss parameters for your strategy.
|
||||
- Optimize: Find the best parameters for your strategy using hyperoptimization which employs machine learning methods. You can optimize buy, sell, take profit (ROI), stop-loss and trailing stop-loss parameters for your strategy.
|
||||
- Select markets: Create your static list or use an automatic one based on top traded volumes and/or prices (not available during backtesting). You can also explicitly blacklist markets you don't want to trade.
|
||||
- Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
|
||||
- Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
|
||||
@@ -40,11 +40,12 @@ Freqtrade is a free and open source crypto trading bot written in Python. It is
|
||||
Please read the [exchange specific notes](exchanges.md) to learn about eventual, special configurations needed for each exchange.
|
||||
|
||||
- [X] [Binance](https://www.binance.com/)
|
||||
- [X] [Bitmart](https://bitmart.com/)
|
||||
- [X] [BingX](https://bingx.com/invite/0EM9RX)
|
||||
- [X] [Bitmart](https://bitmart.com/)
|
||||
- [X] [Bybit](https://bybit.com/)
|
||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||
- [X] [HTX](https://www.htx.com/) (Former Huobi)
|
||||
- [X] [Hyperliquid](https://hyperliquid.xyz/) (A decentralized exchange, or DEX)
|
||||
- [X] [Kraken](https://kraken.com/)
|
||||
- [X] [OKX](https://okx.com/) (Former OKEX)
|
||||
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
|
||||
@@ -52,9 +53,10 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
|
||||
### Supported Futures Exchanges (experimental)
|
||||
|
||||
- [X] [Binance](https://www.binance.com/)
|
||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||
- [X] [OKX](https://okx.com/)
|
||||
- [X] [Bybit](https://bybit.com/)
|
||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||
- [X] [Hyperliquid](https://hyperliquid.xyz/) (A decentralized exchange, or DEX)
|
||||
- [X] [OKX](https://okx.com/)
|
||||
|
||||
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
|
||||
|
||||
|
||||
@@ -67,6 +67,18 @@ OS Specific steps are listed first, the common section below is necessary for al
|
||||
sudo apt install -y python3-pip python3-venv python3-dev python3-pandas git curl
|
||||
```
|
||||
|
||||
=== "MacOS"
|
||||
#### Install necessary dependencies
|
||||
|
||||
Install [Homebrew](https://brew.sh/) if you don't have it already.
|
||||
|
||||
```bash
|
||||
# install packages
|
||||
brew install gettext libomp
|
||||
```
|
||||
!!! Note
|
||||
The `setup.sh` script will install these dependencies for you - assuming brew is installed on your system.
|
||||
|
||||
=== "RaspberryPi/Raspbian"
|
||||
The following assumes the latest [Raspbian Buster lite image](https://www.raspberrypi.org/downloads/raspbian/).
|
||||
This image comes with python3.11 preinstalled, making it easy to get freqtrade up and running.
|
||||
@@ -76,7 +88,7 @@ OS Specific steps are listed first, the common section below is necessary for al
|
||||
|
||||
```bash
|
||||
sudo apt-get install python3-venv libatlas-base-dev cmake curl
|
||||
# Use pywheels.org to speed up installation
|
||||
# Use piwheels.org to speed up installation
|
||||
sudo echo "[global]\nextra-index-url=https://www.piwheels.org/simple" > tee /etc/pip.conf
|
||||
|
||||
git clone https://github.com/freqtrade/freqtrade.git
|
||||
@@ -150,9 +162,7 @@ Each time you open a new terminal, you must run `source .venv/bin/activate` to a
|
||||
source ./.venv/bin/activate
|
||||
```
|
||||
|
||||
### Congratulations
|
||||
|
||||
[You are ready](#you-are-ready), and run the bot
|
||||
[You are now ready](#you-are-ready) to run the bot.
|
||||
|
||||
### Other options of /setup.sh script
|
||||
|
||||
@@ -220,7 +230,7 @@ cd ..
|
||||
rm -rf ./ta-lib*
|
||||
```
|
||||
|
||||
#### Setup Python virtual environment (virtualenv)
|
||||
### Setup Python virtual environment (virtualenv)
|
||||
|
||||
You will run freqtrade in separated `virtual environment`
|
||||
|
||||
@@ -232,19 +242,18 @@ python3 -m venv .venv
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
#### Install python dependencies
|
||||
### Install python dependencies
|
||||
|
||||
```bash
|
||||
python3 -m pip install --upgrade pip
|
||||
python3 -m pip install -r requirements.txt
|
||||
# install freqtrade
|
||||
python3 -m pip install -e .
|
||||
```
|
||||
|
||||
### Congratulations
|
||||
[You are now ready](#you-are-ready) to run the bot.
|
||||
|
||||
[You are ready](#you-are-ready), and run the bot
|
||||
|
||||
#### (Optional) Post-installation Tasks
|
||||
### (Optional) Post-installation Tasks
|
||||
|
||||
!!! Note
|
||||
If you run the bot on a server, you should consider using [Docker](docker_quickstart.md) or a terminal multiplexer like `screen` or [`tmux`](https://en.wikipedia.org/wiki/Tmux) to avoid that the bot is stopped on logout.
|
||||
@@ -333,9 +342,7 @@ cd build_helpers
|
||||
bash install_ta-lib.sh ${CONDA_PREFIX} nosudo
|
||||
```
|
||||
|
||||
### Congratulations
|
||||
|
||||
[You are ready](#you-are-ready), and run the bot
|
||||
[You are now ready](#you-are-ready) to run the bot.
|
||||
|
||||
### Important shortcuts
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
markdown==3.7
|
||||
mkdocs==1.6.1
|
||||
mkdocs-material==9.5.39
|
||||
mkdocs-material==9.5.45
|
||||
mdx_truly_sane_lists==1.3
|
||||
pymdown-extensions==10.11.2
|
||||
pymdown-extensions==10.12
|
||||
jinja2==3.1.4
|
||||
mike==2.1.3
|
||||
|
||||
@@ -36,6 +36,7 @@ The Order-type will be ignored if only one mode is available.
|
||||
| Gate | limit |
|
||||
| Okx | limit |
|
||||
| Kucoin | stop-limit, stop-market|
|
||||
| Hyperliquid (futures only) | limit |
|
||||
|
||||
!!! Note "Tight stoploss"
|
||||
<ins>Do not set too low/tight stoploss value when using stop loss on exchange!</ins>
|
||||
|
||||
196
docs/strategy-101.md
Normal file
196
docs/strategy-101.md
Normal file
@@ -0,0 +1,196 @@
|
||||
# Freqtrade Strategies 101: A Quick Start for Strategy Development
|
||||
|
||||
For the purposes of this quick start, we are assuming you are familiar with the basics of trading, and have read the
|
||||
[Freqtrade basics](bot-basics.md) page.
|
||||
|
||||
## Required Knowledge
|
||||
|
||||
A strategy in Freqtrade is a Python class that defines the logic for buying and selling cryptocurrency `assets`.
|
||||
|
||||
Assets are defined as `pairs`, which represent the `coin` and the `stake`. The coin is the asset you are trading using another currency as the stake.
|
||||
|
||||
Data is supplied by the exchange in the form of `candles`, which are made up of a six values: `date`, `open`, `high`, `low`, `close` and `volume`.
|
||||
|
||||
`Technical analysis` functions analyse the candle data using various computational and statistical formulae, and produce secondary values called `indicators`.
|
||||
|
||||
Indicators are analysed on the asset pair candles to generate `signals`.
|
||||
|
||||
Signals are turned into `orders` on a cryptocurrency `exchange`, i.e. `trades`.
|
||||
|
||||
We use the terms `entry` and `exit` instead of `buying` and `selling` because Freqtrade supports both `long` and `short` trades.
|
||||
|
||||
- **long**: You buy the coin based on a stake, e.g. buying the coin BTC using USDT as your stake, and you make a profit by selling the coin at a higher rate than you paid for. In long trades, profits are made by the coin value going up versus the stake.
|
||||
- **short**: You borrow capital from the exchange in the form of the coin, and you pay back the stake value of the coin later. In short trades profits are made by the coin value going down versus the stake (you pay the loan off at a lower rate).
|
||||
|
||||
Whilst Freqtrade supports spot and futures markets for certain exchanges, for simplicity we will focus on spot (long) trades only.
|
||||
|
||||
## Structure of a Basic Strategy
|
||||
|
||||
### Main dataframe
|
||||
|
||||
Freqtrade strategies use a tabular data structure with rows and columns known as a `dataframe` to generate signals to enter and exit trades.
|
||||
|
||||
Each pair in your configured pairlist has its own dataframe. Dataframes are indexed by the `date` column, e.g. `2024-06-31 12:00`.
|
||||
|
||||
The next 5 columns represent the `open`, `high`, `low`, `close` and `volume` (OHLCV) data.
|
||||
|
||||
### Populate indicator values
|
||||
|
||||
The `populate_indicators` function adds columns to the dataframe that represent the technical analysis indicator values.
|
||||
|
||||
Examples of common indicators include Relative Strength Index, Bollinger Bands, Money Flow Index, Moving Average, and Average True Range.
|
||||
|
||||
Columns are added to the dataframe by calling technical analysis functions, e.g. ta-lib's RSI function `ta.RSI()`, and assigning them to a column name, e.g. `rsi`
|
||||
|
||||
```python
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
```
|
||||
|
||||
??? Hint "Technical Analysis libraries"
|
||||
Different libraries work in different ways to generate indicator values. Please check the documentation of each library to understand
|
||||
how to integrate it into your strategy. You can also check the [Freqtrade example strategies](https://github.com/freqtrade/freqtrade-strategies) to give you ideas.
|
||||
|
||||
### Populate entry signals
|
||||
|
||||
The `populate_entry_trend` function defines conditions for an entry signal.
|
||||
|
||||
The dataframe column `enter_long` is added to the dataframe, and when a value of `1` is in this column, Freqtrade sees an entry signal.
|
||||
|
||||
??? Hint "Shorting"
|
||||
To enter short trades, use the `enter_short` column.
|
||||
|
||||
### Populate exit signals
|
||||
|
||||
The `populate_exit_trend` function defines conditions for an exit signal.
|
||||
|
||||
The dataframe column `exit_long` is added to the dataframe, and when a value of `1` is in this column, Freqtrade sees an exit signal.
|
||||
|
||||
??? Hint "Shorting"
|
||||
To exit short trades, use the `exit_short` column.
|
||||
|
||||
## A simple strategy
|
||||
|
||||
Here is a minimal example of a Freqtrade strategy:
|
||||
|
||||
```python
|
||||
from freqtrade.strategy import IStrategy
|
||||
from pandas import DataFrame
|
||||
import talib.abstract as ta
|
||||
|
||||
class MyStrategy(IStrategy):
|
||||
|
||||
# set the initial stoploss to -10%
|
||||
stoploss = -0.10
|
||||
|
||||
# exit profitable positions at any time when the profit is greater than 1%
|
||||
minimal_roi = {"0": 0.01}
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# generate values for technical analysis indicators
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# generate entry signals based on indicator values
|
||||
dataframe.loc[
|
||||
(dataframe['rsi'] < 30),
|
||||
'enter_long'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# generate exit signals based on indicator values
|
||||
dataframe.loc[
|
||||
(dataframe['rsi'] > 70),
|
||||
'exit_long'] = 1
|
||||
|
||||
return dataframe
|
||||
```
|
||||
|
||||
## Making trades
|
||||
|
||||
When a signal is found (a `1` in an entry or exit column), Freqtrade will attempt to make an order, i.e. a `trade` or `position`.
|
||||
|
||||
Each new trade position takes up a `slot`. Slots represent the maximum number of concurrent new trades that can be opened.
|
||||
|
||||
The number of slots is defined by the `max_open_trades` [configuration](configuration.md) option.
|
||||
|
||||
However, there can be a range of scenarios where generating a signal does not always create a trade order. These include:
|
||||
|
||||
- not enough remaining stake to buy an asset, or funds in your wallet to sell an asset (including any fees)
|
||||
- not enough remaining free slots for a new trade to be opened (the number of positions you have open equals the `max_open_trades` option)
|
||||
- there is already an open trade for a pair (Freqtrade cannot stack positions - however it can [adjust existing positions](strategy-callbacks.md#adjust-trade-position))
|
||||
- if an entry and exit signal is present on the same candle, they are considered as [colliding](strategy-customization.md#colliding-signals), and no order will be raised
|
||||
- the strategy actively rejects the trade order due to logic you specify by using one of the relevant [entry](strategy-callbacks.md#trade-entry-buy-order-confirmation) or [exit](strategy-callbacks.md#trade-exit-sell-order-confirmation) callbacks
|
||||
|
||||
Read through the [strategy customization](strategy-customization.md) documentation for more details.
|
||||
|
||||
## Backtesting and forward testing
|
||||
|
||||
Strategy development can be a long and frustrating process, as turning our human "gut instincts" into a working computer-controlled
|
||||
("algo") strategy is not always straightforward.
|
||||
|
||||
Therefore a strategy should be tested to verify that it is going to work as intended.
|
||||
|
||||
Freqtrade has two testing modes:
|
||||
|
||||
- **backtesting**: using historical data that you [download from an exchange](data-download.md), backtesting is a quick way to assess performance of a strategy. However, it can be very easy to distort results so a strategy will look a lot more profitable than it really is. Check the [backtesting documentation](backtesting.md) for more information.
|
||||
- **dry run**: often referred to as _forward testing_, dry runs use real time data from the exchange. However, any signals that would result in trades are tracked as normal by Freqtrade, but do not have any trades opened on the exchange itself. Forward testing runs in real time, so whilst it takes longer to get results it is a much more reliable indicator of **potential** performance than backtesting.
|
||||
|
||||
Dry runs are enabled by setting `dry_run` to true in your [configuration](configuration.md#using-dry-run-mode).
|
||||
|
||||
!!! Warning "Backtests can be very inaccurate"
|
||||
There are many reasons why backtest results may not match reality. Please check the [backtesting assumptions](backtesting.md#assumptions-made-by-backtesting) and [common strategy mistakes](strategy-customization.md#common-mistakes-when-developing-strategies) documentation.
|
||||
Some websites that list and rank Freqtrade strategies show impressive backtest results. Do not assume these results are achieveable or realistic.
|
||||
|
||||
??? Hint "Useful commands"
|
||||
Freqtrade includes two useful commands to check for basic flaws in strategies: [lookahead-analysis](lookahead-analysis.md) and [recursive-analysis](recursive-analysis.md).
|
||||
|
||||
### Assessing backtesting and dry run results
|
||||
|
||||
Always dry run your strategy after backtesting it to see if backtesting and dry run results are sufficiently similar.
|
||||
|
||||
If there is any significant difference, verify that your entry and exit signals are consistent and appear on the same candles between the two modes. However, there will always be differences between dry runs and backtests:
|
||||
|
||||
- Backtesting assumes all orders fill. In dry runs this might not be the case if using limit orders or there is no volume on the exchange.
|
||||
- Following an entry signal on candle close, backtesting assumes trades enter at the next candle's open price (unless you have custom pricing callbacks in your strategy). In dry runs, there is often a delay between signals and trades opening.
|
||||
This is because when new candles come in on your main timeframe, e.g. every 5 minutes, it takes time for Freqtrade to analyse all pair dataframes. Therefore, Freqtrade will attempt to open trades a few seconds (ideally a small a delay as possible)
|
||||
after candle open.
|
||||
- As entry rates in dry runs might not match backtesting, this means profit calculations will also differ. Therefore, it is normal if ROI, stoploss, trailing stoploss and callback exits are not identical.
|
||||
- The more computational "lag" you have between new candles coming in and your signals being raised and trades being opened will result in greater price unpredictability. Make sure your computer is powerful enough to process the data for the number
|
||||
of pairs you have in your pairlist within a reasonable time. Freqtrade will warn you in the logs if there are significant data processing delays.
|
||||
|
||||
## Controlling or monitoring a running bot
|
||||
|
||||
Once your bot is running in dry or live mode, Freqtrade has five mechanisms to control or monitor a running bot:
|
||||
|
||||
- **[FreqUI](freq-ui.md)**: The easiest to get started with, FreqUI is a web interface to see and control current activity of your bot.
|
||||
- **[Telegram](telegram-usage.md)**: On mobile devices, Telegram integration is available to get alerts about your bot activity and to control certain aspects.
|
||||
- **[FTUI](https://github.com/freqtrade/ftui)**: FTUI is a terminal (command line) interface to Freqtrade, and allows monitoring of a running bot only.
|
||||
- **[REST API](rest-api.md)**: The REST API allows programmers to develop their own tools to interact with a Freqtrade bot.
|
||||
- **[Webhooks](webhook-config.md)**: Freqtrade can send information to other services, e.g. discord, by webhooks.
|
||||
|
||||
### Logs
|
||||
|
||||
Freqtrade generates extensive debugging logs to help you understand what's happening. Please familiarise yourself with the information and error messages you might see in your bot logs.
|
||||
|
||||
## Final Thoughts
|
||||
|
||||
Algo trading is difficult, and most public strategies are not good performers due to the time and effort to make a strategy work profitably in multiple scenarios.
|
||||
|
||||
Therefore, taking public strategies and using backtests as a way to assess performance is often problematic. However, Freqtrade provides useful ways to help you make decisions and do your due diligence.
|
||||
|
||||
There are many different ways to achieve profitability, and there is no one single tip, trick or config option that will fix a poorly performing strategy.
|
||||
|
||||
Freqtrade is an open source platform with a large and helpful community - make sure to visit our [discord channel](https://discord.gg/p7nuUNVfP7) to discuss your strategy with others!
|
||||
|
||||
As always, only invest what you are willing to lose.
|
||||
|
||||
## Conclusion
|
||||
|
||||
Developing a strategy in Freqtrade involves defining entry and exit signals based on technical indicators. By following the structure and methods outlined above, you can create and test your own trading strategies.
|
||||
|
||||
Common questions and answers are available on our [FAQ](faq.md).
|
||||
|
||||
To continue, refer to the more in-depth [Freqtrade strategy customization documentation](strategy-customization.md).
|
||||
@@ -38,9 +38,9 @@ class AwesomeStrategy(IStrategy):
|
||||
trade.set_custom_data(key='entry_type', value=trade_entry_type)
|
||||
return super().bot_loop_start(**kwargs)
|
||||
|
||||
def adjust_entry_price(self, trade: Trade, order: Optional[Order], pair: str,
|
||||
def adjust_entry_price(self, trade: Trade, order: Order | None, pair: str,
|
||||
current_time: datetime, proposed_rate: float, current_order_rate: float,
|
||||
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
||||
entry_tag: str | None, side: str, **kwargs) -> float:
|
||||
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
|
||||
if (
|
||||
pair == 'BTC/USDT'
|
||||
|
||||
@@ -90,8 +90,8 @@ Called before entering a trade, makes it possible to manage your position size w
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: Optional[float], max_stake: float,
|
||||
leverage: float, entry_tag: Optional[str], side: str,
|
||||
proposed_stake: float, min_stake: float | None, max_stake: float,
|
||||
leverage: float, entry_tag: str | None, side: str,
|
||||
**kwargs) -> float:
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
|
||||
@@ -165,7 +165,8 @@ Called for open trade every iteration (roughly every 5 seconds) until a trade is
|
||||
|
||||
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
|
||||
|
||||
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade), and is still mandatory.
|
||||
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade), and is still mandatory.
|
||||
As custom stoploss acts as regular, changing stoploss, it will behave similar to `trailing_stop` - and trades exiting due to this will have the exit_reason of `"trailing_stop_loss"`.
|
||||
|
||||
The method must return a stoploss value (float / number) as a percentage of the current price.
|
||||
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
|
||||
@@ -212,7 +213,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
"""
|
||||
Custom stoploss logic, returning the new distance relative to current_rate (as ratio).
|
||||
e.g. returning -0.05 would create a stoploss 5% below current_rate.
|
||||
@@ -250,7 +251,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
|
||||
# Make sure you have the longest interval first - these conditions are evaluated from top to bottom.
|
||||
if current_time - timedelta(minutes=120) > trade.open_date_utc:
|
||||
@@ -276,7 +277,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
|
||||
if after_fill:
|
||||
# After an additional order, start with a stoploss of 10% below the new open rate
|
||||
@@ -305,7 +306,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
|
||||
if pair in ("ETH/BTC", "XRP/BTC"):
|
||||
return -0.10
|
||||
@@ -331,7 +332,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
|
||||
if current_profit < 0.04:
|
||||
return None # return None to keep using the initial stoploss
|
||||
@@ -363,7 +364,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
|
||||
# evaluate highest to lowest, so that highest possible stop is used
|
||||
if current_profit > 0.40:
|
||||
@@ -394,7 +395,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
@@ -439,7 +440,7 @@ Stoploss values returned from `custom_stoploss()` must specify a percentage rela
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
|
||||
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
|
||||
if current_profit > 0.10:
|
||||
@@ -482,7 +483,7 @@ The helper function `stoploss_from_absolute()` can be used to convert from an ab
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
trade_date = timeframe_to_prev_date(self.timeframe, trade.open_date_utc)
|
||||
candle = dataframe.iloc[-1].squeeze()
|
||||
@@ -519,8 +520,8 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def custom_entry_price(self, pair: str, trade: Optional[Trade], current_time: datetime, proposed_rate: float,
|
||||
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
||||
def custom_entry_price(self, pair: str, trade: Trade | None, current_time: datetime, proposed_rate: float,
|
||||
entry_tag: str | None, side: str, **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
@@ -530,7 +531,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
def custom_exit_price(self, pair: str, trade: Trade,
|
||||
current_time: datetime, proposed_rate: float,
|
||||
current_profit: float, exit_tag: Optional[str], **kwargs) -> float:
|
||||
current_profit: float, exit_tag: str | None, **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
@@ -662,7 +663,7 @@ class AwesomeStrategy(IStrategy):
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
|
||||
time_in_force: str, current_time: datetime, entry_tag: str | None,
|
||||
side: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a entry order.
|
||||
@@ -820,8 +821,8 @@ class DigDeeperStrategy(IStrategy):
|
||||
|
||||
# This is called when placing the initial order (opening trade)
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: Optional[float], max_stake: float,
|
||||
leverage: float, entry_tag: Optional[str], side: str,
|
||||
proposed_stake: float, min_stake: float | None, max_stake: float,
|
||||
leverage: float, entry_tag: str | None, side: str,
|
||||
**kwargs) -> float:
|
||||
|
||||
# We need to leave most of the funds for possible further DCA orders
|
||||
@@ -830,11 +831,11 @@ class DigDeeperStrategy(IStrategy):
|
||||
|
||||
def adjust_trade_position(self, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float,
|
||||
min_stake: Optional[float], max_stake: float,
|
||||
min_stake: float | None, max_stake: float,
|
||||
current_entry_rate: float, current_exit_rate: float,
|
||||
current_entry_profit: float, current_exit_profit: float,
|
||||
**kwargs
|
||||
) -> Union[Optional[float], Tuple[Optional[float], Optional[str]]]:
|
||||
) -> float | None | tuple[float | None, str | None]:
|
||||
"""
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be
|
||||
increased or decreased.
|
||||
@@ -890,7 +891,7 @@ class DigDeeperStrategy(IStrategy):
|
||||
# Hope you have a deep wallet!
|
||||
try:
|
||||
# This returns first order stake size
|
||||
stake_amount = filled_entries[0].stake_amount
|
||||
stake_amount = filled_entries[0].stake_amount_filled
|
||||
# This then calculates current safety order size
|
||||
stake_amount = stake_amount * (1 + (count_of_entries * 0.25))
|
||||
return stake_amount, "1/3rd_increase"
|
||||
@@ -946,9 +947,9 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def adjust_entry_price(self, trade: Trade, order: Optional[Order], pair: str,
|
||||
def adjust_entry_price(self, trade: Trade, order: Order | None, pair: str,
|
||||
current_time: datetime, proposed_rate: float, current_order_rate: float,
|
||||
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
||||
entry_tag: str | None, side: str, **kwargs) -> float:
|
||||
"""
|
||||
Entry price re-adjustment logic, returning the user desired limit price.
|
||||
This only executes when a order was already placed, still open (unfilled fully or partially)
|
||||
@@ -975,7 +976,7 @@ class AwesomeStrategy(IStrategy):
|
||||
pair == "BTC/USDT"
|
||||
and entry_tag == "long_sma200"
|
||||
and side == "long"
|
||||
and (current_time - timedelta(minutes=10)) > trade.open_date_utc
|
||||
and (current_time - timedelta(minutes=10)) <= trade.open_date_utc
|
||||
):
|
||||
# just cancel the order if it has been filled more than half of the amount
|
||||
if order.filled > order.remaining:
|
||||
@@ -1003,7 +1004,7 @@ For markets / exchanges that don't support leverage, this method is ignored.
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def leverage(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_leverage: float, max_leverage: float, entry_tag: Optional[str], side: str,
|
||||
proposed_leverage: float, max_leverage: float, entry_tag: str | None, side: str,
|
||||
**kwargs) -> float:
|
||||
"""
|
||||
Customize leverage for each new trade. This method is only called in futures mode.
|
||||
|
||||
@@ -2,52 +2,93 @@
|
||||
|
||||
This page explains how to customize your strategies, add new indicators and set up trading rules.
|
||||
|
||||
Please familiarize yourself with [Freqtrade basics](bot-basics.md) first, which provides overall info on how the bot operates.
|
||||
If you haven't already, please familiarize yourself with:
|
||||
|
||||
- the [Freqtrade strategy 101](strategy-101.md), which provides a quick start to strategy development
|
||||
- the [Freqtrade bot basics](bot-basics.md), which provides overall info on how the bot operates
|
||||
|
||||
## Develop your own strategy
|
||||
|
||||
The bot includes a default strategy file.
|
||||
|
||||
Also, several other strategies are available in the [strategy repository](https://github.com/freqtrade/freqtrade-strategies).
|
||||
|
||||
You will however most likely have your own idea for a strategy.
|
||||
This document intends to help you convert your strategy idea into your own strategy.
|
||||
|
||||
To get started, use `freqtrade new-strategy --strategy AwesomeStrategy` (you can obviously use your own naming for your strategy).
|
||||
This will create a new strategy file from a template, which will be located under `user_data/strategies/AwesomeStrategy.py`.
|
||||
This document intends to help you convert your ideas into a working strategy.
|
||||
|
||||
### Generating a strategy template
|
||||
|
||||
To get started, you can use the command:
|
||||
|
||||
```bash
|
||||
freqtrade new-strategy --strategy AwesomeStrategy
|
||||
```
|
||||
|
||||
This will create a new strategy called `AwesomeStrategy` from a template, which will be located using the filename `user_data/strategies/AwesomeStrategy.py`.
|
||||
|
||||
!!! Note
|
||||
This is just a template file, which will most likely not be profitable out of the box.
|
||||
There is a difference between the *name* of the strategy and the filename. In most commands, Freqtrade uses the *name* of the strategy, *not the filename*.
|
||||
|
||||
!!! Note
|
||||
The `new-strategy` command generates starting examples which will not be profitable out of the box.
|
||||
|
||||
??? Hint "Different template levels"
|
||||
`freqtrade new-strategy` has an additional parameter, `--template`, which controls the amount of pre-build information you get in the created strategy. Use `--template minimal` to get an empty strategy without any indicator examples, or `--template advanced` to get a template with most callbacks defined.
|
||||
`freqtrade new-strategy` has an additional parameter, `--template`, which controls the amount of pre-build information you get in the created strategy. Use `--template minimal` to get an empty strategy without any indicator examples, or `--template advanced` to get a template with more complicated features defined.
|
||||
|
||||
### Anatomy of a strategy
|
||||
|
||||
A strategy file contains all the information needed to build a good strategy:
|
||||
A strategy file contains all the information needed to build the strategy logic:
|
||||
|
||||
- Candle data in OHLCV format
|
||||
- Indicators
|
||||
- Entry strategy rules
|
||||
- Exit strategy rules
|
||||
- Minimal ROI recommended
|
||||
- Stoploss strongly recommended
|
||||
- Entry logic
|
||||
- Signals
|
||||
- Exit logic
|
||||
- Signals
|
||||
- Minimal ROI
|
||||
- Callbacks ("custom functions")
|
||||
- Stoploss
|
||||
- Fixed/absolute
|
||||
- Trailing
|
||||
- Callbacks ("custom functions")
|
||||
- Pricing [optional]
|
||||
- Position adjustment [optional]
|
||||
|
||||
The bot also include a sample strategy called `SampleStrategy` you can update: `user_data/strategies/sample_strategy.py`.
|
||||
You can test it with the parameter: `--strategy SampleStrategy`
|
||||
The bot includes a sample strategy called `SampleStrategy` that you can use as a basis: `user_data/strategies/sample_strategy.py`.
|
||||
You can test it with the parameter: `--strategy SampleStrategy`. Remember that you use the strategy class name, not the filename.
|
||||
|
||||
Additionally, there is an attribute called `INTERFACE_VERSION`, which defines the version of the strategy interface the bot should use.
|
||||
The current version is 3 - which is also the default when it's not set explicitly in the strategy.
|
||||
|
||||
Future versions will require this to be set.
|
||||
You may see older strategies set to interface version 2, and these will need to be updated to v3 terminology as future versions will require this to be set.
|
||||
|
||||
Starting the bot in dry or live mode is accomplished using the `trade` command:
|
||||
|
||||
```bash
|
||||
freqtrade trade --strategy AwesomeStrategy
|
||||
```
|
||||
|
||||
### Bot modes
|
||||
|
||||
Freqtrade strategies can be processed by the Freqtrade bot in 5 main modes:
|
||||
|
||||
- backtesting
|
||||
- hyperopting
|
||||
- dry ("forward testing")
|
||||
- live
|
||||
- FreqAI (not covered here)
|
||||
|
||||
Check the [configuration documentation](configuration.md) about how to set the bot to dry or live mode.
|
||||
|
||||
**Always use dry mode when testing as this gives you an idea of how your strategy will work in reality without risking capital.**
|
||||
|
||||
## Diving in deeper
|
||||
**For the following section we will use the [user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_strategy.py)
|
||||
file as reference.**
|
||||
|
||||
!!! Note "Strategies and Backtesting"
|
||||
To avoid problems and unexpected differences between Backtesting and dry/live modes, please be aware
|
||||
To avoid problems and unexpected differences between backtesting and dry/live modes, please be aware
|
||||
that during backtesting the full time range is passed to the `populate_*()` methods at once.
|
||||
It is therefore best to use vectorized operations (across the whole dataframe, not loops) and
|
||||
avoid index referencing (`df.iloc[-1]`), but instead use `df.shift()` to get to the previous candle.
|
||||
@@ -57,14 +98,22 @@ file as reference.**
|
||||
needs to take care to avoid having the strategy utilize data from the future.
|
||||
Some common patterns for this are listed in the [Common Mistakes](#common-mistakes-when-developing-strategies) section of this document.
|
||||
|
||||
??? Hint "Lookahead and recursive analysis"
|
||||
Freqtrade includes two helpful commands to help assess common lookahead (using future data) and
|
||||
recursive bias (variance in indicator values) issues. Before running a strategy in dry or live more,
|
||||
you should always use these commands first. Please check the relevant documentation for
|
||||
[lookahead](lookahead-analysis.md) and [recursive](recursive-analysis.md) analysis.
|
||||
|
||||
### Dataframe
|
||||
|
||||
Freqtrade uses [pandas](https://pandas.pydata.org/) to store/provide the candlestick (OHLCV) data.
|
||||
Pandas is a great library developed for processing large amounts of data.
|
||||
Pandas is a great library developed for processing large amounts of data in tabular format.
|
||||
|
||||
Each row in a dataframe corresponds to one candle on a chart, with the latest candle always being the last in the dataframe (sorted by date).
|
||||
Each row in a dataframe corresponds to one candle on a chart, with the latest complete candle always being the last in the dataframe (sorted by date).
|
||||
|
||||
``` output
|
||||
If we were to look at the first few rows of the main dataframe using the pandas `head()` function, we would see:
|
||||
|
||||
```output
|
||||
> dataframe.head()
|
||||
date open high low close volume
|
||||
0 2021-11-09 23:25:00+00:00 67279.67 67321.84 67255.01 67300.97 44.62253
|
||||
@@ -74,20 +123,16 @@ Each row in a dataframe corresponds to one candle on a chart, with the latest ca
|
||||
4 2021-11-09 23:45:00+00:00 67160.48 67160.48 66901.26 66943.37 111.39292
|
||||
```
|
||||
|
||||
Pandas provides fast ways to calculate metrics. To benefit from this speed, it's advised to not use loops, but use vectorized methods instead.
|
||||
|
||||
Vectorized operations perform calculations across the whole range of data and are therefore, compared to looping through each row, a lot faster when calculating indicators.
|
||||
|
||||
As a dataframe is a table, simple python comparisons like the following will not work
|
||||
A dataframe is a table where columns are not single values, but a series of data values. As such, simple python comparisons like the following will not work:
|
||||
|
||||
``` python
|
||||
if dataframe['rsi'] > 30:
|
||||
dataframe['enter_long'] = 1
|
||||
```
|
||||
|
||||
The above section will fail with `The truth value of a Series is ambiguous. [...]`.
|
||||
The above section will fail with `The truth value of a Series is ambiguous [...]`.
|
||||
|
||||
This must instead be written in a pandas-compatible way, so the operation is performed across the whole dataframe.
|
||||
This must instead be written in a pandas-compatible way, so the operation is performed across the whole dataframe, i.e. `vectorisation`.
|
||||
|
||||
``` python
|
||||
dataframe.loc[
|
||||
@@ -97,13 +142,38 @@ This must instead be written in a pandas-compatible way, so the operation is per
|
||||
|
||||
With this section, you have a new column in your dataframe, which has `1` assigned whenever RSI is above 30.
|
||||
|
||||
Freqtrade uses this new column as an entry signal, where it is assumed that a trade will subsequently open on the next open candle.
|
||||
|
||||
Pandas provides fast ways to calculate metrics, i.e. "vectorisation". To benefit from this speed, it is advised to not use loops, but use vectorized methods instead.
|
||||
|
||||
Vectorized operations perform calculations across the whole range of data and are therefore, compared to looping through each row, a lot faster when calculating indicators.
|
||||
|
||||
??? Hint "Signals vs Trades"
|
||||
- Signals are generated from indicators at candle close, and are intentions to enter a trade.
|
||||
- Trades are orders that are executed (on the exchange in live mode) where a trade will then open as close to next candle open as possible.
|
||||
|
||||
!!! Warning "Trade order assumptions"
|
||||
In backtesting, signals are generated on candle close. Trades are then initiated immeditely on next candle open.
|
||||
|
||||
In dry and live, this may be delayed due to all pair dataframes needing to be analysed first, then trade processing
|
||||
for each of those pairs happens. This means that in dry/live you need to be mindful of having as low a computation
|
||||
delay as possible, usually by running a low number of pairs and having a CPU with a good clock speed.
|
||||
|
||||
#### Why can't I see "real time" candle data?
|
||||
|
||||
Freqtrade does not store incomplete/unfinished candles in the dataframe.
|
||||
|
||||
The use of incomplete data for making strategy decisions is called "repainting" and you might see other platforms allow this.
|
||||
|
||||
Freqtrade does not. Only complete/finished candle data is available in the dataframe.
|
||||
|
||||
### Customize Indicators
|
||||
|
||||
Buy and sell signals need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
|
||||
Entry and exit signals need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
|
||||
|
||||
You should only add the indicators used in either `populate_entry_trend()`, `populate_exit_trend()`, or to populate another indicator, otherwise performance may suffer.
|
||||
|
||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
||||
It's important to always return the dataframe from these three functions without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
||||
|
||||
Sample:
|
||||
|
||||
@@ -124,7 +194,7 @@ def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame
|
||||
stoch = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch['fastd']
|
||||
dataframe['fastk'] = stoch['fastk']
|
||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
||||
dataframe['bb_lower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
@@ -145,6 +215,8 @@ def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# remember to always return the dataframe
|
||||
return dataframe
|
||||
```
|
||||
|
||||
@@ -164,11 +236,13 @@ Additional technical libraries can be installed as necessary, or custom indicato
|
||||
|
||||
### Strategy startup period
|
||||
|
||||
Most indicators have an instable startup period, in which they are either not available (NaN), or the calculation is incorrect. This can lead to inconsistencies, since Freqtrade does not know how long this instable period should be.
|
||||
Some indicators have an unstable startup period in which there isn't enough candle data to calculate any values (NaN), or the calculation is incorrect. This can lead to inconsistencies, since Freqtrade does not know how long this unstable period is and uses whatever indicator values are in the dataframe.
|
||||
|
||||
To account for this, the strategy can be assigned the `startup_candle_count` attribute.
|
||||
|
||||
This should be set to the maximum number of candles that the strategy requires to calculate stable indicators. In the case where a user includes higher timeframes with informative pairs, the `startup_candle_count` does not necessarily change. The value is the maximum period (in candles) that any of the informatives timeframes need to compute stable indicators.
|
||||
|
||||
You can use [recursive-analysis](recursive-analysis.md) to check and find the correct `startup_candle_count` to be used.
|
||||
You can use [recursive-analysis](recursive-analysis.md) to check and find the correct `startup_candle_count` to be used. When recursive analysis shows a variance of 0%, then you can be sure that you have enough startup candle data.
|
||||
|
||||
In this example strategy, this should be set to 400 (`startup_candle_count = 400`), since the minimum needed history for ema100 calculation to make sure the value is correct is 400 candles.
|
||||
|
||||
@@ -195,19 +269,22 @@ Let's try to backtest 1 month (January 2019) of 5m candles using an example stra
|
||||
freqtrade backtesting --timerange 20190101-20190201 --timeframe 5m
|
||||
```
|
||||
|
||||
Assuming `startup_candle_count` is set to 400, backtesting knows it needs 400 candles to generate valid buy signals. It will load data from `20190101 - (400 * 5m)` - which is ~2018-12-30 11:40:00.
|
||||
If this data is available, indicators will be calculated with this extended timerange. The instable startup period (up to 2019-01-01 00:00:00) will then be removed before starting backtesting.
|
||||
Assuming `startup_candle_count` is set to 400, backtesting knows it needs 400 candles to generate valid entry signals. It will load data from `20190101 - (400 * 5m)` - which is ~2018-12-30 11:40:00.
|
||||
|
||||
!!! Note
|
||||
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period - so Backtesting would start at 2019-01-02 09:20:00.
|
||||
If this data is available, indicators will be calculated with this extended timerange. The unstable startup period (up to 2019-01-01 00:00:00) will then be removed before backtesting is carried out.
|
||||
|
||||
!!! Note "Unavailable startup candle data"
|
||||
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period. In our example, backtesting would then start from 2019-01-02 09:20:00.
|
||||
|
||||
### Entry signal rules
|
||||
|
||||
Edit the method `populate_entry_trend()` in your strategy file to update your entry strategy.
|
||||
|
||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected. The strategy may then produce invalid values, or cease to work entirely.
|
||||
|
||||
This method will also define a new column, `"enter_long"` (`"enter_short"` for shorts), which needs to contain 1 for entries, and 0 for "no action". `enter_long` is a mandatory column that must be set even if the strategy is shorting only.
|
||||
This method will also define a new column, `"enter_long"` (`"enter_short"` for shorts), which needs to contain `1` for entries, and `0` for "no action". `enter_long` is a mandatory column that must be set even if the strategy is shorting only.
|
||||
|
||||
You can name your entry signals by using the `"enter_tag"` column, which can help debug and assess your strategy later.
|
||||
|
||||
Sample from `user_data/strategies/sample_strategy.py`:
|
||||
|
||||
@@ -232,12 +309,15 @@ def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram
|
||||
```
|
||||
|
||||
??? Note "Enter short trades"
|
||||
Short-entries can be created by setting `enter_short` (corresponds to `enter_long` for long trades).
|
||||
Short entries can be created by setting `enter_short` (corresponds to `enter_long` for long trades).
|
||||
The `enter_tag` column remains identical.
|
||||
Short-trades need to be supported by your exchange and market configuration!
|
||||
Please make sure to set [`can_short`]() appropriately on your strategy if you intend to short.
|
||||
Shorting needs to be supported by your exchange and market configuration!
|
||||
Also, make sure you set [`can_short`](#can-short) appropriately on your strategy if you intend to short.
|
||||
|
||||
```python
|
||||
# allow both long and short trades
|
||||
can_short = True
|
||||
|
||||
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
@@ -261,17 +341,21 @@ def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram
|
||||
```
|
||||
|
||||
!!! Note
|
||||
Buying requires sellers to buy from - therefore volume needs to be > 0 (`dataframe['volume'] > 0`) to make sure that the bot does not buy/sell in no-activity periods.
|
||||
Buying requires sellers to buy from. Therefore volume needs to be > 0 (`dataframe['volume'] > 0`) to make sure that the bot does not buy/sell in no-activity periods.
|
||||
|
||||
### Exit signal rules
|
||||
|
||||
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
|
||||
|
||||
The exit-signal can be suppressed by setting `use_exit_signal` to false in the configuration or strategy.
|
||||
|
||||
`use_exit_signal` will not influence [signal collision rules](#colliding-signals) - which will still apply and can prevent entries.
|
||||
|
||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected. The strategy may then produce invalid values, or cease to work entirely.
|
||||
|
||||
This method will also define a new column, `"exit_long"` (`"exit_short"` for shorts), which needs to contain 1 for exits, and 0 for "no action".
|
||||
This method will also define a new column, `"exit_long"` (`"exit_short"` for shorts), which needs to contain `1` for exits, and `0` for "no action".
|
||||
|
||||
You can name your exit signals by using the `"exit_tag"` column, which can help debug and assess your strategy later.
|
||||
|
||||
Sample from `user_data/strategies/sample_strategy.py`:
|
||||
|
||||
@@ -295,11 +379,15 @@ def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame
|
||||
```
|
||||
|
||||
??? Note "Exit short trades"
|
||||
Short-exits can be created by setting `exit_short` (corresponds to `exit_long`).
|
||||
Short exits can be created by setting `exit_short` (corresponds to `exit_long`).
|
||||
The `exit_tag` column remains identical.
|
||||
Short-trades need to be supported by your exchange and market configuration!
|
||||
Shorting needs to be supported by your exchange and market configuration!
|
||||
Also, make sure you set [`can_short`](#can-short) appropriately on your strategy if you intend to short.
|
||||
|
||||
```python
|
||||
# allow both long and short trades
|
||||
can_short = True
|
||||
|
||||
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
@@ -322,9 +410,9 @@ def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame
|
||||
|
||||
### Minimal ROI
|
||||
|
||||
This dict defines the minimal Return On Investment (ROI) a trade should reach before exiting, independent from the exit signal.
|
||||
The `minimal_roi` strategy variable defines the minimal Return On Investment (ROI) a trade should reach before exiting, independent from the exit signal.
|
||||
|
||||
It is of the following format, with the dict key (left side of the colon) being the minutes passed since the trade opened, and the value (right side of the colon) being the percentage.
|
||||
It is of the following format, i.e. a python `dict`, with the dict key (left side of the colon) being the minutes passed since the trade opened, and the value (right side of the colon) being the percentage.
|
||||
|
||||
```python
|
||||
minimal_roi = {
|
||||
@@ -344,14 +432,19 @@ The above configuration would therefore mean:
|
||||
|
||||
The calculation does include fees.
|
||||
|
||||
#### Disabling minimal ROI
|
||||
|
||||
To disable ROI completely, set it to an empty dictionary:
|
||||
|
||||
```python
|
||||
minimal_roi = {}
|
||||
```
|
||||
|
||||
#### Using calculations in minimal ROI
|
||||
|
||||
To use times based on candle duration (timeframe), the following snippet can be handy.
|
||||
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
|
||||
|
||||
This will allow you to change the timeframe for the strategy, but the minimal ROI times will still be set as candles, e.g. after 3 candles.
|
||||
|
||||
``` python
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
@@ -368,9 +461,9 @@ class AwesomeStrategy(IStrategy):
|
||||
```
|
||||
|
||||
??? info "Orders that don't fill immediately"
|
||||
`minimal_roi` will take the `trade.open_date` as reference, which is the time the trade was initialized / the first order for this trade was placed.
|
||||
This will also hold true for limit orders that don't fill immediately (usually in combination with "off-spot" prices through `custom_entry_price()`), as well as for cases where the initial order is replaced through `adjust_entry_price()`.
|
||||
The time used will still be from the initial `trade.open_date` (when the initial order was first placed), not from the newly placed order date.
|
||||
`minimal_roi` will take the `trade.open_date` as reference, which is the time the trade was initialized, i.e. when the first order for this trade was placed.
|
||||
This will also hold true for limit orders that don't fill immediately (usually in combination with "off-spot" prices through `custom_entry_price()`), as well as for cases where the initial order price is replaced through `adjust_entry_price()`.
|
||||
The time used will still be from the initial `trade.open_date` (when the initial order was first placed), not from the newly placed or adjusted order date.
|
||||
|
||||
### Stoploss
|
||||
|
||||
@@ -386,35 +479,44 @@ For the full documentation on stoploss features, look at the dedicated [stoploss
|
||||
|
||||
### Timeframe
|
||||
|
||||
This is the set of candles the bot should download and use for the analysis.
|
||||
This is the periodicity of candles the bot should use in the strategy.
|
||||
|
||||
Common values are `"1m"`, `"5m"`, `"15m"`, `"1h"`, however all values supported by your exchange should work.
|
||||
|
||||
Please note that the same entry/exit signals may work well with one timeframe, but not with the others.
|
||||
Please note that the same entry/exit signals may work well with one timeframe, but not with others.
|
||||
|
||||
This setting is accessible within the strategy methods as the `self.timeframe` attribute.
|
||||
|
||||
### Can short
|
||||
|
||||
To use short signals in futures markets, you will have to let us know to do so by setting `can_short=True`.
|
||||
To use short signals in futures markets, you will have to set `can_short = True`.
|
||||
|
||||
Strategies which enable this will fail to load on spot markets.
|
||||
Disabling of this will have short signals ignored (also in futures markets).
|
||||
|
||||
If you have `1` values in the `enter_short` column to raise short signals, setting `can_short = False` (which is the default) will mean that these short signals are ignored, even if you have specified futures markets in your configuration.
|
||||
|
||||
### Metadata dict
|
||||
|
||||
The metadata-dict (available for `populate_entry_trend`, `populate_exit_trend`, `populate_indicators`) contains additional information.
|
||||
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
|
||||
The `metadata` dict (available for `populate_entry_trend`, `populate_exit_trend`, `populate_indicators`) contains additional information.
|
||||
Currently this is `pair`, which can be accessed using `metadata['pair']`, and will return a pair in the format `XRP/BTC` (or `XRP/BTC:BTC` for futures markets).
|
||||
|
||||
The Metadata-dict should not be modified and does not persist information across multiple calls.
|
||||
Instead, have a look at the [Storing information](strategy-advanced.md#storing-information-persistent) section.
|
||||
The metadata dict should not be modified and does not persist information across multiple functions in your strategy.
|
||||
|
||||
Instead, please check the [Storing information](strategy-advanced.md#storing-information-persistent) section.
|
||||
|
||||
--8<-- "includes/strategy-imports.md"
|
||||
|
||||
## Strategy file loading
|
||||
|
||||
By default, freqtrade will attempt to load strategies from all `.py` files within `user_data/strategies`.
|
||||
By default, freqtrade will attempt to load strategies from all `.py` files within the `userdir` (default `user_data/strategies`).
|
||||
|
||||
Assuming your strategy is called `AwesomeStrategy`, stored in the file `user_data/strategies/AwesomeStrategy.py`, then you can start freqtrade with `freqtrade trade --strategy AwesomeStrategy`.
|
||||
Note that we're using the class-name, not the file name.
|
||||
Assuming your strategy is called `AwesomeStrategy`, stored in the file `user_data/strategies/AwesomeStrategy.py`, then you can start freqtrade in dry (or live, depending on your configuration) mode with:
|
||||
|
||||
```bash
|
||||
freqtrade trade --strategy AwesomeStrategy`
|
||||
```
|
||||
|
||||
Note that we're using the class name, not the file name.
|
||||
|
||||
You can use `freqtrade list-strategies` to see a list of all strategies Freqtrade is able to load (all strategies in the correct folder).
|
||||
It will also include a "status" field, highlighting potential problems.
|
||||
@@ -426,9 +528,11 @@ It will also include a "status" field, highlighting potential problems.
|
||||
|
||||
### Get data for non-tradeable pairs
|
||||
|
||||
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies.
|
||||
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies to see data on a wider timeframe.
|
||||
|
||||
OHLCV data for these pairs will be downloaded as part of the regular whitelist refresh process and is available via `DataProvider` just as other pairs (see below).
|
||||
These parts will **not** be traded unless they are also specified in the pair whitelist, or have been selected by Dynamic Whitelisting.
|
||||
|
||||
These pairs will **not** be traded unless they are also specified in the pair whitelist, or have been selected by Dynamic Whitelisting, e.g. `VolumePairlist`.
|
||||
|
||||
The pairs need to be specified as tuples in the format `("pair", "timeframe")`, with pair as the first and timeframe as the second argument.
|
||||
|
||||
@@ -468,18 +572,24 @@ A full sample can be found [in the DataProvider section](#complete-data-provider
|
||||
|
||||
### Informative pairs decorator (`@informative()`)
|
||||
|
||||
In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation,
|
||||
not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method.
|
||||
When hyperopting, use of hyperoptable parameter `.value` attribute is not supported. Please use `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter)
|
||||
for more information.
|
||||
To easily define informative pairs, use the `@informative` decorator. All decorated `populate_indicators_*` methods run in isolation,
|
||||
and do not have access to data from other informative pairs. However, all informative dataframes for each pair are merged and passed to main `populate_indicators()` method.
|
||||
|
||||
!!! Note
|
||||
Do not use the `@informative` decorator if you need to use data from one informative pair when generating another informative pair. Instead, define informative pairs manually as described [in the DataProvider section](#complete-data-provider-sample).
|
||||
|
||||
When hyperopting, use of the hyperoptable parameter `.value` attribute is not supported. Please use the `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter) for more information.
|
||||
|
||||
??? info "Full documentation"
|
||||
``` python
|
||||
def informative(timeframe: str, asset: str = '',
|
||||
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
|
||||
*,
|
||||
candle_type: Optional[CandleType] = None,
|
||||
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
|
||||
def informative(
|
||||
timeframe: str,
|
||||
asset: str = "",
|
||||
fmt: str | Callable[[Any], str] | None = None,
|
||||
*,
|
||||
candle_type: CandleType | str | None = None,
|
||||
ffill: bool = True,
|
||||
) -> Callable[[PopulateIndicators], PopulateIndicators]:
|
||||
"""
|
||||
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
|
||||
define informative indicators.
|
||||
@@ -568,10 +678,6 @@ for more information.
|
||||
|
||||
```
|
||||
|
||||
!!! Note
|
||||
Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs
|
||||
manually as described [in the DataProvider section](#complete-data-provider-sample).
|
||||
|
||||
!!! Note
|
||||
Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code.
|
||||
|
||||
@@ -592,18 +698,15 @@ for more information.
|
||||
Alternatively column renaming may be used to remove stake currency from column names: `@informative('1h', 'BTC/{stake}', fmt='{base}_{column}_{timeframe}')`.
|
||||
|
||||
!!! Warning "Duplicate method names"
|
||||
Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method)
|
||||
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
|
||||
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
|
||||
Methods tagged with the `@informative()` decorator must always have unique names! Reusing the same name (for example when copy-pasting already defined informative methods) will overwrite previously defined methods and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators created in methods higher up in the strategy file are not available in the dataframe. Carefully review method names and make sure they are unique!
|
||||
|
||||
### *merge_informative_pair()*
|
||||
|
||||
This method helps you merge an informative pair to a regular dataframe without lookahead bias.
|
||||
It's there to help you merge the dataframe in a safe and consistent way.
|
||||
This method helps you merge an informative pair to the regular main dataframe safely and consistently, without lookahead bias.
|
||||
|
||||
Options:
|
||||
|
||||
- Rename the columns for you to create unique columns
|
||||
- Rename the columns to create unique columns
|
||||
- Merge the dataframe without lookahead bias
|
||||
- Forward-fill (optional)
|
||||
|
||||
@@ -654,20 +757,20 @@ All columns of the informative dataframe will be available on the returning data
|
||||
```
|
||||
|
||||
!!! Warning "Informative timeframe < timeframe"
|
||||
Using informative timeframes smaller than the dataframe timeframe is not recommended with this method, as it will not use any of the additional information this would provide.
|
||||
To use the more detailed information properly, more advanced methods should be applied (which are out of scope for freqtrade documentation, as it'll depend on the respective need).
|
||||
Using informative timeframes smaller than the main dataframe timeframe is not recommended with this method, as it will not use any of the additional information this would provide.
|
||||
To use the more detailed information properly, more advanced methods should be applied (which are out of scope for this documentation).
|
||||
|
||||
## Additional data (DataProvider)
|
||||
|
||||
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
|
||||
|
||||
All methods return `None` in case of failure (do not raise an exception).
|
||||
All methods return `None` in case of failure, i.e. failures do not raise an exception.
|
||||
|
||||
Please always check the mode of operation to select the correct method to get data (samples see below).
|
||||
Please always check the mode of operation to select the correct method to get data (see below for examples).
|
||||
|
||||
!!! Warning "Hyperopt"
|
||||
Dataprovider is available during hyperopt, however it can only be used in `populate_indicators()` within a strategy.
|
||||
It is not available in `populate_buy()` and `populate_sell()` methods, nor in `populate_indicators()`, if this method located in the hyperopt file.
|
||||
!!! Warning "Hyperopt Limitations"
|
||||
The DataProvider is available during hyperopt, however it can only be used in `populate_indicators()` **within a strategy**, not within a hyperopt class file.
|
||||
It is also not available in `populate_entry_trend()` and `populate_exit_trend()` methods.
|
||||
|
||||
### Possible options for DataProvider
|
||||
|
||||
@@ -693,31 +796,31 @@ for pair, timeframe in self.dp.available_pairs:
|
||||
|
||||
### *current_whitelist()*
|
||||
|
||||
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume.
|
||||
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 exchange pairs by volume.
|
||||
|
||||
The strategy might look something like this:
|
||||
The strategy logic might look something like this:
|
||||
|
||||
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to buy and sell.*
|
||||
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to enter and exit.*
|
||||
|
||||
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500-1000 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
|
||||
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit users to just 500-1000 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
|
||||
|
||||
Since we can't resample the data we will have to use an informative pair; and since the whitelist will be dynamic we don't know which pair(s) to use.
|
||||
Since we can't resample the data we will have to use an informative pair, and since the whitelist will be dynamic we don't know which pair(s) to use! We have a problem!
|
||||
|
||||
This is where calling `self.dp.current_whitelist()` comes in handy.
|
||||
This is where calling `self.dp.current_whitelist()` comes in handy to retrieve only those pairs in the whitelist.
|
||||
|
||||
```python
|
||||
def informative_pairs(self):
|
||||
|
||||
# get access to all pairs available in whitelist.
|
||||
pairs = self.dp.current_whitelist()
|
||||
# Assign tf to each pair so they can be downloaded and cached for strategy.
|
||||
# Assign timeframe to each pair so they can be downloaded and cached for strategy.
|
||||
informative_pairs = [(pair, '1d') for pair in pairs]
|
||||
return informative_pairs
|
||||
```
|
||||
|
||||
??? Note "Plotting with current_whitelist"
|
||||
Current whitelist is not supported for `plot-dataframe`, as this command is usually used by providing an explicit pairlist - and would therefore make the return values of this method misleading.
|
||||
It's also not supported for freqUI visualization in [webserver mode](utils.md#webserver-mode) - as the configuration for webserver mode doesn't require a pairlist to be set.
|
||||
Current whitelist is not supported for `plot-dataframe`, as this command is usually used by providing an explicit pairlist and would therefore make the return values of this method misleading.
|
||||
It's also not supported for FreqUI visualization in [webserver mode](utils.md#webserver-mode), as the configuration for webserver mode doesn't require a pairlist to be set.
|
||||
|
||||
### *get_pair_dataframe(pair, timeframe)*
|
||||
|
||||
@@ -758,7 +861,7 @@ if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
dataframe['best_ask'] = ob['asks'][0][0]
|
||||
```
|
||||
|
||||
The orderbook structure is aligned with the order structure from [ccxt](https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure), so the result will look as follows:
|
||||
The orderbook structure is aligned with the order structure from [ccxt](https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure), so the result will be formatted as follows:
|
||||
|
||||
``` js
|
||||
{
|
||||
@@ -776,7 +879,7 @@ The orderbook structure is aligned with the order structure from [ccxt](https://
|
||||
}
|
||||
```
|
||||
|
||||
Therefore, using `ob['bids'][0][0]` as demonstrated above will result in using the best bid price. `ob['bids'][0][1]` would look at the amount at this orderbook position.
|
||||
Therefore, using `ob['bids'][0][0]` as demonstrated above will use the best bid price. `ob['bids'][0][1]` would look at the amount at this orderbook position.
|
||||
|
||||
!!! Warning "Warning about backtesting"
|
||||
The order book is not part of the historic data which means backtesting and hyperopt will not work correctly if this method is used, as the method will return up-to-date values.
|
||||
@@ -793,12 +896,12 @@ if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
|
||||
!!! Warning
|
||||
Although the ticker data structure is a part of the ccxt Unified Interface, the values returned by this method can
|
||||
vary for different exchanges. For instance, many exchanges do not return `vwap` values, some exchanges
|
||||
does not always fills in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
|
||||
vary for different exchanges. For instance, many exchanges do not return `vwap` values, and some exchanges
|
||||
do not always fill in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
|
||||
data returned from the exchange and add appropriate error handling / defaults.
|
||||
|
||||
!!! Warning "Warning about backtesting"
|
||||
This method will always return up-to-date values - so usage during backtesting / hyperopt without runmode checks will lead to wrong results.
|
||||
This method will always return up-to-date / real-time values. As such, usage during backtesting / hyperopt without runmode checks will lead to wrong results, e.g. your whole dataframe will contain the same single value in all rows.
|
||||
|
||||
### Send Notification
|
||||
|
||||
@@ -817,7 +920,7 @@ Notifications will only be sent in trading modes (Live/Dry-run) - so this method
|
||||
!!! Warning "Spamming"
|
||||
You can spam yourself pretty good by setting `always_send=True` in this method. Use this with great care and only in conditions you know will not happen throughout a candle to avoid a message every 5 seconds.
|
||||
|
||||
### Complete Data-provider sample
|
||||
### Complete DataProvider sample
|
||||
|
||||
```python
|
||||
from freqtrade.strategy import IStrategy, merge_informative_pair
|
||||
@@ -884,14 +987,14 @@ class SampleStrategy(IStrategy):
|
||||
|
||||
## Additional data (Wallets)
|
||||
|
||||
The strategy provides access to the `wallets` object. This contains the current balances on the exchange.
|
||||
The strategy provides access to the `wallets` object. This contains the current balances of your wallets/accounts on the exchange.
|
||||
|
||||
!!! Note "Backtesting / Hyperopt"
|
||||
Wallets behaves differently depending on the function it's called.
|
||||
Wallets behaves differently depending on the function from which it is called.
|
||||
Within `populate_*()` methods, it'll return the full wallet as configured.
|
||||
Within [callbacks](strategy-callbacks.md), you'll get the wallet state corresponding to the actual simulated wallet at that point in the simulation process.
|
||||
|
||||
Please always check if `wallets` is available to avoid failures during backtesting.
|
||||
Always check if `wallets` is available to avoid failures during backtesting.
|
||||
|
||||
``` python
|
||||
if self.wallets:
|
||||
@@ -910,15 +1013,15 @@ if self.wallets:
|
||||
|
||||
## Additional data (Trades)
|
||||
|
||||
A history of Trades can be retrieved in the strategy by querying the database.
|
||||
A history of trades can be retrieved in the strategy by querying the database.
|
||||
|
||||
At the top of the file, import Trade.
|
||||
At the top of the file, import the required object:
|
||||
|
||||
```python
|
||||
from freqtrade.persistence import Trade
|
||||
```
|
||||
|
||||
The following example queries for the current pair and trades from today, however other filters can easily be added.
|
||||
The following example queries trades from today for the current pair (`metadata['pair']`). Other filters can easily be added.
|
||||
|
||||
``` python
|
||||
trades = Trade.get_trades_proxy(pair=metadata['pair'],
|
||||
@@ -936,7 +1039,9 @@ For a full list of available methods, please consult the [Trade object](trade-ob
|
||||
|
||||
## Prevent trades from happening for a specific pair
|
||||
|
||||
Freqtrade locks pairs automatically for the current candle (until that candle is over) when a pair is sold, preventing an immediate re-buy of that pair.
|
||||
Freqtrade locks pairs automatically for the current candle (until that candle is over) when a pair exits, preventing an immediate re-entry of that pair.
|
||||
|
||||
This is to prevent "waterfalls" of many and frequent trades within a single candle.
|
||||
|
||||
Locked pairs will show the message `Pair <pair> is currently locked.`.
|
||||
|
||||
@@ -947,7 +1052,7 @@ Sometimes it may be desired to lock a pair after certain events happen (e.g. mul
|
||||
Freqtrade has an easy method to do this from within the strategy, by calling `self.lock_pair(pair, until, [reason])`.
|
||||
`until` must be a datetime object in the future, after which trading will be re-enabled for that pair, while `reason` is an optional string detailing why the pair was locked.
|
||||
|
||||
Locks can also be lifted manually, by calling `self.unlock_pair(pair)` or `self.unlock_reason(<reason>)` - providing reason the pair was locked with.
|
||||
Locks can also be lifted manually, by calling `self.unlock_pair(pair)` or `self.unlock_reason(<reason>)`, providing the reason the pair was unlocked.
|
||||
`self.unlock_reason(<reason>)` will unlock all pairs currently locked with the provided reason.
|
||||
|
||||
To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
|
||||
@@ -956,7 +1061,7 @@ To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
|
||||
Locked pairs will always be rounded up to the next candle. So assuming a `5m` timeframe, a lock with `until` set to 10:18 will lock the pair until the candle from 10:15-10:20 will be finished.
|
||||
|
||||
!!! Warning
|
||||
Manually locking pairs is not available during backtesting, only locks via Protections are allowed.
|
||||
Manually locking pairs is not available during backtesting. Only locks via Protections are allowed.
|
||||
|
||||
#### Pair locking example
|
||||
|
||||
@@ -966,7 +1071,7 @@ from datetime import timedelta, datetime, timezone
|
||||
# Put the above lines a the top of the strategy file, next to all the other imports
|
||||
# --------
|
||||
|
||||
# Within populate indicators (or populate_buy):
|
||||
# Within populate indicators (or populate_entry_trend):
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
# fetch closed trades for the last 2 days
|
||||
trades = Trade.get_trades_proxy(
|
||||
@@ -979,9 +1084,9 @@ if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
self.lock_pair(metadata['pair'], until=datetime.now(timezone.utc) + timedelta(hours=12))
|
||||
```
|
||||
|
||||
## Print created dataframe
|
||||
## Print the main dataframe
|
||||
|
||||
To inspect the created dataframe, you can issue a print-statement in either `populate_entry_trend()` or `populate_exit_trend()`.
|
||||
To inspect the current main dataframe, you can issue a print-statement in either `populate_entry_trend()` or `populate_exit_trend()`.
|
||||
You may also want to print the pair so it's clear what data is currently shown.
|
||||
|
||||
``` python
|
||||
@@ -1001,29 +1106,30 @@ def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram
|
||||
return dataframe
|
||||
```
|
||||
|
||||
Printing more than a few rows is also possible (simply use `print(dataframe)` instead of `print(dataframe.tail())`), however not recommended, as that will be very verbose (~500 lines per pair every 5 seconds).
|
||||
Printing more than a few rows is also possible by using `print(dataframe)` instead of `print(dataframe.tail())`. However this is not recommended, as can results in a lot of output (~500 lines per pair every 5 seconds).
|
||||
|
||||
## Common mistakes when developing strategies
|
||||
|
||||
### Peeking into the future while backtesting
|
||||
### Looking into the future while backtesting
|
||||
|
||||
Backtesting analyzes the whole time-range at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not look-ahead into the future.
|
||||
This is a common pain-point, which can cause huge differences between backtesting and dry/live run methods, since they all use data which is not available during dry/live runs, so these strategies will perform well during backtesting, but will fail / perform badly in real conditions.
|
||||
Backtesting analyzes the whole dataframe timerange at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not lookahead into the future, i.e. using data that would not be available in dry or live mode.
|
||||
|
||||
The following lists some common patterns which should be avoided to prevent frustration:
|
||||
This is a common pain-point, which can cause huge differences between backtesting and dry/live run methods. Strategies that look into the future will perform well during backtesting, often with incredible profits or winrates, but will fail or perform badly in real conditions.
|
||||
|
||||
The following list contains some common patterns which should be avoided to prevent frustration:
|
||||
|
||||
- don't use `shift(-1)` or other negative values. This uses data from the future in backtesting, which is not available in dry or live modes.
|
||||
- don't use `.iloc[-1]` or any other absolute position in the dataframe within `populate_` functions, as this will be different between dry-run and backtesting. Absolute `iloc` indexing is safe to use in callbacks however - see [Strategy Callbacks](strategy-callbacks.md).
|
||||
- don't use `dataframe['volume'].mean()`. This uses the full DataFrame for backtesting, including data from the future. Use `dataframe['volume'].rolling(<window>).mean()` instead
|
||||
- don't use `.resample('1h')`. This uses the left border of the interval, so moves data from an hour to the start of the hour. Use `.resample('1h', label='right')` instead.
|
||||
- don't use functions that use all dataframe or column values, e.g. `dataframe['mean_volume'] = dataframe['volume'].mean()`. As backtesting uses the full dataframe, at any point in the dataframe, the `'mean_volume'` series would include data from the future. Use rolling() calculations instead, e.g. `dataframe['volume'].rolling(<window>).mean()`.
|
||||
- don't use `.resample('1h')`. This uses the left border of the period interval, so moves data from an hour boundary to the start of the hour. Use `.resample('1h', label='right')` instead.
|
||||
|
||||
!!! Tip "Identifying problems"
|
||||
You may also want to check the 2 helper commands [lookahead-analysis](lookahead-analysis.md) and [recursive-analysis](recursive-analysis.md), which can each help you figure out problems with your strategy in different ways.
|
||||
Please treat them as what they are - helpers to identify most common problems. A negative result of each does not guarantee that there's none of the above errors included.
|
||||
You should always use the two helper commands [lookahead-analysis](lookahead-analysis.md) and [recursive-analysis](recursive-analysis.md), which can each help you figure out problems with your strategy in different ways.
|
||||
Please treat them as what they are - helpers to identify most common problems. A negative result of each does not guarantee that there are none of the above errors included.
|
||||
|
||||
### Colliding signals
|
||||
|
||||
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are 1), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
|
||||
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are set to `1`), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
|
||||
|
||||
The following rules apply, and entry signals will be ignored if more than one of the 3 signals is set:
|
||||
|
||||
@@ -1032,11 +1138,11 @@ The following rules apply, and entry signals will be ignored if more than one of
|
||||
|
||||
## Further strategy ideas
|
||||
|
||||
To get additional Ideas for strategies, head over to the [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
|
||||
Feel free to use any of them as inspiration for your own strategies.
|
||||
We're happy to accept Pull Requests containing new Strategies to that repo.
|
||||
To get additional ideas for strategies, head over to the [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as examples, but results will depend on the current market situation, pairs used, etc. Therefore, these strategies should be considered only for learning purposes, not real world trading. Please backtest the strategy for your exchange/desired pairs first, then dry run to evaluate carefully, and use at your own risk.
|
||||
|
||||
## Next step
|
||||
Feel free to use any of them as inspiration for your own strategies. We're happy to accept Pull Requests containing new strategies to the repository.
|
||||
|
||||
## Next steps
|
||||
|
||||
Now you have a perfect strategy you probably want to backtest it.
|
||||
Your next step is to learn [How to use the Backtesting](backtesting.md).
|
||||
Your next step is to learn [how to use backtesting](backtesting.md).
|
||||
|
||||
@@ -215,7 +215,7 @@ trades.groupby("pair")["exit_reason"].value_counts()
|
||||
```
|
||||
|
||||
## Analyze the loaded trades for trade parallelism
|
||||
This can be useful to find the best `max_open_trades` parameter, when used with backtesting in conjunction with `--disable-max-market-positions`.
|
||||
This can be useful to find the best `max_open_trades` parameter, when used with backtesting in conjunction with a very high `max_open_trades` setting.
|
||||
|
||||
`analyze_trade_parallelism()` returns a timeseries dataframe with an "open_trades" column, specifying the number of open trades for each candle.
|
||||
|
||||
|
||||
@@ -214,8 +214,8 @@ class AwesomeStrategy(IStrategy):
|
||||
``` python hl_lines="4"
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: Optional[float], max_stake: float,
|
||||
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
||||
proposed_stake: float, min_stake: float | None, max_stake: float,
|
||||
entry_tag: str | None, side: str, **kwargs) -> float:
|
||||
# ...
|
||||
return proposed_stake
|
||||
```
|
||||
@@ -237,7 +237,7 @@ After:
|
||||
``` python hl_lines="4"
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
|
||||
time_in_force: str, current_time: datetime, entry_tag: str | None,
|
||||
side: str, **kwargs) -> bool:
|
||||
return True
|
||||
```
|
||||
@@ -280,8 +280,8 @@ After:
|
||||
|
||||
``` python hl_lines="3"
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_entry_price(self, pair: str, trade: Optional[Trade], current_time: datetime, proposed_rate: float,
|
||||
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
||||
def custom_entry_price(self, pair: str, trade: Trade | None, current_time: datetime, proposed_rate: float,
|
||||
entry_tag: str | None, side: str, **kwargs) -> float:
|
||||
return proposed_rate
|
||||
```
|
||||
|
||||
@@ -312,7 +312,7 @@ After:
|
||||
``` python hl_lines="5 7"
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, after_fill: bool,
|
||||
**kwargs) -> Optional[float]:
|
||||
**kwargs) -> float | None:
|
||||
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
|
||||
if current_profit > 0.10:
|
||||
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
|
||||
@@ -329,7 +329,7 @@ After:
|
||||
`order_time_in_force` attributes changed from `"buy"` to `"entry"` and `"sell"` to `"exit"`.
|
||||
|
||||
``` python
|
||||
order_time_in_force: Dict = {
|
||||
order_time_in_force: dict = {
|
||||
"buy": "gtc",
|
||||
"sell": "gtc",
|
||||
}
|
||||
@@ -338,7 +338,7 @@ After:
|
||||
After:
|
||||
|
||||
``` python hl_lines="2 3"
|
||||
order_time_in_force: Dict = {
|
||||
order_time_in_force: dict = {
|
||||
"entry": "GTC",
|
||||
"exit": "GTC",
|
||||
}
|
||||
@@ -780,7 +780,7 @@ class MyCoolFreqaiModel(BaseRegressionModel):
|
||||
|
||||
def predict(
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
) -> tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
|
||||
# ... your custom stuff
|
||||
|
||||
|
||||
@@ -58,6 +58,7 @@ For the Freqtrade configuration, you can then use the full value (including `-`
|
||||
```json
|
||||
"chat_id": "-1001332619709"
|
||||
```
|
||||
|
||||
!!! Warning "Using telegram groups"
|
||||
When using telegram groups, you're giving every member of the telegram group access to your freqtrade bot and to all commands possible via telegram. Please make sure that you can trust everyone in the telegram group to avoid unpleasant surprises.
|
||||
|
||||
@@ -93,9 +94,12 @@ Example configuration showing the different settings:
|
||||
"trailing_stop_loss": "on",
|
||||
"stop_loss": "on",
|
||||
"stoploss_on_exchange": "on",
|
||||
"custom_exit": "silent",
|
||||
"partial_exit": "on"
|
||||
"custom_exit": "silent", // custom_exit without specifying an exit reason
|
||||
"partial_exit": "on",
|
||||
// "custom_exit_message": "silent", // Disable individual custom exit reasons
|
||||
"*": "off" // Disable all other exit reasons
|
||||
},
|
||||
// "exit": "off", // Simplistic configuration to disable all exit messages
|
||||
"exit_cancel": "on",
|
||||
"exit_fill": "off",
|
||||
"protection_trigger": "off",
|
||||
@@ -108,16 +112,16 @@ Example configuration showing the different settings:
|
||||
},
|
||||
```
|
||||
|
||||
`entry` notifications are sent when the order is placed, while `entry_fill` notifications are sent when the order is filled on the exchange.
|
||||
`exit` notifications are sent when the order is placed, while `exit_fill` notifications are sent when the order is filled on the exchange.
|
||||
`*_fill` notifications are off by default and must be explicitly enabled.
|
||||
`protection_trigger` notifications are sent when a protection triggers and `protection_trigger_global` notifications trigger when global protections are triggered.
|
||||
`strategy_msg` - Receive notifications from the strategy, sent via `self.dp.send_msg()` from the strategy [more details](strategy-customization.md#send-notification).
|
||||
`show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`.
|
||||
|
||||
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
|
||||
`allow_custom_messages` completely disable strategy messages.
|
||||
`reload` allows you to disable reload-buttons on selected messages.
|
||||
* `entry` notifications are sent when the order is placed, while `entry_fill` notifications are sent when the order is filled on the exchange.
|
||||
* `exit` notifications are sent when the order is placed, while `exit_fill` notifications are sent when the order is filled on the exchange.
|
||||
Exit messages (`exit` and `exit_fill`) can be further controlled at individual exit reasons level, with the specific exit reason as the key. the default for all exit reasons is `on` - but can be configured via special `*` key - which will act as a wildcard for all exit reasons that are not explicitly defined.
|
||||
* `*_fill` notifications are off by default and must be explicitly enabled.
|
||||
* `protection_trigger` notifications are sent when a protection triggers and `protection_trigger_global` notifications trigger when global protections are triggered.
|
||||
* `strategy_msg` - Receive notifications from the strategy, sent via `self.dp.send_msg()` from the strategy [more details](strategy-customization.md#send-notification).
|
||||
* `show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`.
|
||||
* `balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
|
||||
* `allow_custom_messages` completely disable strategy messages.
|
||||
* `reload` allows you to disable reload-buttons on selected messages.
|
||||
|
||||
## Create a custom keyboard (command shortcut buttons)
|
||||
|
||||
@@ -238,16 +242,16 @@ Once all positions are sold, run `/stop` to completely stop the bot.
|
||||
For each open trade, the bot will send you the following message.
|
||||
Enter Tag is configurable via Strategy.
|
||||
|
||||
> **Trade ID:** `123` `(since 1 days ago)`
|
||||
> **Current Pair:** CVC/BTC
|
||||
> **Direction:** Long
|
||||
> **Leverage:** 1.0
|
||||
> **Amount:** `26.64180098`
|
||||
> **Enter Tag:** Awesome Long Signal
|
||||
> **Open Rate:** `0.00007489`
|
||||
> **Current Rate:** `0.00007489`
|
||||
> **Unrealized Profit:** `12.95%`
|
||||
> **Stoploss:** `0.00007389 (-0.02%)`
|
||||
> **Trade ID:** `123` `(since 1 days ago)`
|
||||
> **Current Pair:** CVC/BTC
|
||||
> **Direction:** Long
|
||||
> **Leverage:** 1.0
|
||||
> **Amount:** `26.64180098`
|
||||
> **Enter Tag:** Awesome Long Signal
|
||||
> **Open Rate:** `0.00007489`
|
||||
> **Current Rate:** `0.00007489`
|
||||
> **Unrealized Profit:** `12.95%`
|
||||
> **Stoploss:** `0.00007389 (-0.02%)`
|
||||
|
||||
### /status table
|
||||
|
||||
@@ -274,34 +278,34 @@ current max
|
||||
|
||||
Return a summary of your profit/loss and performance.
|
||||
|
||||
> **ROI:** Close trades
|
||||
> ∙ `0.00485701 BTC (2.2%) (15.2 Σ%)`
|
||||
> ∙ `62.968 USD`
|
||||
> **ROI:** All trades
|
||||
> ∙ `0.00255280 BTC (1.5%) (6.43 Σ%)`
|
||||
> ∙ `33.095 EUR`
|
||||
>
|
||||
> **Total Trade Count:** `138`
|
||||
> **Bot started:** `2022-07-11 18:40:44`
|
||||
> **First Trade opened:** `3 days ago`
|
||||
> **Latest Trade opened:** `2 minutes ago`
|
||||
> **Avg. Duration:** `2:33:45`
|
||||
> **Best Performing:** `PAY/BTC: 50.23%`
|
||||
> **Trading volume:** `0.5 BTC`
|
||||
> **Profit factor:** `1.04`
|
||||
> **Win / Loss:** `102 / 36`
|
||||
> **Winrate:** `73.91%`
|
||||
> **Expectancy (Ratio):** `4.87 (1.66)`
|
||||
> **Max Drawdown:** `9.23% (0.01255 BTC)`
|
||||
> **ROI:** Close trades
|
||||
> ∙ `0.00485701 BTC (2.2%) (15.2 Σ%)`
|
||||
> ∙ `62.968 USD`
|
||||
> **ROI:** All trades
|
||||
> ∙ `0.00255280 BTC (1.5%) (6.43 Σ%)`
|
||||
> ∙ `33.095 EUR`
|
||||
>
|
||||
> **Total Trade Count:** `138`
|
||||
> **Bot started:** `2022-07-11 18:40:44`
|
||||
> **First Trade opened:** `3 days ago`
|
||||
> **Latest Trade opened:** `2 minutes ago`
|
||||
> **Avg. Duration:** `2:33:45`
|
||||
> **Best Performing:** `PAY/BTC: 50.23%`
|
||||
> **Trading volume:** `0.5 BTC`
|
||||
> **Profit factor:** `1.04`
|
||||
> **Win / Loss:** `102 / 36`
|
||||
> **Winrate:** `73.91%`
|
||||
> **Expectancy (Ratio):** `4.87 (1.66)`
|
||||
> **Max Drawdown:** `9.23% (0.01255 BTC)`
|
||||
|
||||
The relative profit of `1.2%` is the average profit per trade.
|
||||
The relative profit of `15.2 Σ%` is be based on the starting capital - so in this case, the starting capital was `0.00485701 * 1.152 = 0.00738 BTC`.
|
||||
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
|
||||
Profit Factor is calculated as gross profits / gross losses - and should serve as an overall metric for the strategy.
|
||||
Expectancy corresponds to the average return per currency unit at risk, i.e. the winrate and the risk-reward ratio (the average gain of winning trades compared to the average loss of losing trades).
|
||||
Expectancy Ratio is expected profit or loss of a subsequent trade based on the performance of all past trades.
|
||||
Max drawdown corresponds to the backtesting metric `Absolute Drawdown (Account)` - calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
|
||||
Bot started date will refer to the date the bot was first started. For older bots, this will default to the first trade's open date.
|
||||
The relative profit of `1.2%` is the average profit per trade.
|
||||
The relative profit of `15.2 Σ%` is be based on the starting capital - so in this case, the starting capital was `0.00485701 * 1.152 = 0.00738 BTC`.
|
||||
**Starting capital(**) is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
|
||||
**Profit Factor** is calculated as gross profits / gross losses - and should serve as an overall metric for the strategy.
|
||||
**Expectancy** corresponds to the average return per currency unit at risk, i.e. the winrate and the risk-reward ratio (the average gain of winning trades compared to the average loss of losing trades).
|
||||
**Expectancy Ratio** is expected profit or loss of a subsequent trade based on the performance of all past trades.
|
||||
**Max drawdown** corresponds to the backtesting metric `Absolute Drawdown (Account)` - calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
|
||||
**Bot started date** will refer to the date the bot was first started. For older bots, this will default to the first trade's open date.
|
||||
|
||||
### /forceexit <trade_id>
|
||||
|
||||
@@ -329,33 +333,34 @@ Note that for this to work, `force_entry_enable` needs to be set to true.
|
||||
### /performance
|
||||
|
||||
Return the performance of each crypto-currency the bot has sold.
|
||||
> Performance:
|
||||
> 1. `RCN/BTC 0.003 BTC (57.77%) (1)`
|
||||
> 2. `PAY/BTC 0.0012 BTC (56.91%) (1)`
|
||||
> 3. `VIB/BTC 0.0011 BTC (47.07%) (1)`
|
||||
> 4. `SALT/BTC 0.0010 BTC (30.24%) (1)`
|
||||
> 5. `STORJ/BTC 0.0009 BTC (27.24%) (1)`
|
||||
> ...
|
||||
> Performance:
|
||||
> 1. `RCN/BTC 0.003 BTC (57.77%) (1)`
|
||||
> 2. `PAY/BTC 0.0012 BTC (56.91%) (1)`
|
||||
> 3. `VIB/BTC 0.0011 BTC (47.07%) (1)`
|
||||
> 4. `SALT/BTC 0.0010 BTC (30.24%) (1)`
|
||||
> 5. `STORJ/BTC 0.0009 BTC (27.24%) (1)`
|
||||
> ...
|
||||
|
||||
### /balance
|
||||
|
||||
Return the balance of all crypto-currency your have on the exchange.
|
||||
|
||||
> **Currency:** BTC
|
||||
> **Available:** 3.05890234
|
||||
> **Balance:** 3.05890234
|
||||
> **Pending:** 0.0
|
||||
|
||||
> **Currency:** CVC
|
||||
> **Available:** 86.64180098
|
||||
> **Balance:** 86.64180098
|
||||
> **Pending:** 0.0
|
||||
> **Currency:** BTC
|
||||
> **Available:** 3.05890234
|
||||
> **Balance:** 3.05890234
|
||||
> **Pending:** 0.0
|
||||
>
|
||||
> **Currency:** CVC
|
||||
> **Available:** 86.64180098
|
||||
> **Balance:** 86.64180098
|
||||
> **Pending:** 0.0
|
||||
|
||||
### /daily <n>
|
||||
|
||||
Per default `/daily` will return the 7 last days. The example below if for `/daily 3`:
|
||||
|
||||
> **Daily Profit over the last 3 days:**
|
||||
|
||||
```
|
||||
Day (count) USDT USD Profit %
|
||||
-------------- ------------ ---------- ----------
|
||||
@@ -370,6 +375,7 @@ Per default `/weekly` will return the 8 last weeks, including the current week.
|
||||
from Monday. The example below if for `/weekly 3`:
|
||||
|
||||
> **Weekly Profit over the last 3 weeks (starting from Monday):**
|
||||
|
||||
```
|
||||
Monday (count) Profit BTC Profit USD Profit %
|
||||
------------- -------------- ------------ ----------
|
||||
@@ -396,18 +402,18 @@ Month (count) Profit BTC Profit USD Profit %
|
||||
|
||||
Shows the current whitelist
|
||||
|
||||
> Using whitelist `StaticPairList` with 22 pairs
|
||||
> Using whitelist `StaticPairList` with 22 pairs
|
||||
> `IOTA/BTC, NEO/BTC, TRX/BTC, VET/BTC, ADA/BTC, ETC/BTC, NCASH/BTC, DASH/BTC, XRP/BTC, XVG/BTC, EOS/BTC, LTC/BTC, OMG/BTC, BTG/BTC, LSK/BTC, ZEC/BTC, HOT/BTC, IOTX/BTC, XMR/BTC, AST/BTC, XLM/BTC, NANO/BTC`
|
||||
|
||||
### /blacklist [pair]
|
||||
|
||||
Shows the current blacklist.
|
||||
If Pair is set, then this pair will be added to the pairlist.
|
||||
Also supports multiple pairs, separated by a space.
|
||||
Also supports multiple pairs, separated by a space.
|
||||
Use `/reload_config` to reset the blacklist.
|
||||
|
||||
> Using blacklist `StaticPairList` with 2 pairs
|
||||
>`DODGE/BTC`, `HOT/BTC`.
|
||||
> Using blacklist `StaticPairList` with 2 pairs
|
||||
>`DODGE/BTC`, `HOT/BTC`.
|
||||
|
||||
### /edge
|
||||
|
||||
|
||||
@@ -143,6 +143,7 @@ Most properties here can be None as they are dependent on the exchange response.
|
||||
| `remaining` | float | Remaining amount |
|
||||
| `cost` | float | Cost of the order - usually average * filled (*Exchange dependent on futures, may contain the cost with or without leverage and may be in contracts.*) |
|
||||
| `stake_amount` | float | Stake amount used for this order. *Added in 2023.7.* |
|
||||
| `stake_amount_filled` | float | Filled Stake amount used for this order. *Added in 2024.11.* |
|
||||
| `order_date` | datetime | Order creation date **use `order_date_utc` instead** |
|
||||
| `order_date_utc` | datetime | Order creation date (in UTC) |
|
||||
| `order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead** |
|
||||
|
||||
@@ -216,6 +216,45 @@ Example: Search dedicated strategy path.
|
||||
freqtrade list-strategies --strategy-path ~/.freqtrade/strategies/
|
||||
```
|
||||
|
||||
## List Hyperopt-Loss functions
|
||||
|
||||
Use the `list-hyperoptloss` subcommand to see all hyperopt loss functions available.
|
||||
|
||||
It provides a quick list of all available loss functions in your environment.
|
||||
|
||||
This subcommand can be useful for finding problems in your environment with loading loss functions: modules with Hyperopt-Loss functions that contain errors and failed to load are printed in red (LOAD FAILED), while hyperopt-Loss functions with duplicate names are printed in yellow (DUPLICATE NAME).
|
||||
|
||||
```
|
||||
usage: freqtrade list-hyperoptloss [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH]
|
||||
[--hyperopt-path PATH] [-1] [--no-color]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--hyperopt-path PATH Specify additional lookup path for Hyperopt Loss
|
||||
functions.
|
||||
-1, --one-column Print output in one column.
|
||||
--no-color Disable colorization of hyperopt results. May be
|
||||
useful if you are redirecting output to a file.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
--logfile FILE, --log-file FILE
|
||||
Log to the file specified. Special values are:
|
||||
'syslog', 'journald'. See the documentation for more
|
||||
details.
|
||||
-V, --version show program's version number and exit
|
||||
-c PATH, --config PATH
|
||||
Specify configuration file (default:
|
||||
`userdir/config.json` or `config.json` whichever
|
||||
exists). Multiple --config options may be used. Can be
|
||||
set to `-` to read config from stdin.
|
||||
-d PATH, --datadir PATH, --data-dir PATH
|
||||
Path to directory with historical backtesting data.
|
||||
--userdir PATH, --user-data-dir PATH
|
||||
Path to userdata directory.
|
||||
```
|
||||
|
||||
## List freqAI models
|
||||
|
||||
Use the `list-freqaimodels` subcommand to see all freqAI models available.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Freqtrade bot"""
|
||||
|
||||
__version__ = "2024.10-dev"
|
||||
__version__ = "2024.11-dev"
|
||||
|
||||
if "dev" in __version__:
|
||||
from pathlib import Path
|
||||
|
||||
@@ -27,6 +27,7 @@ from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hype
|
||||
from freqtrade.commands.list_commands import (
|
||||
start_list_exchanges,
|
||||
start_list_freqAI_models,
|
||||
start_list_hyperopt_loss_functions,
|
||||
start_list_markets,
|
||||
start_list_strategies,
|
||||
start_list_timeframes,
|
||||
|
||||
@@ -5,7 +5,7 @@ This module contains the argument manager class
|
||||
from argparse import ArgumentParser, Namespace, _ArgumentGroup
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, Union
|
||||
from typing import Any
|
||||
|
||||
from freqtrade.commands.cli_options import AVAILABLE_CLI_OPTIONS
|
||||
from freqtrade.constants import DEFAULT_CONFIG
|
||||
@@ -37,7 +37,6 @@ ARGS_COMMON_OPTIMIZE = [
|
||||
|
||||
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + [
|
||||
"position_stacking",
|
||||
"use_max_market_positions",
|
||||
"enable_protections",
|
||||
"dry_run_wallet",
|
||||
"timeframe_detail",
|
||||
@@ -53,7 +52,6 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + [
|
||||
"hyperopt",
|
||||
"hyperopt_path",
|
||||
"position_stacking",
|
||||
"use_max_market_positions",
|
||||
"enable_protections",
|
||||
"dry_run_wallet",
|
||||
"timeframe_detail",
|
||||
@@ -117,7 +115,7 @@ ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
|
||||
ARGS_BUILD_CONFIG = ["config"]
|
||||
ARGS_SHOW_CONFIG = ["user_data_dir", "config", "show_sensitive"]
|
||||
|
||||
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
|
||||
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "strategy_path", "template"]
|
||||
|
||||
ARGS_CONVERT_DATA_TRADES = ["pairs", "format_from_trades", "format_to", "erase", "exchange"]
|
||||
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase", "exchange"]
|
||||
@@ -242,8 +240,7 @@ ARGS_STRATEGY_UPDATER = ["strategy_list", "strategy_path", "recursive_strategy_s
|
||||
ARGS_LOOKAHEAD_ANALYSIS = [
|
||||
a
|
||||
for a in ARGS_BACKTEST
|
||||
if a
|
||||
not in ("position_stacking", "use_max_market_positions", "backtest_cache", "backtest_breakdown")
|
||||
if a not in ("position_stacking", "backtest_cache", "backtest_breakdown")
|
||||
] + ["minimum_trade_amount", "targeted_trade_amount", "lookahead_analysis_exportfilename"]
|
||||
|
||||
ARGS_RECURSIVE_ANALYSIS = ["timeframe", "timerange", "dataformat_ohlcv", "pairs", "startup_candle"]
|
||||
@@ -258,6 +255,7 @@ NO_CONF_REQURIED = [
|
||||
"list-pairs",
|
||||
"list-strategies",
|
||||
"list-freqaimodels",
|
||||
"list-hyperoptloss",
|
||||
"list-data",
|
||||
"hyperopt-list",
|
||||
"hyperopt-show",
|
||||
@@ -277,9 +275,9 @@ class Arguments:
|
||||
Arguments Class. Manage the arguments received by the cli
|
||||
"""
|
||||
|
||||
def __init__(self, args: Optional[list[str]]) -> None:
|
||||
def __init__(self, args: list[str] | None) -> None:
|
||||
self.args = args
|
||||
self._parsed_arg: Optional[Namespace] = None
|
||||
self._parsed_arg: Namespace | None = None
|
||||
|
||||
def get_parsed_arg(self) -> dict[str, Any]:
|
||||
"""
|
||||
@@ -321,9 +319,7 @@ class Arguments:
|
||||
|
||||
return parsed_arg
|
||||
|
||||
def _build_args(
|
||||
self, optionlist: list[str], parser: Union[ArgumentParser, _ArgumentGroup]
|
||||
) -> None:
|
||||
def _build_args(self, optionlist: list[str], parser: ArgumentParser | _ArgumentGroup) -> None:
|
||||
for val in optionlist:
|
||||
opt = AVAILABLE_CLI_OPTIONS[val]
|
||||
parser.add_argument(*opt.cli, dest=val, **opt.kwargs)
|
||||
@@ -365,6 +361,7 @@ class Arguments:
|
||||
start_list_data,
|
||||
start_list_exchanges,
|
||||
start_list_freqAI_models,
|
||||
start_list_hyperopt_loss_functions,
|
||||
start_list_markets,
|
||||
start_list_strategies,
|
||||
start_list_timeframes,
|
||||
@@ -566,6 +563,15 @@ class Arguments:
|
||||
list_strategies_cmd.set_defaults(func=start_list_strategies)
|
||||
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
|
||||
|
||||
# Add list-Hyperopt loss subcommand
|
||||
list_hyperopt_loss_cmd = subparsers.add_parser(
|
||||
"list-hyperoptloss",
|
||||
help="Print available hyperopt loss functions.",
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_hyperopt_loss_cmd.set_defaults(func=start_list_hyperopt_loss_functions)
|
||||
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopt_loss_cmd)
|
||||
|
||||
# Add list-freqAI Models subcommand
|
||||
list_freqaimodels_cmd = subparsers.add_parser(
|
||||
"list-freqaimodels",
|
||||
|
||||
@@ -168,14 +168,6 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
action="store_true",
|
||||
default=False,
|
||||
),
|
||||
"use_max_market_positions": Arg(
|
||||
"--dmmp",
|
||||
"--disable-max-market-positions",
|
||||
help="Disable applying `max_open_trades` during backtest "
|
||||
"(same as setting `max_open_trades` to a very high number).",
|
||||
action="store_false",
|
||||
default=True,
|
||||
),
|
||||
"backtest_show_pair_list": Arg(
|
||||
"--show-pair-list",
|
||||
help="Show backtesting pairlist sorted by profit.",
|
||||
|
||||
@@ -86,7 +86,14 @@ def start_new_strategy(args: dict[str, Any]) -> None:
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
if "strategy" in args and args["strategy"]:
|
||||
new_path = config["user_data_dir"] / USERPATH_STRATEGIES / (args["strategy"] + ".py")
|
||||
if "strategy_path" in args and args["strategy_path"]:
|
||||
strategy_dir = Path(args["strategy_path"])
|
||||
else:
|
||||
strategy_dir = config["user_data_dir"] / USERPATH_STRATEGIES
|
||||
if not strategy_dir.is_dir():
|
||||
logger.info(f"Creating strategy directory {strategy_dir}")
|
||||
strategy_dir.mkdir(parents=True)
|
||||
new_path = strategy_dir / (args["strategy"] + ".py")
|
||||
|
||||
if new_path.exists():
|
||||
raise OperationalException(
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
|
||||
@@ -24,7 +23,7 @@ def clean_ui_subdir(directory: Path):
|
||||
p.rmdir()
|
||||
|
||||
|
||||
def read_ui_version(dest_folder: Path) -> Optional[str]:
|
||||
def read_ui_version(dest_folder: Path) -> str | None:
|
||||
file = dest_folder / ".uiversion"
|
||||
if not file.is_file():
|
||||
return None
|
||||
@@ -52,7 +51,7 @@ def download_and_install_ui(dest_folder: Path, dl_url: str, version: str):
|
||||
f.write(version)
|
||||
|
||||
|
||||
def get_ui_download_url(version: Optional[str] = None) -> tuple[str, str]:
|
||||
def get_ui_download_url(version: str | None = None) -> tuple[str, str]:
|
||||
base_url = "https://api.github.com/repos/freqtrade/frequi/"
|
||||
# Get base UI Repo path
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ def start_hyperopt_list(args: dict[str, Any]) -> None:
|
||||
"""
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.data.btanalysis import get_latest_hyperopt_file
|
||||
from freqtrade.optimize.hyperopt_output import HyperoptOutput
|
||||
from freqtrade.optimize.hyperopt.hyperopt_output import HyperoptOutput
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import csv
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Union
|
||||
from typing import Any
|
||||
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import ConfigurationError, OperationalException
|
||||
@@ -87,7 +87,7 @@ def _print_objs_tabular(objs: list, print_colorized: bool) -> None:
|
||||
from rich.text import Text
|
||||
|
||||
names = [s["name"] for s in objs]
|
||||
objs_to_print: list[dict[str, Union[Text, str]]] = [
|
||||
objs_to_print: list[dict[str, Text | str]] = [
|
||||
{
|
||||
"name": Text(s["name"] if s["name"] else "--"),
|
||||
"location": s["location_rel"],
|
||||
@@ -169,6 +169,24 @@ def start_list_freqAI_models(args: dict[str, Any]) -> None:
|
||||
_print_objs_tabular(model_objs, config.get("print_colorized", False))
|
||||
|
||||
|
||||
def start_list_hyperopt_loss_functions(args: dict[str, Any]) -> None:
|
||||
"""
|
||||
Print files with FreqAI models custom classes available in the directory
|
||||
"""
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
model_objs = HyperOptLossResolver.search_all_objects(config, not args["print_one_column"])
|
||||
# Sort alphabetically
|
||||
model_objs = sorted(model_objs, key=lambda x: x["name"])
|
||||
if args["print_one_column"]:
|
||||
print("\n".join([s["name"] for s in model_objs]))
|
||||
else:
|
||||
_print_objs_tabular(model_objs, config.get("print_colorized", False))
|
||||
|
||||
|
||||
def start_list_timeframes(args: dict[str, Any]) -> None:
|
||||
"""
|
||||
Print timeframes available on Exchange
|
||||
|
||||
@@ -517,8 +517,11 @@ CONF_SCHEMA = {
|
||||
},
|
||||
"exit_fill": {
|
||||
"description": "Telegram setting for exit fill signals.",
|
||||
"type": "string",
|
||||
"enum": TELEGRAM_SETTING_OPTIONS,
|
||||
"type": ["string", "object"],
|
||||
"additionalProperties": {
|
||||
"type": "string",
|
||||
"enum": TELEGRAM_SETTING_OPTIONS,
|
||||
},
|
||||
"default": "on",
|
||||
},
|
||||
"exit_cancel": {
|
||||
@@ -995,6 +998,13 @@ CONF_SCHEMA = {
|
||||
"type": "string",
|
||||
"default": "example",
|
||||
},
|
||||
"wait_for_training_iteration_on_reload": {
|
||||
"description": (
|
||||
"Wait for the next training iteration to complete after /reload or ctrl+c."
|
||||
),
|
||||
"type": "boolean",
|
||||
"default": True,
|
||||
},
|
||||
"feature_parameters": {
|
||||
"description": "The parameters used to engineer the feature set",
|
||||
"type": "object",
|
||||
|
||||
@@ -5,9 +5,10 @@ This module contains the configuration class
|
||||
import ast
|
||||
import logging
|
||||
import warnings
|
||||
from collections.abc import Callable
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Optional
|
||||
from typing import Any
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
|
||||
@@ -37,9 +38,9 @@ class Configuration:
|
||||
Reuse this class for the bot, backtesting, hyperopt and every script that required configuration
|
||||
"""
|
||||
|
||||
def __init__(self, args: dict[str, Any], runmode: Optional[RunMode] = None) -> None:
|
||||
def __init__(self, args: dict[str, Any], runmode: RunMode | None = None) -> None:
|
||||
self.args = args
|
||||
self.config: Optional[Config] = None
|
||||
self.config: Config | None = None
|
||||
self.runmode = runmode
|
||||
|
||||
def get_config(self) -> Config:
|
||||
@@ -241,11 +242,7 @@ class Configuration:
|
||||
logstring="Parameter --enable-protections detected, enabling Protections. ...",
|
||||
)
|
||||
|
||||
if "use_max_market_positions" in self.args and not self.args["use_max_market_positions"]:
|
||||
config.update({"use_max_market_positions": False})
|
||||
logger.info("Parameter --disable-max-market-positions detected ...")
|
||||
logger.info("max_open_trades set to unlimited ...")
|
||||
elif "max_open_trades" in self.args and self.args["max_open_trades"]:
|
||||
if "max_open_trades" in self.args and self.args["max_open_trades"]:
|
||||
config.update({"max_open_trades": self.args["max_open_trades"]})
|
||||
logger.info(
|
||||
"Parameter --max-open-trades detected, overriding max_open_trades to: %s ...",
|
||||
@@ -455,8 +452,8 @@ class Configuration:
|
||||
config: Config,
|
||||
argname: str,
|
||||
logstring: str,
|
||||
logfun: Optional[Callable] = None,
|
||||
deprecated_msg: Optional[str] = None,
|
||||
logfun: Callable | None = None,
|
||||
deprecated_msg: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
:param config: Configuration dictionary
|
||||
|
||||
@@ -3,7 +3,6 @@ Functions to handle deprecated settings
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import ConfigurationError, OperationalException
|
||||
@@ -14,9 +13,9 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
def check_conflicting_settings(
|
||||
config: Config,
|
||||
section_old: Optional[str],
|
||||
section_old: str | None,
|
||||
name_old: str,
|
||||
section_new: Optional[str],
|
||||
section_new: str | None,
|
||||
name_new: str,
|
||||
) -> None:
|
||||
section_new_config = config.get(section_new, {}) if section_new else config
|
||||
@@ -34,7 +33,7 @@ def check_conflicting_settings(
|
||||
|
||||
|
||||
def process_removed_setting(
|
||||
config: Config, section1: str, name1: str, section2: Optional[str], name2: str
|
||||
config: Config, section1: str, name1: str, section2: str | None, name2: str
|
||||
) -> None:
|
||||
"""
|
||||
:param section1: Removed section
|
||||
@@ -54,9 +53,9 @@ def process_removed_setting(
|
||||
|
||||
def process_deprecated_setting(
|
||||
config: Config,
|
||||
section_old: Optional[str],
|
||||
section_old: str | None,
|
||||
name_old: str,
|
||||
section_new: Optional[str],
|
||||
section_new: str | None,
|
||||
name_new: str,
|
||||
) -> None:
|
||||
check_conflicting_settings(config, section_old, name_old, section_new, name_new)
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from freqtrade.configuration.detect_environment import running_in_docker
|
||||
from freqtrade.constants import (
|
||||
@@ -18,7 +17,7 @@ from freqtrade.exceptions import OperationalException
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def create_datadir(config: Config, datadir: Optional[str] = None) -> Path:
|
||||
def create_datadir(config: Config, datadir: str | None = None) -> Path:
|
||||
folder = Path(datadir) if datadir else Path(f"{config['user_data_dir']}/data")
|
||||
if not datadir:
|
||||
# set datadir
|
||||
|
||||
@@ -7,7 +7,7 @@ import re
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import rapidjson
|
||||
|
||||
@@ -78,7 +78,7 @@ def load_config_file(path: str) -> dict[str, Any]:
|
||||
|
||||
|
||||
def load_from_files(
|
||||
files: list[str], base_path: Optional[Path] = None, level: int = 0
|
||||
files: list[str], base_path: Path | None = None, level: int = 0
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Recursively load configuration files if specified.
|
||||
|
||||
@@ -5,7 +5,6 @@ This module contains the argument manager class
|
||||
import logging
|
||||
import re
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import Self
|
||||
|
||||
@@ -25,24 +24,24 @@ class TimeRange:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
starttype: Optional[str] = None,
|
||||
stoptype: Optional[str] = None,
|
||||
starttype: str | None = None,
|
||||
stoptype: str | None = None,
|
||||
startts: int = 0,
|
||||
stopts: int = 0,
|
||||
):
|
||||
self.starttype: Optional[str] = starttype
|
||||
self.stoptype: Optional[str] = stoptype
|
||||
self.starttype: str | None = starttype
|
||||
self.stoptype: str | None = stoptype
|
||||
self.startts: int = startts
|
||||
self.stopts: int = stopts
|
||||
|
||||
@property
|
||||
def startdt(self) -> Optional[datetime]:
|
||||
def startdt(self) -> datetime | None:
|
||||
if self.startts:
|
||||
return datetime.fromtimestamp(self.startts, tz=timezone.utc)
|
||||
return None
|
||||
|
||||
@property
|
||||
def stopdt(self) -> Optional[datetime]:
|
||||
def stopdt(self) -> datetime | None:
|
||||
if self.stopts:
|
||||
return datetime.fromtimestamp(self.stopts, tz=timezone.utc)
|
||||
return None
|
||||
@@ -120,7 +119,7 @@ class TimeRange:
|
||||
self.starttype = "date"
|
||||
|
||||
@classmethod
|
||||
def parse_timerange(cls, text: Optional[str]) -> Self:
|
||||
def parse_timerange(cls, text: str | None) -> Self:
|
||||
"""
|
||||
Parse the value of the argument --timerange to determine what is the range desired
|
||||
:param text: value from --timerange
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
bot constants
|
||||
"""
|
||||
|
||||
from typing import Any, Literal, Optional
|
||||
from typing import Any, Literal
|
||||
|
||||
from freqtrade.enums import CandleType, PriceType
|
||||
|
||||
@@ -38,6 +38,7 @@ HYPEROPT_LOSS_BUILTIN = [
|
||||
"MaxDrawDownHyperOptLoss",
|
||||
"MaxDrawDownRelativeHyperOptLoss",
|
||||
"ProfitDrawDownHyperOptLoss",
|
||||
"MultiMetricHyperOptLoss",
|
||||
]
|
||||
AVAILABLE_PAIRLISTS = [
|
||||
"StaticPairList",
|
||||
@@ -97,7 +98,7 @@ DL_DATA_TIMEFRAMES = ["1m", "5m"]
|
||||
|
||||
ENV_VAR_PREFIX = "FREQTRADE__"
|
||||
|
||||
CANCELED_EXCHANGE_STATES = ("cancelled", "canceled", "expired")
|
||||
CANCELED_EXCHANGE_STATES = ("cancelled", "canceled", "expired", "rejected")
|
||||
NON_OPEN_EXCHANGE_STATES = CANCELED_EXCHANGE_STATES + ("closed",)
|
||||
|
||||
# Define decimals per coin for outputs
|
||||
@@ -193,7 +194,7 @@ ListPairsWithTimeframes = list[PairWithTimeframe]
|
||||
# Type for trades list
|
||||
TradeList = list[list]
|
||||
# ticks, pair, timeframe, CandleType
|
||||
TickWithTimeframe = tuple[str, str, CandleType, Optional[int], Optional[int]]
|
||||
TickWithTimeframe = tuple[str, str, CandleType, int | None, int | None]
|
||||
ListTicksWithTimeframes = list[TickWithTimeframe]
|
||||
|
||||
LongShort = Literal["long", "short"]
|
||||
|
||||
@@ -6,7 +6,7 @@ import logging
|
||||
from copy import copy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal, Optional, Union
|
||||
from typing import Any, Literal
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -53,7 +53,7 @@ BT_DATA_COLUMNS = [
|
||||
]
|
||||
|
||||
|
||||
def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> str:
|
||||
def get_latest_optimize_filename(directory: Path | str, variant: str) -> str:
|
||||
"""
|
||||
Get latest backtest export based on '.last_result.json'.
|
||||
:param directory: Directory to search for last result
|
||||
@@ -84,7 +84,7 @@ def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> s
|
||||
return data[f"latest_{variant}"]
|
||||
|
||||
|
||||
def get_latest_backtest_filename(directory: Union[Path, str]) -> str:
|
||||
def get_latest_backtest_filename(directory: Path | str) -> str:
|
||||
"""
|
||||
Get latest backtest export based on '.last_result.json'.
|
||||
:param directory: Directory to search for last result
|
||||
@@ -97,7 +97,7 @@ def get_latest_backtest_filename(directory: Union[Path, str]) -> str:
|
||||
return get_latest_optimize_filename(directory, "backtest")
|
||||
|
||||
|
||||
def get_latest_hyperopt_filename(directory: Union[Path, str]) -> str:
|
||||
def get_latest_hyperopt_filename(directory: Path | str) -> str:
|
||||
"""
|
||||
Get latest hyperopt export based on '.last_result.json'.
|
||||
:param directory: Directory to search for last result
|
||||
@@ -114,9 +114,7 @@ def get_latest_hyperopt_filename(directory: Union[Path, str]) -> str:
|
||||
return "hyperopt_results.pickle"
|
||||
|
||||
|
||||
def get_latest_hyperopt_file(
|
||||
directory: Union[Path, str], predef_filename: Optional[str] = None
|
||||
) -> Path:
|
||||
def get_latest_hyperopt_file(directory: Path | str, predef_filename: str | None = None) -> Path:
|
||||
"""
|
||||
Get latest hyperopt export based on '.last_result.json'.
|
||||
:param directory: Directory to search for last result
|
||||
@@ -137,7 +135,7 @@ def get_latest_hyperopt_file(
|
||||
return directory / get_latest_hyperopt_filename(directory)
|
||||
|
||||
|
||||
def load_backtest_metadata(filename: Union[Path, str]) -> dict[str, Any]:
|
||||
def load_backtest_metadata(filename: Path | str) -> dict[str, Any]:
|
||||
"""
|
||||
Read metadata dictionary from backtest results file without reading and deserializing entire
|
||||
file.
|
||||
@@ -154,7 +152,7 @@ def load_backtest_metadata(filename: Union[Path, str]) -> dict[str, Any]:
|
||||
raise OperationalException("Unexpected error while loading backtest metadata.") from e
|
||||
|
||||
|
||||
def load_backtest_stats(filename: Union[Path, str]) -> BacktestResultType:
|
||||
def load_backtest_stats(filename: Path | str) -> BacktestResultType:
|
||||
"""
|
||||
Load backtest statistics file.
|
||||
:param filename: pathlib.Path object, or string pointing to the file.
|
||||
@@ -244,9 +242,10 @@ def delete_backtest_result(file_abs: Path):
|
||||
"""
|
||||
# *.meta.json
|
||||
logger.info(f"Deleting backtest result file: {file_abs.name}")
|
||||
file_abs_meta = file_abs.with_suffix(".meta.json")
|
||||
file_abs.unlink()
|
||||
file_abs_meta.unlink()
|
||||
|
||||
for file in file_abs.parent.glob(f"{file_abs.stem}*"):
|
||||
logger.info(f"Deleting file: {file}")
|
||||
file.unlink()
|
||||
|
||||
|
||||
def update_backtest_metadata(filename: Path, strategy: str, content: dict[str, Any]):
|
||||
@@ -275,7 +274,7 @@ def get_backtest_market_change(filename: Path, include_ts: bool = True) -> pd.Da
|
||||
|
||||
|
||||
def find_existing_backtest_stats(
|
||||
dirname: Union[Path, str], run_ids: dict[str, str], min_backtest_date: Optional[datetime] = None
|
||||
dirname: Path | str, run_ids: dict[str, str], min_backtest_date: datetime | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Find existing backtest stats that match specified run IDs and load them.
|
||||
@@ -344,7 +343,7 @@ def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
|
||||
return df
|
||||
|
||||
|
||||
def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
def load_backtest_data(filename: Path | str, strategy: str | None = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load backtest data file.
|
||||
:param filename: pathlib.Path object, or string pointing to a file or directory
|
||||
@@ -438,7 +437,7 @@ def evaluate_result_multi(
|
||||
return df_final[df_final["open_trades"] > max_open_trades]
|
||||
|
||||
|
||||
def trade_list_to_dataframe(trades: Union[list[Trade], list[LocalTrade]]) -> pd.DataFrame:
|
||||
def trade_list_to_dataframe(trades: list[Trade] | list[LocalTrade]) -> pd.DataFrame:
|
||||
"""
|
||||
Convert list of Trade objects to pandas Dataframe
|
||||
:param trades: List of trade objects
|
||||
@@ -452,7 +451,7 @@ def trade_list_to_dataframe(trades: Union[list[Trade], list[LocalTrade]]) -> pd.
|
||||
return df
|
||||
|
||||
|
||||
def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
def load_trades_from_db(db_url: str, strategy: str | None = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load trades from a DB (using dburl)
|
||||
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
|
||||
@@ -475,7 +474,7 @@ def load_trades(
|
||||
db_url: str,
|
||||
exportfilename: Path,
|
||||
no_trades: bool = False,
|
||||
strategy: Optional[str] = None,
|
||||
strategy: str | None = None,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Based on configuration option 'trade_source':
|
||||
|
||||
@@ -8,7 +8,7 @@ Common Interface for bot and strategy to access data.
|
||||
import logging
|
||||
from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from pandas import DataFrame, Timedelta, Timestamp, to_timedelta
|
||||
|
||||
@@ -40,17 +40,17 @@ class DataProvider:
|
||||
def __init__(
|
||||
self,
|
||||
config: Config,
|
||||
exchange: Optional[Exchange],
|
||||
exchange: Exchange | None,
|
||||
pairlists=None,
|
||||
rpc: Optional[RPCManager] = None,
|
||||
rpc: RPCManager | None = None,
|
||||
) -> None:
|
||||
self._config = config
|
||||
self._exchange = exchange
|
||||
self._pairlists = pairlists
|
||||
self.__rpc = rpc
|
||||
self.__cached_pairs: dict[PairWithTimeframe, tuple[DataFrame, datetime]] = {}
|
||||
self.__slice_index: Optional[int] = None
|
||||
self.__slice_date: Optional[datetime] = None
|
||||
self.__slice_index: int | None = None
|
||||
self.__slice_date: datetime | None = None
|
||||
|
||||
self.__cached_pairs_backtesting: dict[PairWithTimeframe, DataFrame] = {}
|
||||
self.__producer_pairs_df: dict[
|
||||
@@ -255,8 +255,8 @@ class DataProvider:
|
||||
def get_producer_df(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: Optional[str] = None,
|
||||
candle_type: Optional[CandleType] = None,
|
||||
timeframe: str | None = None,
|
||||
candle_type: CandleType | None = None,
|
||||
producer_name: str = "default",
|
||||
) -> tuple[DataFrame, datetime]:
|
||||
"""
|
||||
@@ -349,7 +349,7 @@ class DataProvider:
|
||||
return total_candles
|
||||
|
||||
def get_pair_dataframe(
|
||||
self, pair: str, timeframe: Optional[str] = None, candle_type: str = ""
|
||||
self, pair: str, timeframe: str | None = None, candle_type: str = ""
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Return pair candle (OHLCV) data, either live or cached historical -- depending
|
||||
@@ -437,7 +437,7 @@ class DataProvider:
|
||||
def refresh(
|
||||
self,
|
||||
pairlist: ListPairsWithTimeframes,
|
||||
helping_pairs: Optional[ListPairsWithTimeframes] = None,
|
||||
helping_pairs: ListPairsWithTimeframes | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Refresh data, called with each cycle
|
||||
@@ -471,7 +471,7 @@ class DataProvider:
|
||||
return list(self._exchange._klines.keys())
|
||||
|
||||
def ohlcv(
|
||||
self, pair: str, timeframe: Optional[str] = None, copy: bool = True, candle_type: str = ""
|
||||
self, pair: str, timeframe: str | None = None, copy: bool = True, candle_type: str = ""
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Get candle (OHLCV) data for the given pair as DataFrame
|
||||
@@ -497,7 +497,7 @@ class DataProvider:
|
||||
return DataFrame()
|
||||
|
||||
def trades(
|
||||
self, pair: str, timeframe: Optional[str] = None, copy: bool = True, candle_type: str = ""
|
||||
self, pair: str, timeframe: str | None = None, copy: bool = True, candle_type: str = ""
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Get candle (TRADES) data for the given pair as DataFrame
|
||||
@@ -529,7 +529,7 @@ class DataProvider:
|
||||
)
|
||||
return trades_df
|
||||
|
||||
def market(self, pair: str) -> Optional[dict[str, Any]]:
|
||||
def market(self, pair: str) -> dict[str, Any] | None:
|
||||
"""
|
||||
Return market data for the pair
|
||||
:param pair: Pair to get the data for
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from pandas import DataFrame, read_feather, to_datetime
|
||||
|
||||
@@ -37,7 +36,7 @@ class FeatherDataHandler(IDataHandler):
|
||||
)
|
||||
|
||||
def _ohlcv_load(
|
||||
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
|
||||
self, pair: str, timeframe: str, timerange: TimeRange | None, candle_type: CandleType
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
@@ -59,20 +58,25 @@ class FeatherDataHandler(IDataHandler):
|
||||
)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=self._columns)
|
||||
|
||||
pairdata = read_feather(filename)
|
||||
pairdata.columns = self._columns
|
||||
pairdata = pairdata.astype(
|
||||
dtype={
|
||||
"open": "float",
|
||||
"high": "float",
|
||||
"low": "float",
|
||||
"close": "float",
|
||||
"volume": "float",
|
||||
}
|
||||
)
|
||||
pairdata["date"] = to_datetime(pairdata["date"], unit="ms", utc=True)
|
||||
return pairdata
|
||||
try:
|
||||
pairdata = read_feather(filename)
|
||||
pairdata.columns = self._columns
|
||||
pairdata = pairdata.astype(
|
||||
dtype={
|
||||
"open": "float",
|
||||
"high": "float",
|
||||
"low": "float",
|
||||
"close": "float",
|
||||
"volume": "float",
|
||||
}
|
||||
)
|
||||
pairdata["date"] = to_datetime(pairdata["date"], unit="ms", utc=True)
|
||||
return pairdata
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"Error loading data from {filename}. Exception: {e}. Returning empty dataframe."
|
||||
)
|
||||
return DataFrame(columns=self._columns)
|
||||
|
||||
def ohlcv_append(
|
||||
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
|
||||
@@ -108,7 +112,7 @@ class FeatherDataHandler(IDataHandler):
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
self, pair: str, trading_mode: TradingMode, timerange: TimeRange | None = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -45,7 +44,7 @@ class HDF5DataHandler(IDataHandler):
|
||||
)
|
||||
|
||||
def _ohlcv_load(
|
||||
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
|
||||
self, pair: str, timeframe: str, timerange: TimeRange | None, candle_type: CandleType
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
@@ -69,28 +68,36 @@ class HDF5DataHandler(IDataHandler):
|
||||
)
|
||||
if not filename.exists():
|
||||
return pd.DataFrame(columns=self._columns)
|
||||
where = []
|
||||
if timerange:
|
||||
if timerange.starttype == "date":
|
||||
where.append(f"date >= Timestamp({timerange.startts * 1e9})")
|
||||
if timerange.stoptype == "date":
|
||||
where.append(f"date <= Timestamp({timerange.stopts * 1e9})")
|
||||
try:
|
||||
where = []
|
||||
if timerange:
|
||||
if timerange.starttype == "date":
|
||||
where.append(f"date >= Timestamp({timerange.startts * 1e9})")
|
||||
if timerange.stoptype == "date":
|
||||
where.append(f"date <= Timestamp({timerange.stopts * 1e9})")
|
||||
|
||||
pairdata = pd.read_hdf(filename, key=key, mode="r", where=where)
|
||||
pairdata = pd.read_hdf(filename, key=key, mode="r", where=where)
|
||||
|
||||
if list(pairdata.columns) != self._columns:
|
||||
raise ValueError("Wrong dataframe format")
|
||||
pairdata = pairdata.astype(
|
||||
dtype={
|
||||
"open": "float",
|
||||
"high": "float",
|
||||
"low": "float",
|
||||
"close": "float",
|
||||
"volume": "float",
|
||||
}
|
||||
)
|
||||
pairdata = pairdata.reset_index(drop=True)
|
||||
return pairdata
|
||||
if list(pairdata.columns) != self._columns:
|
||||
raise ValueError("Wrong dataframe format")
|
||||
pairdata = pairdata.astype(
|
||||
dtype={
|
||||
"open": "float",
|
||||
"high": "float",
|
||||
"low": "float",
|
||||
"close": "float",
|
||||
"volume": "float",
|
||||
}
|
||||
)
|
||||
pairdata = pairdata.reset_index(drop=True)
|
||||
return pairdata
|
||||
except ValueError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"Error loading data from {filename}. Exception: {e}. Returning empty dataframe."
|
||||
)
|
||||
return pd.DataFrame(columns=self._columns)
|
||||
|
||||
def ohlcv_append(
|
||||
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType
|
||||
@@ -134,7 +141,7 @@ class HDF5DataHandler(IDataHandler):
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
self, pair: str, trading_mode: TradingMode, timerange: TimeRange | None = None
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Load a pair from h5 file.
|
||||
|
||||
@@ -10,7 +10,6 @@ from abc import ABC, abstractmethod
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
@@ -126,7 +125,7 @@ class IDataHandler(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def _ohlcv_load(
|
||||
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
|
||||
self, pair: str, timeframe: str, timerange: TimeRange | None, candle_type: CandleType
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
@@ -247,7 +246,7 @@ class IDataHandler(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
self, pair: str, trading_mode: TradingMode, timerange: TimeRange | None = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
@@ -282,7 +281,7 @@ class IDataHandler(ABC):
|
||||
return False
|
||||
|
||||
def trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
self, pair: str, trading_mode: TradingMode, timerange: TimeRange | None = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
@@ -370,7 +369,7 @@ class IDataHandler(ABC):
|
||||
timeframe: str,
|
||||
candle_type: CandleType,
|
||||
*,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
timerange: TimeRange | None = None,
|
||||
fill_missing: bool = True,
|
||||
drop_incomplete: bool = False,
|
||||
startup_candles: int = 0,
|
||||
@@ -566,7 +565,7 @@ def get_datahandlerclass(datatype: str) -> type[IDataHandler]:
|
||||
|
||||
|
||||
def get_datahandler(
|
||||
datadir: Path, data_format: Optional[str] = None, data_handler: Optional[IDataHandler] = None
|
||||
datadir: Path, data_format: str | None = None, data_handler: IDataHandler | None = None
|
||||
) -> IDataHandler:
|
||||
"""
|
||||
:param datadir: Folder to save data
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame, read_json, to_datetime
|
||||
@@ -45,7 +44,7 @@ class JsonDataHandler(IDataHandler):
|
||||
)
|
||||
|
||||
def _ohlcv_load(
|
||||
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
|
||||
self, pair: str, timeframe: str, timerange: TimeRange | None, candle_type: CandleType
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
@@ -119,7 +118,7 @@ class JsonDataHandler(IDataHandler):
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
self, pair: str, trading_mode: TradingMode, timerange: TimeRange | None = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from pandas import DataFrame, read_parquet, to_datetime
|
||||
|
||||
@@ -35,7 +34,7 @@ class ParquetDataHandler(IDataHandler):
|
||||
data.reset_index(drop=True).loc[:, self._columns].to_parquet(filename)
|
||||
|
||||
def _ohlcv_load(
|
||||
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
|
||||
self, pair: str, timeframe: str, timerange: TimeRange | None, candle_type: CandleType
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
@@ -57,20 +56,25 @@ class ParquetDataHandler(IDataHandler):
|
||||
)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=self._columns)
|
||||
|
||||
pairdata = read_parquet(filename)
|
||||
pairdata.columns = self._columns
|
||||
pairdata = pairdata.astype(
|
||||
dtype={
|
||||
"open": "float",
|
||||
"high": "float",
|
||||
"low": "float",
|
||||
"close": "float",
|
||||
"volume": "float",
|
||||
}
|
||||
)
|
||||
pairdata["date"] = to_datetime(pairdata["date"], unit="ms", utc=True)
|
||||
return pairdata
|
||||
try:
|
||||
pairdata = read_parquet(filename)
|
||||
pairdata.columns = self._columns
|
||||
pairdata = pairdata.astype(
|
||||
dtype={
|
||||
"open": "float",
|
||||
"high": "float",
|
||||
"low": "float",
|
||||
"close": "float",
|
||||
"volume": "float",
|
||||
}
|
||||
)
|
||||
pairdata["date"] = to_datetime(pairdata["date"], unit="ms", utc=True)
|
||||
return pairdata
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"Error loading data from {filename}. Exception: {e}. Returning empty dataframe."
|
||||
)
|
||||
return DataFrame(columns=self._columns)
|
||||
|
||||
def ohlcv_append(
|
||||
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
|
||||
@@ -106,7 +110,7 @@ class ParquetDataHandler(IDataHandler):
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
self, pair: str, trading_mode: TradingMode, timerange: TimeRange | None = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
|
||||
@@ -2,18 +2,11 @@ import logging
|
||||
import operator
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from pandas import DataFrame, concat
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import (
|
||||
DATETIME_PRINT_FORMAT,
|
||||
DEFAULT_DATAFRAME_COLUMNS,
|
||||
DL_DATA_TIMEFRAMES,
|
||||
DOCS_LINK,
|
||||
Config,
|
||||
)
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, DL_DATA_TIMEFRAMES, DOCS_LINK, Config
|
||||
from freqtrade.data.converter import (
|
||||
clean_ohlcv_dataframe,
|
||||
convert_trades_to_ohlcv,
|
||||
@@ -25,8 +18,9 @@ from freqtrade.enums import CandleType, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
from freqtrade.util import dt_now, dt_ts, format_ms_time, get_progress_tracker
|
||||
from freqtrade.util import dt_now, dt_ts, format_ms_time
|
||||
from freqtrade.util.migrations import migrate_data
|
||||
from freqtrade.util.progress_tracker import CustomProgress, retrieve_progress_tracker
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -37,12 +31,12 @@ def load_pair_history(
|
||||
timeframe: str,
|
||||
datadir: Path,
|
||||
*,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
timerange: TimeRange | None = None,
|
||||
fill_up_missing: bool = True,
|
||||
drop_incomplete: bool = False,
|
||||
startup_candles: int = 0,
|
||||
data_format: Optional[str] = None,
|
||||
data_handler: Optional[IDataHandler] = None,
|
||||
data_format: str | None = None,
|
||||
data_handler: IDataHandler | None = None,
|
||||
candle_type: CandleType = CandleType.SPOT,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
@@ -79,13 +73,13 @@ def load_data(
|
||||
timeframe: str,
|
||||
pairs: list[str],
|
||||
*,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
timerange: TimeRange | None = None,
|
||||
fill_up_missing: bool = True,
|
||||
startup_candles: int = 0,
|
||||
fail_without_data: bool = False,
|
||||
data_format: str = "feather",
|
||||
candle_type: CandleType = CandleType.SPOT,
|
||||
user_futures_funding_rate: Optional[int] = None,
|
||||
user_futures_funding_rate: int | None = None,
|
||||
) -> dict[str, DataFrame]:
|
||||
"""
|
||||
Load ohlcv history data for a list of pairs.
|
||||
@@ -137,8 +131,8 @@ def refresh_data(
|
||||
timeframe: str,
|
||||
pairs: list[str],
|
||||
exchange: Exchange,
|
||||
data_format: Optional[str] = None,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
data_format: str | None = None,
|
||||
timerange: TimeRange | None = None,
|
||||
candle_type: CandleType,
|
||||
) -> None:
|
||||
"""
|
||||
@@ -168,11 +162,11 @@ def refresh_data(
|
||||
def _load_cached_data_for_updating(
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
timerange: Optional[TimeRange],
|
||||
timerange: TimeRange | None,
|
||||
data_handler: IDataHandler,
|
||||
candle_type: CandleType,
|
||||
prepend: bool = False,
|
||||
) -> tuple[DataFrame, Optional[int], Optional[int]]:
|
||||
) -> tuple[DataFrame, int | None, int | None]:
|
||||
"""
|
||||
Load cached data to download more data.
|
||||
If timerange is passed in, checks whether data from an before the stored data will be
|
||||
@@ -200,14 +194,21 @@ def _load_cached_data_for_updating(
|
||||
candle_type=candle_type,
|
||||
)
|
||||
if not data.empty:
|
||||
if not prepend and start and start < data.iloc[0]["date"]:
|
||||
# Earlier data than existing data requested, redownload all
|
||||
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
|
||||
if prepend:
|
||||
end = data.iloc[0]["date"]
|
||||
else:
|
||||
if prepend:
|
||||
end = data.iloc[0]["date"]
|
||||
else:
|
||||
start = data.iloc[-1]["date"]
|
||||
if start and start < data.iloc[0]["date"]:
|
||||
# Earlier data than existing data requested, Update start date
|
||||
logger.info(
|
||||
f"{pair}, {timeframe}, {candle_type}: "
|
||||
f"Requested start date {start:{DATETIME_PRINT_FORMAT}} earlier than local "
|
||||
f"data start date {data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}. "
|
||||
f"Use `--prepend` to download data prior "
|
||||
f"to {data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}, or "
|
||||
"`--erase` to redownload all data."
|
||||
)
|
||||
start = data.iloc[-1]["date"]
|
||||
|
||||
start_ms = int(start.timestamp() * 1000) if start else None
|
||||
end_ms = int(end.timestamp() * 1000) if end else None
|
||||
return data, start_ms, end_ms
|
||||
@@ -220,8 +221,8 @@ def _download_pair_history(
|
||||
exchange: Exchange,
|
||||
timeframe: str = "5m",
|
||||
new_pairs_days: int = 30,
|
||||
data_handler: Optional[IDataHandler] = None,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
data_handler: IDataHandler | None = None,
|
||||
timerange: TimeRange | None = None,
|
||||
candle_type: CandleType,
|
||||
erase: bool = False,
|
||||
prepend: bool = False,
|
||||
@@ -322,21 +323,24 @@ def refresh_backtest_ohlcv_data(
|
||||
timeframes: list[str],
|
||||
datadir: Path,
|
||||
trading_mode: str,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
timerange: TimeRange | None = None,
|
||||
new_pairs_days: int = 30,
|
||||
erase: bool = False,
|
||||
data_format: Optional[str] = None,
|
||||
data_format: str | None = None,
|
||||
prepend: bool = False,
|
||||
progress_tracker: CustomProgress | None = None,
|
||||
) -> list[str]:
|
||||
"""
|
||||
Refresh stored ohlcv data for backtesting and hyperopt operations.
|
||||
Used by freqtrade download-data subcommand.
|
||||
:return: List of pairs that are not available.
|
||||
"""
|
||||
progress_tracker = retrieve_progress_tracker(progress_tracker)
|
||||
|
||||
pairs_not_available = []
|
||||
data_handler = get_datahandler(datadir, data_format)
|
||||
candle_type = CandleType.get_default(trading_mode)
|
||||
with get_progress_tracker() as progress:
|
||||
with progress_tracker as progress:
|
||||
tf_length = len(timeframes) if trading_mode != "futures" else len(timeframes) + 2
|
||||
timeframe_task = progress.add_task("Timeframe", total=tf_length)
|
||||
pair_task = progress.add_task("Downloading data...", total=len(pairs))
|
||||
@@ -346,7 +350,7 @@ def refresh_backtest_ohlcv_data(
|
||||
progress.update(timeframe_task, completed=0)
|
||||
|
||||
if pair not in exchange.markets:
|
||||
pairs_not_available.append(pair)
|
||||
pairs_not_available.append(f"{pair}: Pair not available on exchange.")
|
||||
logger.info(f"Skipping pair {pair}...")
|
||||
continue
|
||||
for timeframe in timeframes:
|
||||
@@ -404,7 +408,7 @@ def _download_trades_history(
|
||||
pair: str,
|
||||
*,
|
||||
new_pairs_days: int = 30,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
timerange: TimeRange | None = None,
|
||||
data_handler: IDataHandler,
|
||||
trading_mode: TradingMode,
|
||||
) -> bool:
|
||||
@@ -412,79 +416,74 @@ def _download_trades_history(
|
||||
Download trade history from the exchange.
|
||||
Appends to previously downloaded trades data.
|
||||
"""
|
||||
try:
|
||||
until = None
|
||||
since = 0
|
||||
if timerange:
|
||||
if timerange.starttype == "date":
|
||||
since = timerange.startts * 1000
|
||||
if timerange.stoptype == "date":
|
||||
until = timerange.stopts * 1000
|
||||
until = None
|
||||
since = 0
|
||||
if timerange:
|
||||
if timerange.starttype == "date":
|
||||
since = timerange.startts * 1000
|
||||
if timerange.stoptype == "date":
|
||||
until = timerange.stopts * 1000
|
||||
|
||||
trades = data_handler.trades_load(pair, trading_mode)
|
||||
trades = data_handler.trades_load(pair, trading_mode)
|
||||
|
||||
# TradesList columns are defined in constants.DEFAULT_TRADES_COLUMNS
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
# TradesList columns are defined in constants.DEFAULT_TRADES_COLUMNS
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
|
||||
if not trades.empty and since > 0 and since < trades.iloc[0]["timestamp"]:
|
||||
# since is before the first trade
|
||||
logger.info(
|
||||
f"Start ({trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}) earlier than "
|
||||
f"available data. Redownloading trades for {pair}..."
|
||||
)
|
||||
trades = trades_list_to_df([])
|
||||
|
||||
from_id = trades.iloc[-1]["id"] if not trades.empty else None
|
||||
if not trades.empty and since < trades.iloc[-1]["timestamp"]:
|
||||
# Reset since to the last available point
|
||||
# - 5 seconds (to ensure we're getting all trades)
|
||||
since = trades.iloc[-1]["timestamp"] - (5 * 1000)
|
||||
logger.info(
|
||||
f"Using last trade date -5s - Downloading trades for {pair} "
|
||||
f"since: {format_ms_time(since)}."
|
||||
)
|
||||
|
||||
if not since:
|
||||
since = dt_ts(dt_now() - timedelta(days=new_pairs_days))
|
||||
|
||||
logger.debug(
|
||||
"Current Start: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
if not trades.empty and since > 0 and since < trades.iloc[0]["timestamp"]:
|
||||
# since is before the first trade
|
||||
raise ValueError(
|
||||
f"Start {format_ms_time(since)} earlier than "
|
||||
f"available data ({trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}). "
|
||||
f"Please use `--erase` if you'd like to redownload {pair}."
|
||||
)
|
||||
logger.debug(
|
||||
"Current End: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
)
|
||||
logger.info(f"Current Amount of trades: {len(trades)}")
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_trades = exchange.get_historic_trades(
|
||||
pair=pair,
|
||||
since=since,
|
||||
until=until,
|
||||
from_id=from_id,
|
||||
from_id = trades.iloc[-1]["id"] if not trades.empty else None
|
||||
if not trades.empty and since < trades.iloc[-1]["timestamp"]:
|
||||
# Reset since to the last available point
|
||||
# - 5 seconds (to ensure we're getting all trades)
|
||||
since = trades.iloc[-1]["timestamp"] - (5 * 1000)
|
||||
logger.info(
|
||||
f"Using last trade date -5s - Downloading trades for {pair} "
|
||||
f"since: {format_ms_time(since)}."
|
||||
)
|
||||
new_trades_df = trades_list_to_df(new_trades[1])
|
||||
trades = concat([trades, new_trades_df], axis=0)
|
||||
# Remove duplicates to make sure we're not storing data we don't need
|
||||
trades = trades_df_remove_duplicates(trades)
|
||||
data_handler.trades_store(pair, trades, trading_mode)
|
||||
|
||||
logger.debug(
|
||||
"New Start: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
)
|
||||
logger.debug(
|
||||
"New End: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
)
|
||||
logger.info(f"New Amount of trades: {len(trades)}")
|
||||
return True
|
||||
if not since:
|
||||
since = dt_ts(dt_now() - timedelta(days=new_pairs_days))
|
||||
|
||||
except Exception:
|
||||
logger.exception(f'Failed to download and store historic trades for pair: "{pair}". ')
|
||||
return False
|
||||
logger.debug(
|
||||
"Current Start: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
)
|
||||
logger.debug(
|
||||
"Current End: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
)
|
||||
logger.info(f"Current Amount of trades: {len(trades)}")
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_trades = exchange.get_historic_trades(
|
||||
pair=pair,
|
||||
since=since,
|
||||
until=until,
|
||||
from_id=from_id,
|
||||
)
|
||||
new_trades_df = trades_list_to_df(new_trades[1])
|
||||
trades = concat([trades, new_trades_df], axis=0)
|
||||
# Remove duplicates to make sure we're not storing data we don't need
|
||||
trades = trades_df_remove_duplicates(trades)
|
||||
data_handler.trades_store(pair, trades, trading_mode)
|
||||
|
||||
logger.debug(
|
||||
"New Start: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
)
|
||||
logger.debug(
|
||||
"New End: %s",
|
||||
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
|
||||
)
|
||||
logger.info(f"New Amount of trades: {len(trades)}")
|
||||
return True
|
||||
|
||||
|
||||
def refresh_backtest_trades_data(
|
||||
@@ -496,20 +495,22 @@ def refresh_backtest_trades_data(
|
||||
new_pairs_days: int = 30,
|
||||
erase: bool = False,
|
||||
data_format: str = "feather",
|
||||
progress_tracker: CustomProgress | None = None,
|
||||
) -> list[str]:
|
||||
"""
|
||||
Refresh stored trades data for backtesting and hyperopt operations.
|
||||
Used by freqtrade download-data subcommand.
|
||||
:return: List of pairs that are not available.
|
||||
"""
|
||||
progress_tracker = retrieve_progress_tracker(progress_tracker)
|
||||
pairs_not_available = []
|
||||
data_handler = get_datahandler(datadir, data_format=data_format)
|
||||
with get_progress_tracker() as progress:
|
||||
with progress_tracker as progress:
|
||||
pair_task = progress.add_task("Downloading data...", total=len(pairs))
|
||||
for pair in pairs:
|
||||
progress.update(pair_task, description=f"Downloading trades [{pair}]")
|
||||
if pair not in exchange.markets:
|
||||
pairs_not_available.append(pair)
|
||||
pairs_not_available.append(f"{pair}: Pair not available on exchange.")
|
||||
logger.info(f"Skipping pair {pair}...")
|
||||
continue
|
||||
|
||||
@@ -518,14 +519,22 @@ def refresh_backtest_trades_data(
|
||||
logger.info(f"Deleting existing data for pair {pair}.")
|
||||
|
||||
logger.info(f"Downloading trades for pair {pair}.")
|
||||
_download_trades_history(
|
||||
exchange=exchange,
|
||||
pair=pair,
|
||||
new_pairs_days=new_pairs_days,
|
||||
timerange=timerange,
|
||||
data_handler=data_handler,
|
||||
trading_mode=trading_mode,
|
||||
)
|
||||
try:
|
||||
_download_trades_history(
|
||||
exchange=exchange,
|
||||
pair=pair,
|
||||
new_pairs_days=new_pairs_days,
|
||||
timerange=timerange,
|
||||
data_handler=data_handler,
|
||||
trading_mode=trading_mode,
|
||||
)
|
||||
except ValueError as e:
|
||||
pairs_not_available.append(f"{pair}: {str(e)}")
|
||||
except Exception:
|
||||
logger.exception(
|
||||
f'Failed to download and store historic trades for pair: "{pair}". '
|
||||
)
|
||||
|
||||
progress.update(pair_task, advance=1)
|
||||
|
||||
return pairs_not_available
|
||||
@@ -577,23 +586,35 @@ def validate_backtest_data(
|
||||
|
||||
|
||||
def download_data_main(config: Config) -> None:
|
||||
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
|
||||
|
||||
exchange = ExchangeResolver.load_exchange(config, validate=False)
|
||||
|
||||
download_data(config, exchange)
|
||||
|
||||
|
||||
def download_data(
|
||||
config: Config,
|
||||
exchange: Exchange,
|
||||
*,
|
||||
progress_tracker: CustomProgress | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Download data function. Used from both cli and API.
|
||||
"""
|
||||
timerange = TimeRange()
|
||||
if "days" in config:
|
||||
time_since = (datetime.now() - timedelta(days=config["days"])).strftime("%Y%m%d")
|
||||
timerange = TimeRange.parse_timerange(f"{time_since}-")
|
||||
|
||||
if "timerange" in config:
|
||||
timerange = timerange.parse_timerange(config["timerange"])
|
||||
timerange = TimeRange.parse_timerange(config["timerange"])
|
||||
|
||||
# Remove stake-currency to skip checks which are not relevant for datadownload
|
||||
config["stake_currency"] = ""
|
||||
|
||||
pairs_not_available: list[str] = []
|
||||
|
||||
# Init exchange
|
||||
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
|
||||
|
||||
exchange = ExchangeResolver.load_exchange(config, validate=False)
|
||||
available_pairs = [
|
||||
p
|
||||
for p in exchange.get_markets(
|
||||
@@ -605,17 +626,18 @@ def download_data_main(config: Config) -> None:
|
||||
if "timeframes" not in config:
|
||||
config["timeframes"] = DL_DATA_TIMEFRAMES
|
||||
|
||||
logger.info(
|
||||
f"About to download pairs: {expanded_pairs}, "
|
||||
f"intervals: {config['timeframes']} to {config['datadir']}"
|
||||
)
|
||||
|
||||
if len(expanded_pairs) == 0:
|
||||
logger.warning(
|
||||
"No pairs available for download. "
|
||||
"Please make sure you're using the correct Pair naming for your selected trade mode. \n"
|
||||
f"More info: {DOCS_LINK}/bot-basics/#pair-naming"
|
||||
)
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"About to download pairs: {expanded_pairs}, "
|
||||
f"intervals: {config['timeframes']} to {config['datadir']}"
|
||||
)
|
||||
|
||||
for timeframe in config["timeframes"]:
|
||||
exchange.validate_timeframes(timeframe)
|
||||
@@ -637,6 +659,7 @@ def download_data_main(config: Config) -> None:
|
||||
erase=bool(config.get("erase")),
|
||||
data_format=config["dataformat_trades"],
|
||||
trading_mode=config.get("trading_mode", TradingMode.SPOT),
|
||||
progress_tracker=progress_tracker,
|
||||
)
|
||||
|
||||
if config.get("convert_trades") or not exchange.get_option("ohlcv_has_history", True):
|
||||
@@ -672,10 +695,12 @@ def download_data_main(config: Config) -> None:
|
||||
data_format=config["dataformat_ohlcv"],
|
||||
trading_mode=config.get("trading_mode", "spot"),
|
||||
prepend=config.get("prepend_data", False),
|
||||
progress_tracker=progress_tracker,
|
||||
)
|
||||
finally:
|
||||
if pairs_not_available:
|
||||
logger.info(
|
||||
f"Pairs [{','.join(pairs_not_available)}] not available "
|
||||
f"on exchange {exchange.name}."
|
||||
errors = "\n" + ("\n".join(pairs_not_available))
|
||||
logger.warning(
|
||||
f"Encountered a problem downloading the following pairs from {exchange.name}: "
|
||||
f"{errors}"
|
||||
)
|
||||
|
||||
@@ -261,8 +261,8 @@ def calculate_expectancy(trades: pd.DataFrame) -> tuple[float, float]:
|
||||
:return: expectancy, expectancy_ratio
|
||||
"""
|
||||
|
||||
expectancy = 0
|
||||
expectancy_ratio = 100
|
||||
expectancy = 0.0
|
||||
expectancy_ratio = 100.0
|
||||
|
||||
if len(trades) > 0:
|
||||
winning_trades = trades.loc[trades["profit_abs"] > 0]
|
||||
|
||||
@@ -43,4 +43,5 @@ from freqtrade.exchange.hyperliquid import Hyperliquid
|
||||
from freqtrade.exchange.idex import Idex
|
||||
from freqtrade.exchange.kraken import Kraken
|
||||
from freqtrade.exchange.kucoin import Kucoin
|
||||
from freqtrade.exchange.lbank import Lbank
|
||||
from freqtrade.exchange.okx import Okx
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import ccxt
|
||||
|
||||
@@ -53,12 +52,12 @@ class Binance(Exchange):
|
||||
(TradingMode.FUTURES, MarginMode.ISOLATED)
|
||||
]
|
||||
|
||||
def get_tickers(self, symbols: Optional[list[str]] = None, cached: bool = False) -> Tickers:
|
||||
def get_tickers(self, symbols: list[str] | None = None, *, cached: bool = False) -> Tickers:
|
||||
tickers = super().get_tickers(symbols=symbols, cached=cached)
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
# Binance's future result has no bid/ask values.
|
||||
# Therefore we must fetch that from fetch_bids_asks and combine the two results.
|
||||
bidsasks = self.fetch_bids_asks(symbols, cached)
|
||||
bidsasks = self.fetch_bids_asks(symbols, cached=cached)
|
||||
tickers = deep_merge_dicts(bidsasks, tickers, allow_null_overrides=False)
|
||||
return tickers
|
||||
|
||||
@@ -106,7 +105,7 @@ class Binance(Exchange):
|
||||
candle_type: CandleType,
|
||||
is_new_pair: bool = False,
|
||||
raise_: bool = False,
|
||||
until_ms: Optional[int] = None,
|
||||
until_ms: int | None = None,
|
||||
) -> OHLCVResponse:
|
||||
"""
|
||||
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
|
||||
@@ -144,9 +143,7 @@ class Binance(Exchange):
|
||||
"""
|
||||
return open_date.minute == 0 and open_date.second < 15
|
||||
|
||||
def fetch_funding_rates(
|
||||
self, symbols: Optional[list[str]] = None
|
||||
) -> dict[str, dict[str, float]]:
|
||||
def fetch_funding_rates(self, symbols: list[str] | None = None) -> dict[str, dict[str, float]]:
|
||||
"""
|
||||
Fetch funding rates for the given symbols.
|
||||
:param symbols: List of symbols to fetch funding rates for
|
||||
@@ -177,7 +174,7 @@ class Binance(Exchange):
|
||||
leverage: float,
|
||||
wallet_balance: float, # Or margin balance
|
||||
open_trades: list,
|
||||
) -> Optional[float]:
|
||||
) -> float | None:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
MARGIN: https://www.binance.com/en/support/faq/f6b010588e55413aa58b7d63ee0125ed
|
||||
@@ -263,3 +260,19 @@ class Binance(Exchange):
|
||||
return self.get_leverage_tiers()
|
||||
else:
|
||||
return {}
|
||||
|
||||
async def _async_get_trade_history_id_startup(
|
||||
self, pair: str, since: int | None
|
||||
) -> tuple[list[list], str]:
|
||||
"""
|
||||
override for initial call
|
||||
|
||||
Binance only provides a limited set of historic trades data.
|
||||
Using from_id=0, we can get the earliest available trades.
|
||||
So if we don't get any data with the provided "since", we can assume to
|
||||
download all available data.
|
||||
"""
|
||||
t, from_id = await self._async_fetch_trades(pair, since=since)
|
||||
if not t:
|
||||
return [], "0"
|
||||
return t, from_id
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -2,7 +2,6 @@
|
||||
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from freqtrade.exchange import Exchange
|
||||
|
||||
@@ -17,7 +16,7 @@ class Bitpanda(Exchange):
|
||||
"""
|
||||
|
||||
def get_trades_for_order(
|
||||
self, order_id: str, pair: str, since: datetime, params: Optional[dict] = None
|
||||
self, order_id: str, pair: str, since: datetime, params: dict | None = None
|
||||
) -> list:
|
||||
"""
|
||||
Fetch Orders using the "fetch_my_trades" endpoint and filter them by order-id.
|
||||
|
||||
@@ -2,16 +2,16 @@
|
||||
|
||||
import logging
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.constants import BuySell
|
||||
from freqtrade.enums import CandleType, MarginMode, PriceType, TradingMode
|
||||
from freqtrade.enums import MarginMode, PriceType, TradingMode
|
||||
from freqtrade.exceptions import DDosProtection, ExchangeError, OperationalException, TemporaryError
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.common import retrier
|
||||
from freqtrade.exchange.exchange_types import FtHas
|
||||
from freqtrade.exchange.exchange_types import CcxtOrder, FtHas
|
||||
from freqtrade.util.datetime_helpers import dt_now, dt_ts
|
||||
|
||||
|
||||
@@ -36,11 +36,18 @@ class Bybit(Exchange):
|
||||
"order_time_in_force": ["GTC", "FOK", "IOC", "PO"],
|
||||
"ws_enabled": True,
|
||||
"trades_has_history": False, # Endpoint doesn't support pagination
|
||||
"exchange_has_overrides": {
|
||||
# Bybit spot does not support fetch_order
|
||||
# Unless the account is unified.
|
||||
# TODO: Can be removed once bybit fully forces all accounts to unified mode.
|
||||
"fetchOrder": False,
|
||||
},
|
||||
}
|
||||
_ft_has_futures: FtHas = {
|
||||
"ohlcv_has_history": True,
|
||||
"mark_ohlcv_timeframe": "4h",
|
||||
"funding_fee_timeframe": "8h",
|
||||
"funding_fee_candle_limit": 200,
|
||||
"stoploss_on_exchange": True,
|
||||
"stoploss_order_types": {"limit": "limit", "market": "market"},
|
||||
# bybit response parsing fails to populate stopLossPrice
|
||||
@@ -51,6 +58,9 @@ class Bybit(Exchange):
|
||||
PriceType.MARK: "MarkPrice",
|
||||
PriceType.INDEX: "IndexPrice",
|
||||
},
|
||||
"exchange_has_overrides": {
|
||||
"fetchOrder": True,
|
||||
},
|
||||
}
|
||||
|
||||
_supported_trading_mode_margin_pairs: list[tuple[TradingMode, MarginMode]] = [
|
||||
@@ -105,14 +115,6 @@ class Bybit(Exchange):
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def ohlcv_candle_limit(
|
||||
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None
|
||||
) -> int:
|
||||
if candle_type in (CandleType.FUNDING_RATE):
|
||||
return 200
|
||||
|
||||
return super().ohlcv_candle_limit(timeframe, candle_type, since_ms)
|
||||
|
||||
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
|
||||
if self.trading_mode != TradingMode.SPOT:
|
||||
params = {"leverage": leverage}
|
||||
@@ -138,6 +140,17 @@ class Bybit(Exchange):
|
||||
params["position_idx"] = 0
|
||||
return params
|
||||
|
||||
def _order_needs_price(self, side: BuySell, ordertype: str) -> bool:
|
||||
# Bybit requires price for market orders - but only for classic accounts,
|
||||
# and only in spot mode
|
||||
return (
|
||||
ordertype != "market"
|
||||
or (
|
||||
side == "buy" and not self.unified_account and self.trading_mode == TradingMode.SPOT
|
||||
)
|
||||
or self._ft_has.get("marketOrderRequiresPrice", False)
|
||||
)
|
||||
|
||||
def dry_run_liquidation_price(
|
||||
self,
|
||||
pair: str,
|
||||
@@ -148,7 +161,7 @@ class Bybit(Exchange):
|
||||
leverage: float,
|
||||
wallet_balance: float, # Or margin balance
|
||||
open_trades: list,
|
||||
) -> Optional[float]:
|
||||
) -> float | None:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
PERPETUAL:
|
||||
@@ -220,7 +233,9 @@ class Bybit(Exchange):
|
||||
logger.warning(f"Could not update funding fees for {pair}.")
|
||||
return 0.0
|
||||
|
||||
def fetch_orders(self, pair: str, since: datetime, params: Optional[dict] = None) -> list[dict]:
|
||||
def fetch_orders(
|
||||
self, pair: str, since: datetime, params: dict | None = None
|
||||
) -> list[CcxtOrder]:
|
||||
"""
|
||||
Fetch all orders for a pair "since"
|
||||
:param pair: Pair for the query
|
||||
@@ -237,7 +252,7 @@ class Bybit(Exchange):
|
||||
|
||||
return orders
|
||||
|
||||
def fetch_order(self, order_id: str, pair: str, params: Optional[dict] = None) -> dict:
|
||||
def fetch_order(self, order_id: str, pair: str, params: dict | None = None) -> CcxtOrder:
|
||||
if self.exchange_has("fetchOrder"):
|
||||
# Set acknowledged to True to avoid ccxt exception
|
||||
params = {"acknowledged": True}
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Callable
|
||||
from functools import wraps
|
||||
from typing import Any, Callable, Optional, TypeVar, cast, overload
|
||||
from typing import Any, TypeVar, cast, overload
|
||||
|
||||
from freqtrade.constants import ExchangeConfig
|
||||
from freqtrade.exceptions import DDosProtection, RetryableOrderError, TemporaryError
|
||||
@@ -57,6 +58,7 @@ SUPPORTED_EXCHANGES = [
|
||||
"bybit",
|
||||
"gate",
|
||||
"htx",
|
||||
"hyperliquid",
|
||||
"kraken",
|
||||
"okx",
|
||||
]
|
||||
@@ -172,7 +174,7 @@ def retrier(_func: F, *, retries=API_RETRY_COUNT) -> F: ...
|
||||
def retrier(*, retries=API_RETRY_COUNT) -> Callable[[F], F]: ...
|
||||
|
||||
|
||||
def retrier(_func: Optional[F] = None, *, retries=API_RETRY_COUNT):
|
||||
def retrier(_func: F | None = None, *, retries=API_RETRY_COUNT):
|
||||
def decorator(f: F) -> F:
|
||||
@wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
@@ -185,7 +187,7 @@ def retrier(_func: Optional[F] = None, *, retries=API_RETRY_COUNT):
|
||||
logger.warning(msg + f"Retrying still for {count} times.")
|
||||
count -= 1
|
||||
kwargs.update({"count": count})
|
||||
if isinstance(ex, (DDosProtection, RetryableOrderError)):
|
||||
if isinstance(ex, DDosProtection | RetryableOrderError):
|
||||
# increasing backoff
|
||||
backoff_delay = calculate_backoff(count + 1, retries)
|
||||
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
|
||||
|
||||
@@ -12,7 +12,7 @@ from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from math import floor, isnan
|
||||
from threading import Lock
|
||||
from typing import Any, Literal, Optional, Union
|
||||
from typing import Any, Literal, TypeGuard
|
||||
|
||||
import ccxt
|
||||
import ccxt.pro as ccxt_pro
|
||||
@@ -70,6 +70,7 @@ from freqtrade.exchange.common import (
|
||||
)
|
||||
from freqtrade.exchange.exchange_types import (
|
||||
CcxtBalances,
|
||||
CcxtOrder,
|
||||
CcxtPosition,
|
||||
FtHas,
|
||||
OHLCVResponse,
|
||||
@@ -169,7 +170,7 @@ class Exchange:
|
||||
self,
|
||||
config: Config,
|
||||
*,
|
||||
exchange_config: Optional[ExchangeConfig] = None,
|
||||
exchange_config: ExchangeConfig | None = None,
|
||||
validate: bool = True,
|
||||
load_leverage_tiers: bool = False,
|
||||
) -> None:
|
||||
@@ -181,7 +182,7 @@ class Exchange:
|
||||
self._api: ccxt.Exchange
|
||||
self._api_async: ccxt_pro.Exchange
|
||||
self._ws_async: ccxt_pro.Exchange = None
|
||||
self._exchange_ws: Optional[ExchangeWS] = None
|
||||
self._exchange_ws: ExchangeWS | None = None
|
||||
self._markets: dict = {}
|
||||
self._trading_fees: dict[str, Any] = {}
|
||||
self._leverage_tiers: dict[str, list[dict]] = {}
|
||||
@@ -198,8 +199,8 @@ class Exchange:
|
||||
# Timestamp of last markets refresh
|
||||
self._last_markets_refresh: int = 0
|
||||
|
||||
# Cache for 10 minutes ...
|
||||
self._cache_lock = Lock()
|
||||
# Cache for 10 minutes ...
|
||||
self._fetch_tickers_cache: TTLCache = TTLCache(maxsize=2, ttl=60 * 10)
|
||||
# Cache values for 300 to avoid frequent polling of the exchange for prices
|
||||
# Caching only applies to RPC methods, so prices for open trades are still
|
||||
@@ -378,7 +379,7 @@ class Exchange:
|
||||
logger.info("Applying additional ccxt config: %s", ccxt_kwargs)
|
||||
if self._ccxt_params:
|
||||
# Inject static options after the above output to not confuse users.
|
||||
ccxt_kwargs = deep_merge_dicts(self._ccxt_params, ccxt_kwargs)
|
||||
ccxt_kwargs = deep_merge_dicts(self._ccxt_params, deepcopy(ccxt_kwargs))
|
||||
if ccxt_kwargs:
|
||||
ex_config.update(ccxt_kwargs)
|
||||
try:
|
||||
@@ -452,28 +453,31 @@ class Exchange:
|
||||
logger.info(f"API {endpoint}: {add_info_str}{response}")
|
||||
|
||||
def ohlcv_candle_limit(
|
||||
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None
|
||||
self, timeframe: str, candle_type: CandleType, since_ms: int | None = None
|
||||
) -> int:
|
||||
"""
|
||||
Exchange ohlcv candle limit
|
||||
Uses ohlcv_candle_limit_per_timeframe if the exchange has different limits
|
||||
per timeframe (e.g. bittrex), otherwise falls back to ohlcv_candle_limit
|
||||
TODO: this is most likely no longer needed since only bittrex needed this.
|
||||
:param timeframe: Timeframe to check
|
||||
:param candle_type: Candle-type
|
||||
:param since_ms: Starting timestamp
|
||||
:return: Candle limit as integer
|
||||
"""
|
||||
|
||||
fallback_val = self._ft_has.get("ohlcv_candle_limit")
|
||||
if candle_type == CandleType.FUNDING_RATE:
|
||||
fallback_val = self._ft_has.get("funding_fee_candle_limit", fallback_val)
|
||||
return int(
|
||||
self._ft_has.get("ohlcv_candle_limit_per_timeframe", {}).get(
|
||||
timeframe, str(self._ft_has.get("ohlcv_candle_limit"))
|
||||
timeframe, str(fallback_val)
|
||||
)
|
||||
)
|
||||
|
||||
def get_markets(
|
||||
self,
|
||||
base_currencies: Optional[list[str]] = None,
|
||||
quote_currencies: Optional[list[str]] = None,
|
||||
base_currencies: list[str] | None = None,
|
||||
quote_currencies: list[str] | None = None,
|
||||
spot_only: bool = False,
|
||||
margin_only: bool = False,
|
||||
futures_only: bool = False,
|
||||
@@ -522,6 +526,7 @@ class Exchange:
|
||||
def market_is_future(self, market: dict[str, Any]) -> bool:
|
||||
return (
|
||||
market.get(self._ft_has["ccxt_futures_name"], False) is True
|
||||
and market.get("type", False) == "swap"
|
||||
and market.get("linear", False) is True
|
||||
)
|
||||
|
||||
@@ -566,7 +571,7 @@ class Exchange:
|
||||
else:
|
||||
return DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
def get_contract_size(self, pair: str) -> Optional[float]:
|
||||
def get_contract_size(self, pair: str) -> float | None:
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
market = self.markets.get(pair, {})
|
||||
contract_size: float = 1.0
|
||||
@@ -587,7 +592,7 @@ class Exchange:
|
||||
trade["amount"] = trade["amount"] * contract_size
|
||||
return trades
|
||||
|
||||
def _order_contracts_to_amount(self, order: dict) -> dict:
|
||||
def _order_contracts_to_amount(self, order: CcxtOrder) -> CcxtOrder:
|
||||
if "symbol" in order and order["symbol"] is not None:
|
||||
contract_size = self.get_contract_size(order["symbol"])
|
||||
if contract_size != 1:
|
||||
@@ -709,7 +714,7 @@ class Exchange:
|
||||
return pair
|
||||
raise ValueError(f"Could not combine {curr_1} and {curr_2} to get a valid pair.")
|
||||
|
||||
def validate_timeframes(self, timeframe: Optional[str]) -> None:
|
||||
def validate_timeframes(self, timeframe: str | None) -> None:
|
||||
"""
|
||||
Check if timeframe from config is a supported timeframe on the exchange
|
||||
"""
|
||||
@@ -839,7 +844,7 @@ class Exchange:
|
||||
def validate_trading_mode_and_margin_mode(
|
||||
self,
|
||||
trading_mode: TradingMode,
|
||||
margin_mode: Optional[MarginMode], # Only None when trading_mode = TradingMode.SPOT
|
||||
margin_mode: MarginMode | None, # Only None when trading_mode = TradingMode.SPOT
|
||||
):
|
||||
"""
|
||||
Checks if freqtrade can perform trades using the configured
|
||||
@@ -855,7 +860,7 @@ class Exchange:
|
||||
f"Freqtrade does not support {mm_value} {trading_mode} on {self.name}"
|
||||
)
|
||||
|
||||
def get_option(self, param: str, default: Optional[Any] = None) -> Any:
|
||||
def get_option(self, param: str, default: Any | None = None) -> Any:
|
||||
"""
|
||||
Get parameter value from _ft_has
|
||||
"""
|
||||
@@ -872,7 +877,7 @@ class Exchange:
|
||||
return self._ft_has["exchange_has_overrides"][endpoint]
|
||||
return endpoint in self._api_async.has and self._api_async.has[endpoint]
|
||||
|
||||
def get_precision_amount(self, pair: str) -> Optional[float]:
|
||||
def get_precision_amount(self, pair: str) -> float | None:
|
||||
"""
|
||||
Returns the amount precision of the exchange.
|
||||
:param pair: Pair to get precision for
|
||||
@@ -880,7 +885,7 @@ class Exchange:
|
||||
"""
|
||||
return self.markets.get(pair, {}).get("precision", {}).get("amount", None)
|
||||
|
||||
def get_precision_price(self, pair: str) -> Optional[float]:
|
||||
def get_precision_price(self, pair: str) -> float | None:
|
||||
"""
|
||||
Returns the price precision of the exchange.
|
||||
:param pair: Pair to get precision for
|
||||
@@ -920,8 +925,8 @@ class Exchange:
|
||||
return 1 / pow(10, precision)
|
||||
|
||||
def get_min_pair_stake_amount(
|
||||
self, pair: str, price: float, stoploss: float, leverage: Optional[float] = 1.0
|
||||
) -> Optional[float]:
|
||||
self, pair: str, price: float, stoploss: float, leverage: float | None = 1.0
|
||||
) -> float | None:
|
||||
return self._get_stake_amount_limit(pair, price, stoploss, "min", leverage)
|
||||
|
||||
def get_max_pair_stake_amount(self, pair: str, price: float, leverage: float = 1.0) -> float:
|
||||
@@ -939,8 +944,8 @@ class Exchange:
|
||||
price: float,
|
||||
stoploss: float,
|
||||
limit: Literal["min", "max"],
|
||||
leverage: Optional[float] = 1.0,
|
||||
) -> Optional[float]:
|
||||
leverage: float | None = 1.0,
|
||||
) -> float | None:
|
||||
isMin = limit == "min"
|
||||
|
||||
try:
|
||||
@@ -997,20 +1002,20 @@ class Exchange:
|
||||
self,
|
||||
pair: str,
|
||||
ordertype: str,
|
||||
side: str,
|
||||
side: BuySell,
|
||||
amount: float,
|
||||
rate: float,
|
||||
leverage: float,
|
||||
params: Optional[dict] = None,
|
||||
params: dict | None = None,
|
||||
stop_loss: bool = False,
|
||||
) -> dict[str, Any]:
|
||||
) -> CcxtOrder:
|
||||
now = dt_now()
|
||||
order_id = f"dry_run_{side}_{pair}_{now.timestamp()}"
|
||||
# Rounding here must respect to contract sizes
|
||||
_amount = self._contracts_to_amount(
|
||||
pair, self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
|
||||
)
|
||||
dry_order: dict[str, Any] = {
|
||||
dry_order: CcxtOrder = {
|
||||
"id": order_id,
|
||||
"symbol": pair,
|
||||
"price": rate,
|
||||
@@ -1026,14 +1031,13 @@ class Exchange:
|
||||
"status": "open",
|
||||
"fee": None,
|
||||
"info": {},
|
||||
"leverage": leverage,
|
||||
}
|
||||
if stop_loss:
|
||||
dry_order["info"] = {"stopPrice": dry_order["price"]}
|
||||
dry_order[self._ft_has["stop_price_prop"]] = dry_order["price"]
|
||||
# Workaround to avoid filling stoploss orders immediately
|
||||
dry_order["ft_order_type"] = "stoploss"
|
||||
orderbook: Optional[OrderBook] = None
|
||||
orderbook: OrderBook | None = None
|
||||
if self.exchange_has("fetchL2OrderBook"):
|
||||
orderbook = self.fetch_l2_order_book(pair, 20)
|
||||
if ordertype == "limit" and orderbook:
|
||||
@@ -1055,7 +1059,7 @@ class Exchange:
|
||||
"filled": _amount,
|
||||
"remaining": 0.0,
|
||||
"status": "closed",
|
||||
"cost": (dry_order["amount"] * average),
|
||||
"cost": (_amount * average),
|
||||
}
|
||||
)
|
||||
# market orders will always incurr taker fees
|
||||
@@ -1072,9 +1076,9 @@ class Exchange:
|
||||
def add_dry_order_fee(
|
||||
self,
|
||||
pair: str,
|
||||
dry_order: dict[str, Any],
|
||||
dry_order: CcxtOrder,
|
||||
taker_or_maker: MakerTaker,
|
||||
) -> dict[str, Any]:
|
||||
) -> CcxtOrder:
|
||||
fee = self.get_fee(pair, taker_or_maker=taker_or_maker)
|
||||
dry_order.update(
|
||||
{
|
||||
@@ -1088,7 +1092,7 @@ class Exchange:
|
||||
return dry_order
|
||||
|
||||
def get_dry_market_fill_price(
|
||||
self, pair: str, side: str, amount: float, rate: float, orderbook: Optional[OrderBook]
|
||||
self, pair: str, side: str, amount: float, rate: float, orderbook: OrderBook | None
|
||||
) -> float:
|
||||
"""
|
||||
Get the market order fill price based on orderbook interpolation
|
||||
@@ -1136,7 +1140,7 @@ class Exchange:
|
||||
pair: str,
|
||||
side: str,
|
||||
limit: float,
|
||||
orderbook: Optional[OrderBook] = None,
|
||||
orderbook: OrderBook | None = None,
|
||||
offset: float = 0.0,
|
||||
) -> bool:
|
||||
if not self.exchange_has("fetchL2OrderBook"):
|
||||
@@ -1158,8 +1162,8 @@ class Exchange:
|
||||
return False
|
||||
|
||||
def check_dry_limit_order_filled(
|
||||
self, order: dict[str, Any], immediate: bool = False, orderbook: Optional[OrderBook] = None
|
||||
) -> dict[str, Any]:
|
||||
self, order: CcxtOrder, immediate: bool = False, orderbook: OrderBook | None = None
|
||||
) -> CcxtOrder:
|
||||
"""
|
||||
Check dry-run limit order fill and update fee (if it filled).
|
||||
"""
|
||||
@@ -1186,7 +1190,7 @@ class Exchange:
|
||||
|
||||
return order
|
||||
|
||||
def fetch_dry_run_order(self, order_id) -> dict[str, Any]:
|
||||
def fetch_dry_run_order(self, order_id) -> CcxtOrder:
|
||||
"""
|
||||
Return dry-run order
|
||||
Only call if running in dry-run mode.
|
||||
@@ -1230,10 +1234,10 @@ class Exchange:
|
||||
params.update({"reduceOnly": True})
|
||||
return params
|
||||
|
||||
def _order_needs_price(self, ordertype: str) -> bool:
|
||||
def _order_needs_price(self, side: BuySell, ordertype: str) -> bool:
|
||||
return (
|
||||
ordertype != "market"
|
||||
or self._api.options.get("createMarketBuyOrderRequiresPrice", False)
|
||||
or (side == "buy" and self._api.options.get("createMarketBuyOrderRequiresPrice", False))
|
||||
or self._ft_has.get("marketOrderRequiresPrice", False)
|
||||
)
|
||||
|
||||
@@ -1248,7 +1252,7 @@ class Exchange:
|
||||
leverage: float,
|
||||
reduceOnly: bool = False,
|
||||
time_in_force: str = "GTC",
|
||||
) -> dict:
|
||||
) -> CcxtOrder:
|
||||
if self._config["dry_run"]:
|
||||
dry_order = self.create_dry_run_order(
|
||||
pair, ordertype, side, amount, self.price_to_precision(pair, rate), leverage
|
||||
@@ -1260,7 +1264,7 @@ class Exchange:
|
||||
try:
|
||||
# Set the precision for amount and price(rate) as accepted by the exchange
|
||||
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
|
||||
needs_price = self._order_needs_price(ordertype)
|
||||
needs_price = self._order_needs_price(side, ordertype)
|
||||
rate_for_order = self.price_to_precision(pair, rate) if needs_price else None
|
||||
|
||||
if not reduceOnly:
|
||||
@@ -1306,7 +1310,7 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def stoploss_adjust(self, stop_loss: float, order: dict, side: str) -> bool:
|
||||
def stoploss_adjust(self, stop_loss: float, order: CcxtOrder, side: str) -> bool:
|
||||
"""
|
||||
Verify stop_loss against stoploss-order value (limit or price)
|
||||
Returns True if adjustment is necessary.
|
||||
@@ -1367,7 +1371,7 @@ class Exchange:
|
||||
order_types: dict,
|
||||
side: BuySell,
|
||||
leverage: float,
|
||||
) -> dict:
|
||||
) -> CcxtOrder:
|
||||
"""
|
||||
creates a stoploss order.
|
||||
requires `_ft_has['stoploss_order_types']` to be set as a dict mapping limit and market
|
||||
@@ -1460,7 +1464,7 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def fetch_order_emulated(self, order_id: str, pair: str, params: dict) -> dict:
|
||||
def fetch_order_emulated(self, order_id: str, pair: str, params: dict) -> CcxtOrder:
|
||||
"""
|
||||
Emulated fetch_order if the exchange doesn't support fetch_order, but requires separate
|
||||
calls for open and closed orders.
|
||||
@@ -1494,7 +1498,7 @@ class Exchange:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier(retries=API_FETCH_ORDER_RETRY_COUNT)
|
||||
def fetch_order(self, order_id: str, pair: str, params: Optional[dict] = None) -> dict:
|
||||
def fetch_order(self, order_id: str, pair: str, params: dict | None = None) -> CcxtOrder:
|
||||
if self._config["dry_run"]:
|
||||
return self.fetch_dry_run_order(order_id)
|
||||
if params is None:
|
||||
@@ -1523,12 +1527,14 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def fetch_stoploss_order(self, order_id: str, pair: str, params: Optional[dict] = None) -> dict:
|
||||
def fetch_stoploss_order(
|
||||
self, order_id: str, pair: str, params: dict | None = None
|
||||
) -> CcxtOrder:
|
||||
return self.fetch_order(order_id, pair, params)
|
||||
|
||||
def fetch_order_or_stoploss_order(
|
||||
self, order_id: str, pair: str, stoploss_order: bool = False
|
||||
) -> dict:
|
||||
) -> CcxtOrder:
|
||||
"""
|
||||
Simple wrapper calling either fetch_order or fetch_stoploss_order depending on
|
||||
the stoploss_order parameter
|
||||
@@ -1540,7 +1546,7 @@ class Exchange:
|
||||
return self.fetch_stoploss_order(order_id, pair)
|
||||
return self.fetch_order(order_id, pair)
|
||||
|
||||
def check_order_canceled_empty(self, order: dict) -> bool:
|
||||
def check_order_canceled_empty(self, order: CcxtOrder) -> bool:
|
||||
"""
|
||||
Verify if an order has been cancelled without being partially filled
|
||||
:param order: Order dict as returned from fetch_order()
|
||||
@@ -1549,7 +1555,7 @@ class Exchange:
|
||||
return order.get("status") in NON_OPEN_EXCHANGE_STATES and order.get("filled") == 0.0
|
||||
|
||||
@retrier
|
||||
def cancel_order(self, order_id: str, pair: str, params: Optional[dict] = None) -> dict:
|
||||
def cancel_order(self, order_id: str, pair: str, params: dict | None = None) -> dict[str, Any]:
|
||||
if self._config["dry_run"]:
|
||||
try:
|
||||
order = self.fetch_dry_run_order(order_id)
|
||||
@@ -1577,19 +1583,17 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def cancel_stoploss_order(
|
||||
self, order_id: str, pair: str, params: Optional[dict] = None
|
||||
) -> dict:
|
||||
def cancel_stoploss_order(self, order_id: str, pair: str, params: dict | None = None) -> dict:
|
||||
return self.cancel_order(order_id, pair, params)
|
||||
|
||||
def is_cancel_order_result_suitable(self, corder) -> bool:
|
||||
def is_cancel_order_result_suitable(self, corder) -> TypeGuard[CcxtOrder]:
|
||||
if not isinstance(corder, dict):
|
||||
return False
|
||||
|
||||
required = ("fee", "status", "amount")
|
||||
return all(corder.get(k, None) is not None for k in required)
|
||||
|
||||
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> dict:
|
||||
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> CcxtOrder:
|
||||
"""
|
||||
Cancel order returning a result.
|
||||
Creates a fake result if cancel order returns a non-usable result
|
||||
@@ -1620,7 +1624,9 @@ class Exchange:
|
||||
|
||||
return order
|
||||
|
||||
def cancel_stoploss_order_with_result(self, order_id: str, pair: str, amount: float) -> dict:
|
||||
def cancel_stoploss_order_with_result(
|
||||
self, order_id: str, pair: str, amount: float
|
||||
) -> CcxtOrder:
|
||||
"""
|
||||
Cancel stoploss order returning a result.
|
||||
Creates a fake result if cancel order returns a non-usable result
|
||||
@@ -1651,6 +1657,7 @@ class Exchange:
|
||||
balances.pop("total", None)
|
||||
balances.pop("used", None)
|
||||
|
||||
self._log_exchange_response("fetch_balances", balances)
|
||||
return balances
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
@@ -1662,7 +1669,7 @@ class Exchange:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def fetch_positions(self, pair: Optional[str] = None) -> list[CcxtPosition]:
|
||||
def fetch_positions(self, pair: str | None = None) -> list[CcxtPosition]:
|
||||
"""
|
||||
Fetch positions from the exchange.
|
||||
If no pair is given, all positions are returned.
|
||||
@@ -1686,7 +1693,7 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def _fetch_orders_emulate(self, pair: str, since_ms: int) -> list[dict]:
|
||||
def _fetch_orders_emulate(self, pair: str, since_ms: int) -> list[CcxtOrder]:
|
||||
orders = []
|
||||
if self.exchange_has("fetchClosedOrders"):
|
||||
orders = self._api.fetch_closed_orders(pair, since=since_ms)
|
||||
@@ -1696,7 +1703,9 @@ class Exchange:
|
||||
return orders
|
||||
|
||||
@retrier(retries=0)
|
||||
def fetch_orders(self, pair: str, since: datetime, params: Optional[dict] = None) -> list[dict]:
|
||||
def fetch_orders(
|
||||
self, pair: str, since: datetime, params: dict | None = None
|
||||
) -> list[CcxtOrder]:
|
||||
"""
|
||||
Fetch all orders for a pair "since"
|
||||
:param pair: Pair for the query
|
||||
@@ -1712,7 +1721,9 @@ class Exchange:
|
||||
if not params:
|
||||
params = {}
|
||||
try:
|
||||
orders: list[dict] = self._api.fetch_orders(pair, since=since_ms, params=params)
|
||||
orders: list[CcxtOrder] = self._api.fetch_orders(
|
||||
pair, since=since_ms, params=params
|
||||
)
|
||||
except ccxt.NotSupported:
|
||||
# Some exchanges don't support fetchOrders
|
||||
# attempt to fetch open and closed orders separately
|
||||
@@ -1757,7 +1768,7 @@ class Exchange:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def fetch_bids_asks(self, symbols: Optional[list[str]] = None, cached: bool = False) -> dict:
|
||||
def fetch_bids_asks(self, symbols: list[str] | None = None, *, cached: bool = False) -> dict:
|
||||
"""
|
||||
:param symbols: List of symbols to fetch
|
||||
:param cached: Allow cached result
|
||||
@@ -1790,8 +1801,9 @@ class Exchange:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def get_tickers(self, symbols: Optional[list[str]] = None, cached: bool = False) -> Tickers:
|
||||
def get_tickers(self, symbols: list[str] | None = None, *, cached: bool = False) -> Tickers:
|
||||
"""
|
||||
:param symbols: List of symbols to fetch
|
||||
:param cached: Allow cached result
|
||||
:return: fetch_tickers result
|
||||
"""
|
||||
@@ -1850,7 +1862,7 @@ class Exchange:
|
||||
|
||||
@staticmethod
|
||||
def get_next_limit_in_list(
|
||||
limit: int, limit_range: Optional[list[int]], range_required: bool = True
|
||||
limit: int, limit_range: list[int] | None, range_required: bool = True
|
||||
):
|
||||
"""
|
||||
Get next greater value in the list.
|
||||
@@ -1914,8 +1926,8 @@ class Exchange:
|
||||
refresh: bool,
|
||||
side: EntryExit,
|
||||
is_short: bool,
|
||||
order_book: Optional[OrderBook] = None,
|
||||
ticker: Optional[Ticker] = None,
|
||||
order_book: OrderBook | None = None,
|
||||
ticker: Ticker | None = None,
|
||||
) -> float:
|
||||
"""
|
||||
Calculates bid/ask target
|
||||
@@ -1964,7 +1976,7 @@ class Exchange:
|
||||
|
||||
def _get_rate_from_ticker(
|
||||
self, side: EntryExit, ticker: Ticker, conf_strategy: dict[str, Any], price_side: BidAsk
|
||||
) -> Optional[float]:
|
||||
) -> float | None:
|
||||
"""
|
||||
Get rate from ticker.
|
||||
"""
|
||||
@@ -2043,7 +2055,7 @@ class Exchange:
|
||||
|
||||
@retrier
|
||||
def get_trades_for_order(
|
||||
self, order_id: str, pair: str, since: datetime, params: Optional[dict] = None
|
||||
self, order_id: str, pair: str, since: datetime, params: dict | None = None
|
||||
) -> list:
|
||||
"""
|
||||
Fetch Orders using the "fetch_my_trades" endpoint and filter them by order-id.
|
||||
@@ -2090,7 +2102,7 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def get_order_id_conditional(self, order: dict[str, Any]) -> str:
|
||||
def get_order_id_conditional(self, order: CcxtOrder) -> str:
|
||||
return order["id"]
|
||||
|
||||
@retrier
|
||||
@@ -2139,7 +2151,7 @@ class Exchange:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@staticmethod
|
||||
def order_has_fee(order: dict) -> bool:
|
||||
def order_has_fee(order: CcxtOrder) -> bool:
|
||||
"""
|
||||
Verifies if the passed in order dict has the needed keys to extract fees,
|
||||
and that these keys (currency, cost) are not empty.
|
||||
@@ -2158,7 +2170,7 @@ class Exchange:
|
||||
|
||||
def calculate_fee_rate(
|
||||
self, fee: dict, symbol: str, cost: float, amount: float
|
||||
) -> Optional[float]:
|
||||
) -> float | None:
|
||||
"""
|
||||
Calculate fee rate if it's not given by the exchange.
|
||||
:param fee: ccxt Fee dict - must contain cost / currency / rate
|
||||
@@ -2197,8 +2209,8 @@ class Exchange:
|
||||
return round((fee_cost * fee_to_quote_rate) / cost, 8)
|
||||
|
||||
def extract_cost_curr_rate(
|
||||
self, fee: dict, symbol: str, cost: float, amount: float
|
||||
) -> tuple[float, str, Optional[float]]:
|
||||
self, fee: dict[str, Any], symbol: str, cost: float, amount: float
|
||||
) -> tuple[float, str, float | None]:
|
||||
"""
|
||||
Extract tuple of cost, currency, rate.
|
||||
Requires order_has_fee to run first!
|
||||
@@ -2223,7 +2235,7 @@ class Exchange:
|
||||
since_ms: int,
|
||||
candle_type: CandleType,
|
||||
is_new_pair: bool = False,
|
||||
until_ms: Optional[int] = None,
|
||||
until_ms: int | None = None,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Get candle history using asyncio and returns the list of candles.
|
||||
@@ -2257,7 +2269,7 @@ class Exchange:
|
||||
candle_type: CandleType,
|
||||
is_new_pair: bool = False,
|
||||
raise_: bool = False,
|
||||
until_ms: Optional[int] = None,
|
||||
until_ms: int | None = None,
|
||||
) -> OHLCVResponse:
|
||||
"""
|
||||
Download historic ohlcv
|
||||
@@ -2302,7 +2314,7 @@ class Exchange:
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
candle_type: CandleType,
|
||||
since_ms: Optional[int],
|
||||
since_ms: int | None,
|
||||
cache: bool,
|
||||
) -> Coroutine[Any, Any, OHLCVResponse]:
|
||||
not_all_data = cache and self.required_candle_call_count > 1
|
||||
@@ -2371,7 +2383,7 @@ class Exchange:
|
||||
)
|
||||
|
||||
def _build_ohlcv_dl_jobs(
|
||||
self, pair_list: ListPairsWithTimeframes, since_ms: Optional[int], cache: bool
|
||||
self, pair_list: ListPairsWithTimeframes, since_ms: int | None, cache: bool
|
||||
) -> tuple[list[Coroutine], list[PairWithTimeframe]]:
|
||||
"""
|
||||
Build Coroutines to execute as part of refresh_latest_ohlcv
|
||||
@@ -2448,9 +2460,9 @@ class Exchange:
|
||||
self,
|
||||
pair_list: ListPairsWithTimeframes,
|
||||
*,
|
||||
since_ms: Optional[int] = None,
|
||||
since_ms: int | None = None,
|
||||
cache: bool = True,
|
||||
drop_incomplete: Optional[bool] = None,
|
||||
drop_incomplete: bool | None = None,
|
||||
) -> dict[PairWithTimeframe, DataFrame]:
|
||||
"""
|
||||
Refresh in-memory OHLCV asynchronously and set `_klines` with the result
|
||||
@@ -2544,7 +2556,7 @@ class Exchange:
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
candle_type: CandleType,
|
||||
since_ms: Optional[int] = None,
|
||||
since_ms: int | None = None,
|
||||
) -> OHLCVResponse:
|
||||
"""
|
||||
Asynchronously get candle history data using fetch_ohlcv
|
||||
@@ -2618,7 +2630,7 @@ class Exchange:
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
limit: int,
|
||||
since_ms: Optional[int] = None,
|
||||
since_ms: int | None = None,
|
||||
) -> list[list]:
|
||||
"""
|
||||
Fetch funding rate history - used to selectively override this by subclasses.
|
||||
@@ -2677,7 +2689,7 @@ class Exchange:
|
||||
|
||||
async def _build_trades_dl_jobs(
|
||||
self, pairwt: PairWithTimeframe, data_handler, cache: bool
|
||||
) -> tuple[PairWithTimeframe, Optional[DataFrame]]:
|
||||
) -> tuple[PairWithTimeframe, DataFrame | None]:
|
||||
"""
|
||||
Build coroutines to refresh trades for (they're then called through async.gather)
|
||||
"""
|
||||
@@ -2821,7 +2833,7 @@ class Exchange:
|
||||
|
||||
@retrier_async
|
||||
async def _async_fetch_trades(
|
||||
self, pair: str, since: Optional[int] = None, params: Optional[dict] = None
|
||||
self, pair: str, since: int | None = None, params: dict | None = None
|
||||
) -> tuple[list[list], Any]:
|
||||
"""
|
||||
Asynchronously gets trade history using fetch_trades.
|
||||
@@ -2880,8 +2892,16 @@ class Exchange:
|
||||
else:
|
||||
return trades[-1].get("timestamp")
|
||||
|
||||
async def _async_get_trade_history_id_startup(
|
||||
self, pair: str, since: int | None
|
||||
) -> tuple[list[list], str]:
|
||||
"""
|
||||
override for initial trade_history_id call
|
||||
"""
|
||||
return await self._async_fetch_trades(pair, since=since)
|
||||
|
||||
async def _async_get_trade_history_id(
|
||||
self, pair: str, until: int, since: Optional[int] = None, from_id: Optional[str] = None
|
||||
self, pair: str, until: int, since: int | None = None, from_id: str | None = None
|
||||
) -> tuple[str, list[list]]:
|
||||
"""
|
||||
Asynchronously gets trade history using fetch_trades
|
||||
@@ -2906,7 +2926,7 @@ class Exchange:
|
||||
# of up to an hour.
|
||||
# e.g. Binance returns the "last 1000" candles within a 1h time interval
|
||||
# - so we will miss the first trades.
|
||||
t, from_id = await self._async_fetch_trades(pair, since=since)
|
||||
t, from_id = await self._async_get_trade_history_id_startup(pair, since=since)
|
||||
trades.extend(t[x])
|
||||
while True:
|
||||
try:
|
||||
@@ -2936,7 +2956,7 @@ class Exchange:
|
||||
return (pair, trades)
|
||||
|
||||
async def _async_get_trade_history_time(
|
||||
self, pair: str, until: int, since: Optional[int] = None
|
||||
self, pair: str, until: int, since: int | None = None
|
||||
) -> tuple[str, list[list]]:
|
||||
"""
|
||||
Asynchronously gets trade history using fetch_trades,
|
||||
@@ -2977,9 +2997,9 @@ class Exchange:
|
||||
async def _async_get_trade_history(
|
||||
self,
|
||||
pair: str,
|
||||
since: Optional[int] = None,
|
||||
until: Optional[int] = None,
|
||||
from_id: Optional[str] = None,
|
||||
since: int | None = None,
|
||||
until: int | None = None,
|
||||
from_id: str | None = None,
|
||||
) -> tuple[str, list[list]]:
|
||||
"""
|
||||
Async wrapper handling downloading trades using either time or id based methods.
|
||||
@@ -3008,9 +3028,9 @@ class Exchange:
|
||||
def get_historic_trades(
|
||||
self,
|
||||
pair: str,
|
||||
since: Optional[int] = None,
|
||||
until: Optional[int] = None,
|
||||
from_id: Optional[str] = None,
|
||||
since: int | None = None,
|
||||
until: int | None = None,
|
||||
from_id: str | None = None,
|
||||
) -> tuple[str, list]:
|
||||
"""
|
||||
Get trade history data using asyncio.
|
||||
@@ -3039,7 +3059,7 @@ class Exchange:
|
||||
return self.loop.run_until_complete(task)
|
||||
|
||||
@retrier
|
||||
def _get_funding_fees_from_exchange(self, pair: str, since: Union[datetime, int]) -> float:
|
||||
def _get_funding_fees_from_exchange(self, pair: str, since: datetime | int) -> float:
|
||||
"""
|
||||
Returns the sum of all funding fees that were exchanged for a pair within a timeframe
|
||||
Dry-run handling happens as part of _calculate_funding_fees.
|
||||
@@ -3170,8 +3190,8 @@ class Exchange:
|
||||
file_dump_json(filename, data)
|
||||
|
||||
def load_cached_leverage_tiers(
|
||||
self, stake_currency: str, cache_time: Optional[timedelta] = None
|
||||
) -> Optional[dict[str, list[dict]]]:
|
||||
self, stake_currency: str, cache_time: timedelta | None = None
|
||||
) -> dict[str, list[dict]] | None:
|
||||
"""
|
||||
Load cached leverage tiers from disk
|
||||
:param cache_time: The maximum age of the cache before it is considered outdated
|
||||
@@ -3189,7 +3209,7 @@ class Exchange:
|
||||
if updated_dt < datetime.now(timezone.utc) - cache_time:
|
||||
logger.info("Cached leverage tiers are outdated. Will update.")
|
||||
return None
|
||||
return tiers["data"]
|
||||
return tiers.get("data")
|
||||
except Exception:
|
||||
logger.exception("Error loading cached leverage tiers. Refreshing.")
|
||||
return None
|
||||
@@ -3216,7 +3236,7 @@ class Exchange:
|
||||
"maintAmt": float(info["cum"]) if "cum" in info else None,
|
||||
}
|
||||
|
||||
def get_max_leverage(self, pair: str, stake_amount: Optional[float]) -> float:
|
||||
def get_max_leverage(self, pair: str, stake_amount: float | None) -> float:
|
||||
"""
|
||||
Returns the maximum leverage that a pair can be traded at
|
||||
:param pair: The base/quote currency pair being traded
|
||||
@@ -3294,7 +3314,7 @@ class Exchange:
|
||||
def _set_leverage(
|
||||
self,
|
||||
leverage: float,
|
||||
pair: Optional[str] = None,
|
||||
pair: str | None = None,
|
||||
accept_fail: bool = False,
|
||||
):
|
||||
"""
|
||||
@@ -3346,7 +3366,7 @@ class Exchange:
|
||||
pair: str,
|
||||
margin_mode: MarginMode,
|
||||
accept_fail: bool = False,
|
||||
params: Optional[dict] = None,
|
||||
params: dict | None = None,
|
||||
):
|
||||
"""
|
||||
Set's the margin mode on the exchange to cross or isolated for a specific pair
|
||||
@@ -3381,7 +3401,7 @@ class Exchange:
|
||||
amount: float,
|
||||
is_short: bool,
|
||||
open_date: datetime,
|
||||
close_date: Optional[datetime] = None,
|
||||
close_date: datetime | None = None,
|
||||
) -> float:
|
||||
"""
|
||||
Fetches and calculates the sum of all funding fees that occurred for a pair
|
||||
@@ -3434,7 +3454,7 @@ class Exchange:
|
||||
|
||||
@staticmethod
|
||||
def combine_funding_and_mark(
|
||||
funding_rates: DataFrame, mark_rates: DataFrame, futures_funding_rate: Optional[int] = None
|
||||
funding_rates: DataFrame, mark_rates: DataFrame, futures_funding_rate: int | None = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Combine funding-rates and mark-rates dataframes
|
||||
@@ -3475,7 +3495,7 @@ class Exchange:
|
||||
is_short: bool,
|
||||
open_date: datetime,
|
||||
close_date: datetime,
|
||||
time_in_ratio: Optional[float] = None,
|
||||
time_in_ratio: float | None = None,
|
||||
) -> float:
|
||||
"""
|
||||
calculates the sum of all funding fees that occurred for a pair during a futures trade
|
||||
@@ -3533,8 +3553,8 @@ class Exchange:
|
||||
stake_amount: float,
|
||||
leverage: float,
|
||||
wallet_balance: float,
|
||||
open_trades: Optional[list] = None,
|
||||
) -> Optional[float]:
|
||||
open_trades: list | None = None,
|
||||
) -> float | None:
|
||||
"""
|
||||
Set's the margin mode on the exchange to cross or isolated for a specific pair
|
||||
"""
|
||||
@@ -3582,7 +3602,7 @@ class Exchange:
|
||||
leverage: float,
|
||||
wallet_balance: float, # Or margin balance
|
||||
open_trades: list,
|
||||
) -> Optional[float]:
|
||||
) -> float | None:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
PERPETUAL:
|
||||
@@ -3633,7 +3653,7 @@ class Exchange:
|
||||
self,
|
||||
pair: str,
|
||||
notional_value: float,
|
||||
) -> tuple[float, Optional[float]]:
|
||||
) -> tuple[float, float | None]:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
:param pair: Market symbol
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Optional, TypedDict
|
||||
from typing import Any, Literal, TypedDict
|
||||
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
@@ -11,7 +11,7 @@ class FtHas(TypedDict, total=False):
|
||||
# Stoploss on exchange
|
||||
stoploss_on_exchange: bool
|
||||
stop_price_param: str
|
||||
stop_price_prop: str
|
||||
stop_price_prop: Literal["stopPrice", "stopLossPrice"]
|
||||
stop_price_type_field: str
|
||||
stop_price_type_value_mapping: dict
|
||||
stoploss_order_types: dict[str, str]
|
||||
@@ -35,16 +35,17 @@ class FtHas(TypedDict, total=False):
|
||||
trades_has_history: bool
|
||||
trades_pagination_overlap: bool
|
||||
# Orderbook
|
||||
l2_limit_range: Optional[list[int]]
|
||||
l2_limit_range: list[int] | None
|
||||
l2_limit_range_required: bool
|
||||
# Futures
|
||||
ccxt_futures_name: str # usually swap
|
||||
mark_ohlcv_price: str
|
||||
mark_ohlcv_timeframe: str
|
||||
funding_fee_timeframe: str
|
||||
funding_fee_candle_limit: int
|
||||
floor_leverage: bool
|
||||
needs_trading_fees: bool
|
||||
order_props_in_contracts: list[str]
|
||||
order_props_in_contracts: list[Literal["amount", "cost", "filled", "remaining"]]
|
||||
|
||||
# Websocket control
|
||||
ws_enabled: bool
|
||||
@@ -52,14 +53,14 @@ class FtHas(TypedDict, total=False):
|
||||
|
||||
class Ticker(TypedDict):
|
||||
symbol: str
|
||||
ask: Optional[float]
|
||||
askVolume: Optional[float]
|
||||
bid: Optional[float]
|
||||
bidVolume: Optional[float]
|
||||
last: Optional[float]
|
||||
quoteVolume: Optional[float]
|
||||
baseVolume: Optional[float]
|
||||
percentage: Optional[float]
|
||||
ask: float | None
|
||||
askVolume: float | None
|
||||
bid: float | None
|
||||
bidVolume: float | None
|
||||
last: float | None
|
||||
quoteVolume: float | None
|
||||
baseVolume: float | None
|
||||
percentage: float | None
|
||||
# Several more - only listing required.
|
||||
|
||||
|
||||
@@ -70,9 +71,9 @@ class OrderBook(TypedDict):
|
||||
symbol: str
|
||||
bids: list[tuple[float, float]]
|
||||
asks: list[tuple[float, float]]
|
||||
timestamp: Optional[int]
|
||||
datetime: Optional[str]
|
||||
nonce: Optional[int]
|
||||
timestamp: int | None
|
||||
datetime: str | None
|
||||
nonce: int | None
|
||||
|
||||
|
||||
class CcxtBalance(TypedDict):
|
||||
@@ -89,10 +90,12 @@ class CcxtPosition(TypedDict):
|
||||
side: str
|
||||
contracts: float
|
||||
leverage: float
|
||||
collateral: Optional[float]
|
||||
initialMargin: Optional[float]
|
||||
liquidationPrice: Optional[float]
|
||||
collateral: float | None
|
||||
initialMargin: float | None
|
||||
liquidationPrice: float | None
|
||||
|
||||
|
||||
CcxtOrder = dict[str, Any]
|
||||
|
||||
# pair, timeframe, candleType, OHLCV, drop last?,
|
||||
OHLCVResponse = tuple[str, str, CandleType, list, bool]
|
||||
|
||||
@@ -5,7 +5,7 @@ Exchange support utils
|
||||
import inspect
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from math import ceil, floor
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import ccxt
|
||||
from ccxt import (
|
||||
@@ -33,20 +33,18 @@ from freqtrade.util import FtPrecise
|
||||
CcxtModuleType = Any
|
||||
|
||||
|
||||
def is_exchange_known_ccxt(
|
||||
exchange_name: str, ccxt_module: Optional[CcxtModuleType] = None
|
||||
) -> bool:
|
||||
def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType | None = None) -> bool:
|
||||
return exchange_name in ccxt_exchanges(ccxt_module)
|
||||
|
||||
|
||||
def ccxt_exchanges(ccxt_module: Optional[CcxtModuleType] = None) -> list[str]:
|
||||
def ccxt_exchanges(ccxt_module: CcxtModuleType | None = None) -> list[str]:
|
||||
"""
|
||||
Return the list of all exchanges known to ccxt
|
||||
"""
|
||||
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
|
||||
|
||||
|
||||
def available_exchanges(ccxt_module: Optional[CcxtModuleType] = None) -> list[str]:
|
||||
def available_exchanges(ccxt_module: CcxtModuleType | None = None) -> list[str]:
|
||||
"""
|
||||
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
|
||||
"""
|
||||
@@ -54,7 +52,7 @@ def available_exchanges(ccxt_module: Optional[CcxtModuleType] = None) -> list[st
|
||||
return [x for x in exchanges if validate_exchange(x)[0]]
|
||||
|
||||
|
||||
def validate_exchange(exchange: str) -> tuple[bool, str, Optional[ccxt.Exchange]]:
|
||||
def validate_exchange(exchange: str) -> tuple[bool, str, ccxt.Exchange | None]:
|
||||
"""
|
||||
returns: can_use, reason, exchange_object
|
||||
with Reason including both missing and missing_opt
|
||||
@@ -137,9 +135,7 @@ def list_available_exchanges(all_exchanges: bool) -> list[ValidExchangesType]:
|
||||
return exchanges_valid
|
||||
|
||||
|
||||
def date_minus_candles(
|
||||
timeframe: str, candle_count: int, date: Optional[datetime] = None
|
||||
) -> datetime:
|
||||
def date_minus_candles(timeframe: str, candle_count: int, date: datetime | None = None) -> datetime:
|
||||
"""
|
||||
subtract X candles from a date.
|
||||
:param timeframe: timeframe in string format (e.g. "5m")
|
||||
@@ -166,7 +162,7 @@ def market_is_active(market: dict) -> bool:
|
||||
return market.get("active", True) is not False
|
||||
|
||||
|
||||
def amount_to_contracts(amount: float, contract_size: Optional[float]) -> float:
|
||||
def amount_to_contracts(amount: float, contract_size: float | None) -> float:
|
||||
"""
|
||||
Convert amount to contracts.
|
||||
:param amount: amount to convert
|
||||
@@ -179,7 +175,7 @@ def amount_to_contracts(amount: float, contract_size: Optional[float]) -> float:
|
||||
return amount
|
||||
|
||||
|
||||
def contracts_to_amount(num_contracts: float, contract_size: Optional[float]) -> float:
|
||||
def contracts_to_amount(num_contracts: float, contract_size: float | None) -> float:
|
||||
"""
|
||||
Takes num-contracts and converts it to contract size
|
||||
:param num_contracts: number of contracts
|
||||
@@ -194,7 +190,7 @@ def contracts_to_amount(num_contracts: float, contract_size: Optional[float]) ->
|
||||
|
||||
|
||||
def amount_to_precision(
|
||||
amount: float, amount_precision: Optional[float], precisionMode: Optional[int]
|
||||
amount: float, amount_precision: float | None, precisionMode: int | None
|
||||
) -> float:
|
||||
"""
|
||||
Returns the amount to buy or sell to a precision the Exchange accepts
|
||||
@@ -224,9 +220,9 @@ def amount_to_precision(
|
||||
|
||||
def amount_to_contract_precision(
|
||||
amount,
|
||||
amount_precision: Optional[float],
|
||||
precisionMode: Optional[int],
|
||||
contract_size: Optional[float],
|
||||
amount_precision: float | None,
|
||||
precisionMode: int | None,
|
||||
contract_size: float | None,
|
||||
) -> float:
|
||||
"""
|
||||
Returns the amount to buy or sell to a precision the Exchange accepts
|
||||
@@ -285,8 +281,8 @@ def __price_to_precision_significant_digits(
|
||||
|
||||
def price_to_precision(
|
||||
price: float,
|
||||
price_precision: Optional[float],
|
||||
precisionMode: Optional[int],
|
||||
price_precision: float | None,
|
||||
precisionMode: int | None,
|
||||
*,
|
||||
rounding_mode: int = ROUND,
|
||||
) -> float:
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
import ccxt
|
||||
from ccxt import ROUND_DOWN, ROUND_UP
|
||||
@@ -51,7 +50,7 @@ def timeframe_to_resample_freq(timeframe: str) -> str:
|
||||
return resample_interval
|
||||
|
||||
|
||||
def timeframe_to_prev_date(timeframe: str, date: Optional[datetime] = None) -> datetime:
|
||||
def timeframe_to_prev_date(timeframe: str, date: datetime | None = None) -> datetime:
|
||||
"""
|
||||
Use Timeframe and determine the candle start date for this date.
|
||||
Does not round when given a candle start date.
|
||||
@@ -66,7 +65,7 @@ def timeframe_to_prev_date(timeframe: str, date: Optional[datetime] = None) -> d
|
||||
return dt_from_ts(new_timestamp)
|
||||
|
||||
|
||||
def timeframe_to_next_date(timeframe: str, date: Optional[datetime] = None) -> datetime:
|
||||
def timeframe_to_next_date(timeframe: str, date: datetime | None = None) -> datetime:
|
||||
"""
|
||||
Use Timeframe and determine next candle.
|
||||
:param timeframe: timeframe in string format (e.g. "5m")
|
||||
|
||||
@@ -2,12 +2,15 @@
|
||||
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.constants import BuySell
|
||||
from freqtrade.enums import MarginMode, PriceType, TradingMode
|
||||
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.exchange_types import FtHas
|
||||
from freqtrade.exchange.common import retrier
|
||||
from freqtrade.exchange.exchange_types import CcxtOrder, FtHas
|
||||
from freqtrade.misc import safe_value_fallback2
|
||||
|
||||
|
||||
@@ -24,6 +27,8 @@ class Gate(Exchange):
|
||||
may still not work as expected.
|
||||
"""
|
||||
|
||||
unified_account = False
|
||||
|
||||
_ft_has: FtHas = {
|
||||
"ohlcv_candle_limit": 1000,
|
||||
"order_time_in_force": ["GTC", "IOC"],
|
||||
@@ -38,6 +43,7 @@ class Gate(Exchange):
|
||||
_ft_has_futures: FtHas = {
|
||||
"needs_trading_fees": True,
|
||||
"marketOrderRequiresPrice": False,
|
||||
"funding_fee_candle_limit": 90,
|
||||
"stop_price_type_field": "price_type",
|
||||
"stop_price_type_value_mapping": {
|
||||
PriceType.LAST: 0,
|
||||
@@ -53,6 +59,35 @@ class Gate(Exchange):
|
||||
(TradingMode.FUTURES, MarginMode.ISOLATED)
|
||||
]
|
||||
|
||||
@retrier
|
||||
def additional_exchange_init(self) -> None:
|
||||
"""
|
||||
Additional exchange initialization logic.
|
||||
.api will be available at this point.
|
||||
Must be overridden in child methods if required.
|
||||
"""
|
||||
try:
|
||||
if not self._config["dry_run"]:
|
||||
# TODO: This should work with 4.4.34 and later.
|
||||
self._api.load_unified_status()
|
||||
is_unified = self._api.options.get("unifiedAccount")
|
||||
|
||||
# Returns a tuple of bools, first for margin, second for Account
|
||||
if is_unified:
|
||||
self.unified_account = True
|
||||
logger.info("Gate: Unified account.")
|
||||
else:
|
||||
self.unified_account = False
|
||||
logger.info("Gate: Classic account.")
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.OperationFailed, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f"Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}"
|
||||
) from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def _get_params(
|
||||
self,
|
||||
side: BuySell,
|
||||
@@ -74,7 +109,7 @@ class Gate(Exchange):
|
||||
return params
|
||||
|
||||
def get_trades_for_order(
|
||||
self, order_id: str, pair: str, since: datetime, params: Optional[dict] = None
|
||||
self, order_id: str, pair: str, since: datetime, params: dict | None = None
|
||||
) -> list:
|
||||
trades = super().get_trades_for_order(order_id, pair, since, params)
|
||||
|
||||
@@ -99,10 +134,12 @@ class Gate(Exchange):
|
||||
}
|
||||
return trades
|
||||
|
||||
def get_order_id_conditional(self, order: dict[str, Any]) -> str:
|
||||
def get_order_id_conditional(self, order: CcxtOrder) -> str:
|
||||
return safe_value_fallback2(order, order, "id_stop", "id")
|
||||
|
||||
def fetch_stoploss_order(self, order_id: str, pair: str, params: Optional[dict] = None) -> dict:
|
||||
def fetch_stoploss_order(
|
||||
self, order_id: str, pair: str, params: dict | None = None
|
||||
) -> CcxtOrder:
|
||||
order = self.fetch_order(order_id=order_id, pair=pair, params={"stop": True})
|
||||
if order.get("status", "open") == "closed":
|
||||
# Places a real order - which we need to fetch explicitly.
|
||||
@@ -119,7 +156,5 @@ class Gate(Exchange):
|
||||
return order1
|
||||
return order
|
||||
|
||||
def cancel_stoploss_order(
|
||||
self, order_id: str, pair: str, params: Optional[dict] = None
|
||||
) -> dict:
|
||||
def cancel_stoploss_order(self, order_id: str, pair: str, params: dict | None = None) -> dict:
|
||||
return self.cancel_order(order_id=order_id, pair=pair, params={"stop": True})
|
||||
|
||||
@@ -1,10 +1,14 @@
|
||||
"""Hyperliquid exchange subclass"""
|
||||
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
from freqtrade.enums import TradingMode
|
||||
from freqtrade.constants import BuySell
|
||||
from freqtrade.enums import MarginMode, TradingMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.exchange_types import FtHas
|
||||
from freqtrade.exchange.exchange_types import CcxtOrder, FtHas
|
||||
from freqtrade.util.datetime_helpers import dt_from_ts
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -16,20 +20,162 @@ class Hyperliquid(Exchange):
|
||||
"""
|
||||
|
||||
_ft_has: FtHas = {
|
||||
# Only the most recent 5000 candles are available according to the
|
||||
# exchange's API documentation.
|
||||
"ohlcv_has_history": False,
|
||||
"ohlcv_candle_limit": 5000,
|
||||
"trades_has_history": False, # Trades endpoint doesn't seem available.
|
||||
"l2_limit_range": [20],
|
||||
"trades_has_history": False,
|
||||
"tickers_have_bid_ask": False,
|
||||
"stoploss_on_exchange": False,
|
||||
"exchange_has_overrides": {"fetchTrades": False},
|
||||
"marketOrderRequiresPrice": True,
|
||||
}
|
||||
_ft_has_futures: FtHas = {
|
||||
"stoploss_on_exchange": True,
|
||||
"stoploss_order_types": {"limit": "limit"},
|
||||
"stop_price_prop": "stopPrice",
|
||||
"funding_fee_timeframe": "1h",
|
||||
"funding_fee_candle_limit": 500,
|
||||
}
|
||||
|
||||
_supported_trading_mode_margin_pairs: list[tuple[TradingMode, MarginMode]] = [
|
||||
(TradingMode.FUTURES, MarginMode.ISOLATED)
|
||||
]
|
||||
|
||||
@property
|
||||
def _ccxt_config(self) -> dict:
|
||||
# Parameters to add directly to ccxt sync/async initialization.
|
||||
# ccxt defaults to swap mode.
|
||||
# ccxt Hyperliquid defaults to swap
|
||||
config = {}
|
||||
if self.trading_mode == TradingMode.SPOT:
|
||||
config.update({"options": {"defaultType": "spot"}})
|
||||
config.update(super()._ccxt_config)
|
||||
return config
|
||||
|
||||
def get_max_leverage(self, pair: str, stake_amount: float | None) -> float:
|
||||
# There are no leverage tiers
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
return self.markets[pair]["limits"]["leverage"]["max"]
|
||||
else:
|
||||
return 1.0
|
||||
|
||||
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
|
||||
if self.trading_mode != TradingMode.SPOT:
|
||||
# Hyperliquid expects leverage to be an int
|
||||
leverage = int(leverage)
|
||||
# Hyperliquid needs the parameter leverage.
|
||||
# Don't use _set_leverage(), as this sets margin back to cross
|
||||
self.set_margin_mode(pair, self.margin_mode, params={"leverage": leverage})
|
||||
|
||||
def dry_run_liquidation_price(
|
||||
self,
|
||||
pair: str,
|
||||
open_rate: float, # Entry price of position
|
||||
is_short: bool,
|
||||
amount: float,
|
||||
stake_amount: float,
|
||||
leverage: float,
|
||||
wallet_balance: float, # Or margin balance
|
||||
open_trades: list,
|
||||
) -> float | None:
|
||||
"""
|
||||
Optimized
|
||||
Docs: https://hyperliquid.gitbook.io/hyperliquid-docs/trading/liquidations
|
||||
Below can be done in fewer lines of code, but like this it matches the documentation.
|
||||
|
||||
Tested with 196 unique ccxt fetch_positions() position outputs
|
||||
- Only first output per position where pnl=0.0
|
||||
- Compare against returned liquidation price
|
||||
Positions: 197 Average deviation: 0.00028980% Max deviation: 0.01309453%
|
||||
Positions info:
|
||||
{'leverage': {1.0: 23, 2.0: 155, 3.0: 8, 4.0: 7, 5.0: 4},
|
||||
'side': {'long': 133, 'short': 64},
|
||||
'symbol': {'BTC/USDC:USDC': 81,
|
||||
'DOGE/USDC:USDC': 20,
|
||||
'ETH/USDC:USDC': 53,
|
||||
'SOL/USDC:USDC': 43}}
|
||||
"""
|
||||
# Defining/renaming variables to match the documentation
|
||||
isolated_margin = wallet_balance
|
||||
position_size = amount
|
||||
price = open_rate
|
||||
position_value = price * position_size
|
||||
max_leverage = self.markets[pair]["limits"]["leverage"]["max"]
|
||||
|
||||
# Docs: The maintenance margin is half of the initial margin at max leverage,
|
||||
# which varies from 3-50x. In other words, the maintenance margin is between 1%
|
||||
# (for 50x max leverage assets) and 16.7% (for 3x max leverage assets)
|
||||
# depending on the asset
|
||||
# The key thing here is 'Half of the initial margin at max leverage'.
|
||||
# A bit ambiguous, but this interpretation leads to accurate results:
|
||||
# 1. Start from the position value
|
||||
# 2. Assume max leverage, calculate the initial margin by dividing the position value
|
||||
# by the max leverage
|
||||
# 3. Divide this by 2
|
||||
maintenance_margin_required = position_value / max_leverage / 2
|
||||
|
||||
# Docs: margin_available (isolated) = isolated_margin - maintenance_margin_required
|
||||
margin_available = isolated_margin - maintenance_margin_required
|
||||
|
||||
# Docs: The maintenance margin is half of the initial margin at max leverage
|
||||
# The docs don't explicitly specify maintenance leverage, but this works.
|
||||
# Double because of the statement 'half of the initial margin at max leverage'
|
||||
maintenance_leverage = max_leverage * 2
|
||||
|
||||
# Docs: l = 1 / MAINTENANCE_LEVERAGE (Using 'll' to comply with PEP8: E741)
|
||||
ll = 1 / maintenance_leverage
|
||||
|
||||
# Docs: side = 1 for long and -1 for short
|
||||
side = -1 if is_short else 1
|
||||
|
||||
# Docs: liq_price = price - side * margin_available / position_size / (1 - l * side)
|
||||
liq_price = price - side * margin_available / position_size / (1 - ll * side)
|
||||
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
return liq_price
|
||||
else:
|
||||
raise OperationalException(
|
||||
"Freqtrade only supports isolated futures for leverage trading"
|
||||
)
|
||||
|
||||
def get_funding_fees(
|
||||
self, pair: str, amount: float, is_short: bool, open_date: datetime
|
||||
) -> float:
|
||||
"""
|
||||
Fetch funding fees, either from the exchange (live) or calculates them
|
||||
based on funding rate/mark price history
|
||||
:param pair: The quote/base pair of the trade
|
||||
:param is_short: trade direction
|
||||
:param amount: Trade amount
|
||||
:param open_date: Open date of the trade
|
||||
:return: funding fee since open_date
|
||||
:raises: ExchangeError if something goes wrong.
|
||||
"""
|
||||
# Hyperliquid does not have fetchFundingHistory
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
try:
|
||||
return self._fetch_and_calculate_funding_fees(pair, amount, is_short, open_date)
|
||||
except ExchangeError:
|
||||
logger.warning(f"Could not update funding fees for {pair}.")
|
||||
return 0.0
|
||||
|
||||
def fetch_order(self, order_id: str, pair: str, params: dict | None = None) -> CcxtOrder:
|
||||
order = super().fetch_order(order_id, pair, params)
|
||||
|
||||
if (
|
||||
order["average"] is None
|
||||
and order["status"] in ("canceled", "closed")
|
||||
and order["filled"] > 0
|
||||
):
|
||||
# Hyperliquid does not fill the average price in the order response
|
||||
# Fetch trades to calculate the average price to have the actual price
|
||||
# the order was executed at
|
||||
trades = self.get_trades_for_order(order_id, pair, since=dt_from_ts(order["timestamp"]))
|
||||
|
||||
if trades:
|
||||
total_amount = sum(t["amount"] for t in trades)
|
||||
order["average"] = (
|
||||
sum(t["price"] * t["amount"] for t in trades) / total_amount
|
||||
if total_amount
|
||||
else None
|
||||
)
|
||||
|
||||
return order
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import ccxt
|
||||
from pandas import DataFrame
|
||||
@@ -50,12 +50,28 @@ class Kraken(Exchange):
|
||||
|
||||
return parent_check and market.get("darkpool", False) is False
|
||||
|
||||
def get_tickers(self, symbols: Optional[list[str]] = None, cached: bool = False) -> Tickers:
|
||||
def get_tickers(self, symbols: list[str] | None = None, *, cached: bool = False) -> Tickers:
|
||||
# Only fetch tickers for current stake currency
|
||||
# Otherwise the request for kraken becomes too large.
|
||||
symbols = list(self.get_markets(quote_currencies=[self._config["stake_currency"]]))
|
||||
return super().get_tickers(symbols=symbols, cached=cached)
|
||||
|
||||
def consolidate_balances(self, balances: CcxtBalances) -> CcxtBalances:
|
||||
"""
|
||||
Consolidate balances for the same currency.
|
||||
Kraken returns ".F" balances if rewards is enabled.
|
||||
"""
|
||||
consolidated = {}
|
||||
for currency, balance in balances.items():
|
||||
base_currency = currency[:-2] if currency.endswith(".F") else currency
|
||||
if base_currency in consolidated:
|
||||
consolidated[base_currency]["free"] += balance["free"]
|
||||
consolidated[base_currency]["used"] += balance["used"]
|
||||
consolidated[base_currency]["total"] += balance["total"]
|
||||
else:
|
||||
consolidated[base_currency] = balance
|
||||
return consolidated
|
||||
|
||||
@retrier
|
||||
def get_balances(self) -> CcxtBalances:
|
||||
if self._config["dry_run"]:
|
||||
@@ -68,6 +84,10 @@ class Kraken(Exchange):
|
||||
balances.pop("free", None)
|
||||
balances.pop("total", None)
|
||||
balances.pop("used", None)
|
||||
self._log_exchange_response("fetch_balances", balances)
|
||||
|
||||
# Consolidate balances
|
||||
balances = self.consolidate_balances(balances)
|
||||
|
||||
orders = self._api.fetch_open_orders()
|
||||
order_list = [
|
||||
@@ -86,6 +106,7 @@ class Kraken(Exchange):
|
||||
balances[bal]["used"] = sum(order[1] for order in order_list if order[0] == bal)
|
||||
balances[bal]["free"] = balances[bal]["total"] - balances[bal]["used"]
|
||||
|
||||
self._log_exchange_response("fetch_balances2", balances)
|
||||
return balances
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
@@ -99,7 +120,7 @@ class Kraken(Exchange):
|
||||
def _set_leverage(
|
||||
self,
|
||||
leverage: float,
|
||||
pair: Optional[str] = None,
|
||||
pair: str | None = None,
|
||||
accept_fail: bool = False,
|
||||
):
|
||||
"""
|
||||
@@ -137,7 +158,7 @@ class Kraken(Exchange):
|
||||
is_short: bool,
|
||||
open_date: datetime,
|
||||
close_date: datetime,
|
||||
time_in_ratio: Optional[float] = None,
|
||||
time_in_ratio: float | None = None,
|
||||
) -> float:
|
||||
"""
|
||||
# ! This method will always error when run by Freqtrade because time_in_ratio is never
|
||||
|
||||
@@ -4,7 +4,7 @@ import logging
|
||||
|
||||
from freqtrade.constants import BuySell
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.exchange_types import FtHas
|
||||
from freqtrade.exchange.exchange_types import CcxtOrder, FtHas
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -47,7 +47,7 @@ class Kucoin(Exchange):
|
||||
leverage: float,
|
||||
reduceOnly: bool = False,
|
||||
time_in_force: str = "GTC",
|
||||
) -> dict:
|
||||
) -> CcxtOrder:
|
||||
res = super().create_order(
|
||||
pair=pair,
|
||||
ordertype=ordertype,
|
||||
|
||||
21
freqtrade/exchange/lbank.py
Normal file
21
freqtrade/exchange/lbank.py
Normal file
@@ -0,0 +1,21 @@
|
||||
"""Lbank exchange subclass"""
|
||||
|
||||
import logging
|
||||
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.exchange_types import FtHas
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Lbank(Exchange):
|
||||
"""
|
||||
Lbank exchange class. Contains adjustments needed for Freqtrade to work
|
||||
with this exchange.
|
||||
"""
|
||||
|
||||
_ft_has: FtHas = {
|
||||
"ohlcv_candle_limit": 1998, # lower than the allowed 2000 to avoid current_candle issue
|
||||
"trades_has_history": False,
|
||||
}
|
||||
@@ -1,6 +1,5 @@
|
||||
import logging
|
||||
from datetime import timedelta
|
||||
from typing import Any, Optional
|
||||
|
||||
import ccxt
|
||||
|
||||
@@ -14,7 +13,7 @@ from freqtrade.exceptions import (
|
||||
)
|
||||
from freqtrade.exchange import Exchange, date_minus_candles
|
||||
from freqtrade.exchange.common import API_RETRY_COUNT, retrier
|
||||
from freqtrade.exchange.exchange_types import FtHas
|
||||
from freqtrade.exchange.exchange_types import CcxtOrder, FtHas
|
||||
from freqtrade.misc import safe_value_fallback2
|
||||
from freqtrade.util import dt_now, dt_ts
|
||||
|
||||
@@ -60,7 +59,7 @@ class Okx(Exchange):
|
||||
_ccxt_params: dict = {"options": {"brokerId": "ffb5405ad327SUDE"}}
|
||||
|
||||
def ohlcv_candle_limit(
|
||||
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None
|
||||
self, timeframe: str, candle_type: CandleType, since_ms: int | None = None
|
||||
) -> int:
|
||||
"""
|
||||
Exchange ohlcv candle limit
|
||||
@@ -191,7 +190,7 @@ class Okx(Exchange):
|
||||
params["posSide"] = self._get_posSide(side, True)
|
||||
return params
|
||||
|
||||
def _convert_stop_order(self, pair: str, order_id: str, order: dict) -> dict:
|
||||
def _convert_stop_order(self, pair: str, order_id: str, order: CcxtOrder) -> CcxtOrder:
|
||||
if (
|
||||
order.get("status", "open") == "closed"
|
||||
and (real_order_id := order.get("info", {}).get("ordId")) is not None
|
||||
@@ -209,7 +208,9 @@ class Okx(Exchange):
|
||||
return order
|
||||
|
||||
@retrier(retries=API_RETRY_COUNT)
|
||||
def fetch_stoploss_order(self, order_id: str, pair: str, params: Optional[dict] = None) -> dict:
|
||||
def fetch_stoploss_order(
|
||||
self, order_id: str, pair: str, params: dict | None = None
|
||||
) -> CcxtOrder:
|
||||
if self._config["dry_run"]:
|
||||
return self.fetch_dry_run_order(order_id)
|
||||
|
||||
@@ -231,7 +232,7 @@ class Okx(Exchange):
|
||||
|
||||
return self._fetch_stop_order_fallback(order_id, pair)
|
||||
|
||||
def _fetch_stop_order_fallback(self, order_id: str, pair: str) -> dict:
|
||||
def _fetch_stop_order_fallback(self, order_id: str, pair: str) -> CcxtOrder:
|
||||
params2 = {"stop": True, "ordType": "conditional"}
|
||||
for method in (
|
||||
self._api.fetch_open_orders,
|
||||
@@ -256,14 +257,12 @@ class Okx(Exchange):
|
||||
raise OperationalException(e) from e
|
||||
raise RetryableOrderError(f"StoplossOrder not found (pair: {pair} id: {order_id}).")
|
||||
|
||||
def get_order_id_conditional(self, order: dict[str, Any]) -> str:
|
||||
def get_order_id_conditional(self, order: CcxtOrder) -> str:
|
||||
if order.get("type", "") == "stop":
|
||||
return safe_value_fallback2(order, order, "id_stop", "id")
|
||||
return order["id"]
|
||||
|
||||
def cancel_stoploss_order(
|
||||
self, order_id: str, pair: str, params: Optional[dict] = None
|
||||
) -> dict:
|
||||
def cancel_stoploss_order(self, order_id: str, pair: str, params: dict | None = None) -> dict:
|
||||
params1 = {"stop": True}
|
||||
# 'ordType': 'conditional'
|
||||
#
|
||||
@@ -273,7 +272,7 @@ class Okx(Exchange):
|
||||
params=params1,
|
||||
)
|
||||
|
||||
def _fetch_orders_emulate(self, pair: str, since_ms: int) -> list[dict]:
|
||||
def _fetch_orders_emulate(self, pair: str, since_ms: int) -> list[CcxtOrder]:
|
||||
orders = []
|
||||
|
||||
orders = self._api.fetch_closed_orders(pair, since=since_ms)
|
||||
|
||||
@@ -2,7 +2,6 @@ import logging
|
||||
import random
|
||||
from abc import abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Optional, Union
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
@@ -140,7 +139,7 @@ class BaseEnvironment(gym.Env):
|
||||
self._end_tick: int = len(self.prices) - 1
|
||||
self._done: bool = False
|
||||
self._current_tick: int = self._start_tick
|
||||
self._last_trade_tick: Optional[int] = None
|
||||
self._last_trade_tick: int | None = None
|
||||
self._position = Positions.Neutral
|
||||
self._position_history: list = [None]
|
||||
self.total_reward: float = 0
|
||||
@@ -173,8 +172,8 @@ class BaseEnvironment(gym.Env):
|
||||
def tensorboard_log(
|
||||
self,
|
||||
metric: str,
|
||||
value: Optional[Union[int, float]] = None,
|
||||
inc: Optional[bool] = None,
|
||||
value: int | float | None = None,
|
||||
inc: bool | None = None,
|
||||
category: str = "custom",
|
||||
):
|
||||
"""
|
||||
|
||||
@@ -2,9 +2,10 @@ import copy
|
||||
import importlib
|
||||
import logging
|
||||
from abc import abstractmethod
|
||||
from collections.abc import Callable
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Optional, Union
|
||||
from typing import Any
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
@@ -49,9 +50,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
)
|
||||
th.set_num_threads(self.max_threads)
|
||||
self.reward_params = self.freqai_info["rl_config"]["model_reward_parameters"]
|
||||
self.train_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
|
||||
self.eval_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
|
||||
self.eval_callback: Optional[MaskableEvalCallback] = None
|
||||
self.train_env: VecMonitor | SubprocVecEnv | gym.Env = gym.Env()
|
||||
self.eval_env: VecMonitor | SubprocVecEnv | gym.Env = gym.Env()
|
||||
self.eval_callback: MaskableEvalCallback | None = None
|
||||
self.model_type = self.freqai_info["rl_config"]["model_type"]
|
||||
self.rl_config = self.freqai_info["rl_config"]
|
||||
self.df_raw: DataFrame = DataFrame()
|
||||
|
||||
@@ -39,8 +39,8 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.class_name_to_index = None
|
||||
self.index_to_class_name = None
|
||||
self.class_name_to_index = {}
|
||||
self.index_to_class_name = {}
|
||||
|
||||
def predict(
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
|
||||
@@ -20,7 +20,11 @@ class BasePyTorchModel(IFreqaiModel, ABC):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(config=kwargs["config"])
|
||||
self.dd.model_type = "pytorch"
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self.device = (
|
||||
"mps"
|
||||
if torch.backends.mps.is_available() and torch.backends.mps.is_built()
|
||||
else ("cuda" if torch.cuda.is_available() else "cpu")
|
||||
)
|
||||
test_size = self.freqai_info.get("data_split_parameters", {}).get("test_size")
|
||||
self.splits = ["train", "test"] if test_size != 0 else ["train"]
|
||||
self.window_size = self.freqai_info.get("conv_width", 1)
|
||||
|
||||
@@ -5,7 +5,7 @@ import random
|
||||
import shutil
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
@@ -111,7 +111,7 @@ class FreqaiDataKitchen:
|
||||
def set_paths(
|
||||
self,
|
||||
pair: str,
|
||||
trained_timestamp: Optional[int] = None,
|
||||
trained_timestamp: int | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Set the paths to the data for the present coin/botloop
|
||||
|
||||
@@ -5,7 +5,7 @@ from abc import ABC, abstractmethod
|
||||
from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal, Optional
|
||||
from typing import Any, Literal
|
||||
|
||||
import datasieve.transforms as ds
|
||||
import numpy as np
|
||||
@@ -106,7 +106,7 @@ class IFreqaiModel(ABC):
|
||||
self._threads: list[threading.Thread] = []
|
||||
self._stop_event = threading.Event()
|
||||
self.metadata: dict[str, Any] = self.dd.load_global_metadata_from_disk()
|
||||
self.data_provider: Optional[DataProvider] = None
|
||||
self.data_provider: DataProvider | None = None
|
||||
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
|
||||
self.can_short = True # overridden in start() with strategy.can_short
|
||||
self.model: Any = None
|
||||
@@ -185,6 +185,7 @@ class IFreqaiModel(ABC):
|
||||
Callback for Subclasses to override to include logic for shutting down resources
|
||||
when SIGINT is sent.
|
||||
"""
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
return
|
||||
|
||||
def shutdown(self):
|
||||
@@ -198,9 +199,16 @@ class IFreqaiModel(ABC):
|
||||
self.data_provider = None
|
||||
self._on_stop()
|
||||
|
||||
logger.info("Waiting on Training iteration")
|
||||
for _thread in self._threads:
|
||||
_thread.join()
|
||||
if self.freqai_info.get("wait_for_training_iteration_on_reload", True):
|
||||
logger.info("Waiting on Training iteration")
|
||||
for _thread in self._threads:
|
||||
_thread.join()
|
||||
else:
|
||||
logger.warning(
|
||||
"Breaking current training iteration because "
|
||||
"you set wait_for_training_iteration_on_reload to "
|
||||
" False."
|
||||
)
|
||||
|
||||
def start_scanning(self, *args, **kwargs) -> None:
|
||||
"""
|
||||
@@ -286,7 +294,9 @@ class IFreqaiModel(ABC):
|
||||
# tr_backtest is the backtesting time range e.g. the week directly
|
||||
# following tr_train. Both of these windows slide through the
|
||||
# entire backtest
|
||||
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
|
||||
for tr_train, tr_backtest in zip(
|
||||
dk.training_timeranges, dk.backtesting_timeranges, strict=False
|
||||
):
|
||||
(_, _) = self.dd.get_pair_dict_info(pair)
|
||||
train_it += 1
|
||||
total_trains = len(dk.backtesting_timeranges)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import torch as th
|
||||
from stable_baselines3.common.callbacks import ProgressBarCallback
|
||||
@@ -78,7 +78,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||
model = self.dd.model_dictionary[dk.pair]
|
||||
model.set_env(self.train_env)
|
||||
callbacks: list[Any] = [self.eval_callback, self.tensorboard_callback]
|
||||
progressbar_callback: Optional[ProgressBarCallback] = None
|
||||
progressbar_callback: ProgressBarCallback | None = None
|
||||
if self.rl_config.get("progress_bar", False):
|
||||
progressbar_callback = ProgressBarCallback()
|
||||
callbacks.insert(0, progressbar_callback)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Union
|
||||
from typing import Any
|
||||
|
||||
from stable_baselines3.common.callbacks import BaseCallback
|
||||
from stable_baselines3.common.logger import HParam
|
||||
@@ -27,7 +27,7 @@ class TensorboardCallback(BaseCallback):
|
||||
# "batch_size": self.model.batch_size,
|
||||
# "n_steps": self.model.n_steps,
|
||||
}
|
||||
metric_dict: dict[str, Union[float, int]] = {
|
||||
metric_dict: dict[str, float | int] = {
|
||||
"eval/mean_reward": 0,
|
||||
"rollout/ep_rew_mean": 0,
|
||||
"rollout/ep_len_mean": 0,
|
||||
|
||||
@@ -45,7 +45,7 @@ class TensorBoardCallback(BaseTensorBoardCallback):
|
||||
return False
|
||||
|
||||
evals = ["validation", "train"]
|
||||
for metric, eval_ in zip(evals_log.items(), evals):
|
||||
for metric, eval_ in zip(evals_log.items(), evals, strict=False):
|
||||
for metric_name, log in metric[1].items():
|
||||
score = log[-1][0] if isinstance(log[-1], tuple) else log[-1]
|
||||
self.writer.add_scalar(f"{eval_}-{metric_name}", score, epoch)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
@@ -50,8 +50,8 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
|
||||
self.criterion = criterion
|
||||
self.model_meta_data = model_meta_data
|
||||
self.device = device
|
||||
self.n_epochs: Optional[int] = kwargs.get("n_epochs", 10)
|
||||
self.n_steps: Optional[int] = kwargs.get("n_steps", None)
|
||||
self.n_epochs: int | None = kwargs.get("n_epochs", 10)
|
||||
self.n_steps: int | None = kwargs.get("n_steps", None)
|
||||
if self.n_steps is None and not self.n_epochs:
|
||||
raise Exception("Either `n_steps` or `n_epochs` should be set.")
|
||||
|
||||
|
||||
@@ -107,7 +107,7 @@ def plot_feature_importance(
|
||||
# Extract feature importance from model
|
||||
models = {}
|
||||
if "FreqaiMultiOutputRegressor" in str(model.__class__):
|
||||
for estimator, label in zip(model.estimators_, dk.label_list):
|
||||
for estimator, label in zip(model.estimators_, dk.label_list, strict=False):
|
||||
models[label] = estimator
|
||||
else:
|
||||
models[dk.label_list[0]] = model
|
||||
|
||||
@@ -9,7 +9,7 @@ from datetime import datetime, time, timedelta, timezone
|
||||
from math import isclose
|
||||
from threading import Lock
|
||||
from time import sleep
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from schedule import Scheduler
|
||||
|
||||
@@ -43,6 +43,7 @@ from freqtrade.exchange import (
|
||||
timeframe_to_next_date,
|
||||
timeframe_to_seconds,
|
||||
)
|
||||
from freqtrade.exchange.exchange_types import CcxtOrder
|
||||
from freqtrade.leverage.liquidation_price import update_liquidation_prices
|
||||
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
@@ -111,7 +112,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
self.trading_mode: TradingMode = self.config.get("trading_mode", TradingMode.SPOT)
|
||||
self.margin_mode: MarginMode = self.config.get("margin_mode", MarginMode.NONE)
|
||||
self.last_process: Optional[datetime] = None
|
||||
self.last_process: datetime | None = None
|
||||
|
||||
# RPC runs in separate threads, can start handling external commands just after
|
||||
# initialization, even before Freqtradebot has a chance to start its throttling,
|
||||
@@ -325,7 +326,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
}
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def _refresh_active_whitelist(self, trades: Optional[list[Trade]] = None) -> list[str]:
|
||||
def _refresh_active_whitelist(self, trades: list[Trade] | None = None) -> list[str]:
|
||||
"""
|
||||
Refresh active whitelist from pairlist or edge and extend it with
|
||||
pairs that have open trades.
|
||||
@@ -579,7 +580,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
logger.warning(
|
||||
f"{trade} has a total of {trade.amount} {trade.base_currency}, "
|
||||
f"but the Wallet shows a total of {total} {trade.base_currency}. "
|
||||
f"Adjusting trade amount to {total}."
|
||||
f"Adjusting trade amount to {total}. "
|
||||
"This may however lead to further issues."
|
||||
)
|
||||
trade.amount = total
|
||||
@@ -587,7 +588,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
logger.warning(
|
||||
f"{trade} has a total of {trade.amount} {trade.base_currency}, "
|
||||
f"but the Wallet shows a total of {total} {trade.base_currency}. "
|
||||
"Refusing to adjust as the difference is too large."
|
||||
"Refusing to adjust as the difference is too large. "
|
||||
"This may however lead to further issues."
|
||||
)
|
||||
if prev_trade_amount != trade.amount:
|
||||
@@ -865,14 +866,14 @@ class FreqtradeBot(LoggingMixin):
|
||||
self,
|
||||
pair: str,
|
||||
stake_amount: float,
|
||||
price: Optional[float] = None,
|
||||
price: float | None = None,
|
||||
*,
|
||||
is_short: bool = False,
|
||||
ordertype: Optional[str] = None,
|
||||
enter_tag: Optional[str] = None,
|
||||
trade: Optional[Trade] = None,
|
||||
ordertype: str | None = None,
|
||||
enter_tag: str | None = None,
|
||||
trade: Trade | None = None,
|
||||
mode: EntryExecuteMode = "initial",
|
||||
leverage_: Optional[float] = None,
|
||||
leverage_: float | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Executes an entry for the given pair
|
||||
@@ -1089,13 +1090,13 @@ class FreqtradeBot(LoggingMixin):
|
||||
def get_valid_enter_price_and_stake(
|
||||
self,
|
||||
pair: str,
|
||||
price: Optional[float],
|
||||
price: float | None,
|
||||
stake_amount: float,
|
||||
trade_side: LongShort,
|
||||
entry_tag: Optional[str],
|
||||
trade: Optional[Trade],
|
||||
entry_tag: str | None,
|
||||
trade: Trade | None,
|
||||
mode: EntryExecuteMode,
|
||||
leverage_: Optional[float],
|
||||
leverage_: float | None,
|
||||
) -> tuple[float, float, float]:
|
||||
"""
|
||||
Validate and eventually adjust (within limits) limit, amount and leverage
|
||||
@@ -1191,7 +1192,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
self,
|
||||
trade: Trade,
|
||||
order: Order,
|
||||
order_type: Optional[str],
|
||||
order_type: str | None,
|
||||
fill: bool = False,
|
||||
sub_trade: bool = False,
|
||||
) -> None:
|
||||
@@ -1206,6 +1207,13 @@ class FreqtradeBot(LoggingMixin):
|
||||
current_rate = self.exchange.get_rate(
|
||||
trade.pair, side="entry", is_short=trade.is_short, refresh=False
|
||||
)
|
||||
stake_amount = trade.stake_amount
|
||||
if not fill:
|
||||
# If we have open orders, we need to add the stake amount of the open orders
|
||||
# as it's not yet included in the trade.stake_amount
|
||||
stake_amount += sum(
|
||||
o.stake_amount for o in trade.open_orders if o.ft_order_side == trade.entry_side
|
||||
)
|
||||
|
||||
msg: RPCEntryMsg = {
|
||||
"trade_id": trade.id,
|
||||
@@ -1219,12 +1227,12 @@ class FreqtradeBot(LoggingMixin):
|
||||
"limit": open_rate, # Deprecated (?)
|
||||
"open_rate": open_rate,
|
||||
"order_type": order_type or "unknown",
|
||||
"stake_amount": trade.stake_amount,
|
||||
"stake_amount": stake_amount,
|
||||
"stake_currency": self.config["stake_currency"],
|
||||
"base_currency": self.exchange.get_pair_base_currency(trade.pair),
|
||||
"quote_currency": self.exchange.get_pair_quote_currency(trade.pair),
|
||||
"fiat_currency": self.config.get("fiat_display_currency", None),
|
||||
"amount": order.safe_amount_after_fee if fill else (order.amount or trade.amount),
|
||||
"amount": order.safe_amount_after_fee if fill else (order.safe_amount or trade.amount),
|
||||
"open_date": trade.open_date_utc or datetime.now(timezone.utc),
|
||||
"current_rate": current_rate,
|
||||
"sub_trade": sub_trade,
|
||||
@@ -1355,7 +1363,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
return False
|
||||
|
||||
def _check_and_execute_exit(
|
||||
self, trade: Trade, exit_rate: float, enter: bool, exit_: bool, exit_tag: Optional[str]
|
||||
self, trade: Trade, exit_rate: float, enter: bool, exit_: bool, exit_tag: str | None
|
||||
) -> bool:
|
||||
"""
|
||||
Check and execute trade exit
|
||||
@@ -1475,7 +1483,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
return False
|
||||
|
||||
def handle_trailing_stoploss_on_exchange(self, trade: Trade, order: dict) -> None:
|
||||
def handle_trailing_stoploss_on_exchange(self, trade: Trade, order: CcxtOrder) -> None:
|
||||
"""
|
||||
Check to see if stoploss on exchange should be updated
|
||||
in case of trailing stoploss on exchange
|
||||
@@ -1513,7 +1521,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
f"Could not create trailing stoploss order for pair {trade.pair}."
|
||||
)
|
||||
|
||||
def manage_trade_stoploss_orders(self, trade: Trade, stoploss_orders: list[dict]):
|
||||
def manage_trade_stoploss_orders(self, trade: Trade, stoploss_orders: list[CcxtOrder]):
|
||||
"""
|
||||
Perform required actions according to existing stoploss orders of trade
|
||||
:param trade: Corresponding Trade
|
||||
@@ -1589,7 +1597,9 @@ class FreqtradeBot(LoggingMixin):
|
||||
else:
|
||||
self.replace_order(order, open_order, trade)
|
||||
|
||||
def handle_cancel_order(self, order: dict, order_obj: Order, trade: Trade, reason: str) -> None:
|
||||
def handle_cancel_order(
|
||||
self, order: CcxtOrder, order_obj: Order, trade: Trade, reason: str
|
||||
) -> None:
|
||||
"""
|
||||
Check if current analyzed order timed out and cancel if necessary.
|
||||
:param order: Order dict grabbed with exchange.fetch_order()
|
||||
@@ -1611,7 +1621,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.emergency_exit(trade, order["price"], order["amount"])
|
||||
|
||||
def emergency_exit(
|
||||
self, trade: Trade, price: float, sub_trade_amt: Optional[float] = None
|
||||
self, trade: Trade, price: float, sub_trade_amt: float | None = None
|
||||
) -> None:
|
||||
try:
|
||||
self.execute_trade_exit(
|
||||
@@ -1641,7 +1651,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
)
|
||||
trade.delete()
|
||||
|
||||
def replace_order(self, order: dict, order_obj: Optional[Order], trade: Trade) -> None:
|
||||
def replace_order(self, order: CcxtOrder, order_obj: Order | None, trade: Trade) -> None:
|
||||
"""
|
||||
Check if current analyzed entry order should be replaced or simply cancelled.
|
||||
To simply cancel the existing order(no replacement) adjust_entry_price() should return None
|
||||
@@ -1784,10 +1794,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
def handle_cancel_enter(
|
||||
self,
|
||||
trade: Trade,
|
||||
order: dict,
|
||||
order: CcxtOrder,
|
||||
order_obj: Order,
|
||||
reason: str,
|
||||
replacing: Optional[bool] = False,
|
||||
replacing: bool | None = False,
|
||||
) -> bool:
|
||||
"""
|
||||
entry cancel - cancel order
|
||||
@@ -1868,7 +1878,9 @@ class FreqtradeBot(LoggingMixin):
|
||||
)
|
||||
return was_trade_fully_canceled
|
||||
|
||||
def handle_cancel_exit(self, trade: Trade, order: dict, order_obj: Order, reason: str) -> bool:
|
||||
def handle_cancel_exit(
|
||||
self, trade: Trade, order: CcxtOrder, order_obj: Order, reason: str
|
||||
) -> bool:
|
||||
"""
|
||||
exit order cancel - cancel order and update trade
|
||||
:return: True if exit order was cancelled, false otherwise
|
||||
@@ -1979,9 +1991,9 @@ class FreqtradeBot(LoggingMixin):
|
||||
limit: float,
|
||||
exit_check: ExitCheckTuple,
|
||||
*,
|
||||
exit_tag: Optional[str] = None,
|
||||
ordertype: Optional[str] = None,
|
||||
sub_trade_amt: Optional[float] = None,
|
||||
exit_tag: str | None = None,
|
||||
ordertype: str | None = None,
|
||||
sub_trade_amt: float | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Executes a trade exit for the given trade and limit
|
||||
@@ -2104,10 +2116,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
def _notify_exit(
|
||||
self,
|
||||
trade: Trade,
|
||||
order_type: Optional[str],
|
||||
order_type: str | None,
|
||||
fill: bool = False,
|
||||
sub_trade: bool = False,
|
||||
order: Optional[Order] = None,
|
||||
order: Order | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Sends rpc notification when a sell occurred.
|
||||
@@ -2220,7 +2232,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
# Send the message
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def order_obj_or_raise(self, order_id: str, order_obj: Optional[Order]) -> Order:
|
||||
def order_obj_or_raise(self, order_id: str, order_obj: Order | None) -> Order:
|
||||
if not order_obj:
|
||||
raise DependencyException(
|
||||
f"Order_obj not found for {order_id}. This should not have happened."
|
||||
@@ -2234,8 +2246,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
def update_trade_state(
|
||||
self,
|
||||
trade: Trade,
|
||||
order_id: Optional[str],
|
||||
action_order: Optional[dict[str, Any]] = None,
|
||||
order_id: str | None,
|
||||
action_order: CcxtOrder | None = None,
|
||||
*,
|
||||
stoploss_order: bool = False,
|
||||
send_msg: bool = True,
|
||||
@@ -2346,7 +2358,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
def handle_protections(self, pair: str, side: LongShort) -> None:
|
||||
# Lock pair for one candle to prevent immediate re-entries
|
||||
self.strategy.lock_pair(pair, datetime.now(timezone.utc), reason="Auto lock")
|
||||
self.strategy.lock_pair(pair, datetime.now(timezone.utc), reason="Auto lock", side=side)
|
||||
prot_trig = self.protections.stop_per_pair(pair, side=side)
|
||||
if prot_trig:
|
||||
msg: RPCProtectionMsg = {
|
||||
@@ -2372,7 +2384,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
amount: float,
|
||||
fee_abs: float,
|
||||
order_obj: Order,
|
||||
) -> Optional[float]:
|
||||
) -> float | None:
|
||||
"""
|
||||
Applies the fee to amount (either from Order or from Trades).
|
||||
Can eat into dust if more than the required asset is available.
|
||||
@@ -2400,7 +2412,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
return fee_abs
|
||||
return None
|
||||
|
||||
def handle_order_fee(self, trade: Trade, order_obj: Order, order: dict[str, Any]) -> None:
|
||||
def handle_order_fee(self, trade: Trade, order_obj: Order, order: CcxtOrder) -> None:
|
||||
# Try update amount (binance-fix)
|
||||
try:
|
||||
fee_abs = self.get_real_amount(trade, order, order_obj)
|
||||
@@ -2409,7 +2421,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
except DependencyException as exception:
|
||||
logger.warning("Could not update trade amount: %s", exception)
|
||||
|
||||
def get_real_amount(self, trade: Trade, order: dict, order_obj: Order) -> Optional[float]:
|
||||
def get_real_amount(self, trade: Trade, order: CcxtOrder, order_obj: Order) -> float | None:
|
||||
"""
|
||||
Detect and update trade fee.
|
||||
Calls trade.update_fee() upon correct detection.
|
||||
@@ -2469,8 +2481,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
return True
|
||||
|
||||
def fee_detection_from_trades(
|
||||
self, trade: Trade, order: dict, order_obj: Order, order_amount: float, trades: list
|
||||
) -> Optional[float]:
|
||||
self, trade: Trade, order: CcxtOrder, order_obj: Order, order_amount: float, trades: list
|
||||
) -> float | None:
|
||||
"""
|
||||
fee-detection fallback to Trades.
|
||||
Either uses provided trades list or the result of fetch_my_trades to get correct fee.
|
||||
@@ -2481,7 +2493,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
)
|
||||
|
||||
if len(trades) == 0:
|
||||
logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)
|
||||
logger.info("Applying fee on amount for %s failed: myTrade-dict empty found", trade)
|
||||
return None
|
||||
fee_currency = None
|
||||
amount = 0
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
@@ -26,7 +26,7 @@ class BacktestHistoryEntryType(BacktestMetadataType):
|
||||
filename: str
|
||||
strategy: str
|
||||
notes: str
|
||||
backtest_start_ts: Optional[int]
|
||||
backtest_end_ts: Optional[int]
|
||||
timeframe: Optional[str]
|
||||
timeframe_detail: Optional[str]
|
||||
backtest_start_ts: int | None
|
||||
backtest_end_ts: int | None
|
||||
timeframe: str | None
|
||||
timeframe_detail: str | None
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
# Used for list-exchanges
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
@@ -17,5 +16,5 @@ class ValidExchangesType(TypedDict):
|
||||
comment: str
|
||||
dex: bool
|
||||
is_alias: bool
|
||||
alias_for: Optional[str]
|
||||
alias_for: str | None
|
||||
trade_modes: list[TradeModeType]
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from freqtrade.enums import MarginMode
|
||||
from freqtrade.exceptions import DependencyException
|
||||
@@ -12,7 +11,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def update_liquidation_prices(
|
||||
trade: Optional[LocalTrade] = None,
|
||||
trade: LocalTrade | None = None,
|
||||
*,
|
||||
exchange: Exchange,
|
||||
wallets: Wallets,
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from logging import Formatter
|
||||
from logging.handlers import RotatingFileHandler, SysLogHandler
|
||||
from pathlib import Path
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -86,11 +87,23 @@ def setup_logging(config: Config) -> None:
|
||||
handler_rf = get_existing_handlers(RotatingFileHandler)
|
||||
if handler_rf:
|
||||
logging.root.removeHandler(handler_rf)
|
||||
handler_rf = RotatingFileHandler(
|
||||
logfile,
|
||||
maxBytes=1024 * 1024 * 10, # 10Mb
|
||||
backupCount=10,
|
||||
)
|
||||
try:
|
||||
logfile_path = Path(logfile)
|
||||
logfile_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
handler_rf = RotatingFileHandler(
|
||||
logfile_path,
|
||||
maxBytes=1024 * 1024 * 10, # 10Mb
|
||||
backupCount=10,
|
||||
)
|
||||
except PermissionError:
|
||||
raise OperationalException(
|
||||
f'Failed to create or access log file "{logfile_path.absolute()}". '
|
||||
"Please make sure you have the write permission to the log file or its parent "
|
||||
"directories. If you're running freqtrade using docker, you see this error "
|
||||
"message probably because you've logged in as the root user, please switch to "
|
||||
"non-root user, delete and recreate the directories you need, and then try "
|
||||
"again."
|
||||
)
|
||||
handler_rf.setFormatter(Formatter(LOGFORMAT))
|
||||
logging.root.addHandler(handler_rf)
|
||||
|
||||
|
||||
@@ -6,11 +6,11 @@ Read the documentation to know what cli arguments you need.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
|
||||
# check min. python version
|
||||
if sys.version_info < (3, 10): # pragma: no cover
|
||||
if sys.version_info < (3, 10): # pragma: no cover # noqa: UP036
|
||||
sys.exit("Freqtrade requires Python version >= 3.10")
|
||||
|
||||
from freqtrade import __version__
|
||||
@@ -24,7 +24,7 @@ from freqtrade.system import asyncio_setup, gc_set_threshold
|
||||
logger = logging.getLogger("freqtrade")
|
||||
|
||||
|
||||
def main(sysargv: Optional[list[str]] = None) -> None:
|
||||
def main(sysargv: list[str] | None = None) -> None:
|
||||
"""
|
||||
This function will initiate the bot and start the trading loop.
|
||||
:return: None
|
||||
|
||||
@@ -7,7 +7,7 @@ import logging
|
||||
from collections.abc import Iterator, Mapping
|
||||
from io import StringIO
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, TextIO, Union
|
||||
from typing import Any, TextIO
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import pandas as pd
|
||||
@@ -129,10 +129,10 @@ def round_dict(d, n):
|
||||
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
|
||||
|
||||
|
||||
DictMap = Union[dict[str, Any], Mapping[str, Any]]
|
||||
DictMap = dict[str, Any] | Mapping[str, Any]
|
||||
|
||||
|
||||
def safe_value_fallback(obj: DictMap, key1: str, key2: Optional[str] = None, default_value=None):
|
||||
def safe_value_fallback(obj: DictMap, key1: str, key2: str | None = None, default_value=None):
|
||||
"""
|
||||
Search a value in obj, return this if it's not None.
|
||||
Then search key2 in obj - return that if it's not none - then use default_value.
|
||||
@@ -161,7 +161,7 @@ def safe_value_fallback2(dict1: DictMap, dict2: DictMap, key1: str, key2: str, d
|
||||
return default_value
|
||||
|
||||
|
||||
def plural(num: float, singular: str, plural: Optional[str] = None) -> str:
|
||||
def plural(num: float, singular: str, plural: str | None = None) -> str:
|
||||
return singular if (num == 1 or num == -1) else plural or singular + "s"
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Callable
|
||||
from collections.abc import Callable
|
||||
|
||||
from cachetools import TTLCache, cached
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Union
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd
|
||||
from rich.text import Text
|
||||
@@ -21,7 +21,7 @@ class LookaheadAnalysisSubFunctions:
|
||||
def text_table_lookahead_analysis_instances(
|
||||
config: dict[str, Any],
|
||||
lookahead_instances: list[LookaheadAnalysis],
|
||||
caption: Union[str, None] = None,
|
||||
caption: str | None = None,
|
||||
):
|
||||
headers = [
|
||||
"filename",
|
||||
@@ -243,7 +243,7 @@ class LookaheadAnalysisSubFunctions:
|
||||
|
||||
# report the results
|
||||
if lookaheadAnalysis_instances:
|
||||
caption: Union[str, None] = None
|
||||
caption: str | None = None
|
||||
if any(
|
||||
[
|
||||
any(
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import hashlib
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import rapidjson
|
||||
|
||||
@@ -38,7 +37,7 @@ def get_strategy_run_id(strategy) -> str:
|
||||
return digest.hexdigest().lower()
|
||||
|
||||
|
||||
def get_backtest_metadata_filename(filename: Union[Path, str]) -> Path:
|
||||
def get_backtest_metadata_filename(filename: Path | str) -> Path:
|
||||
"""Return metadata filename for specified backtest results file."""
|
||||
filename = Path(filename)
|
||||
return filename.parent / Path(f"{filename.stem}.meta{filename.suffix}")
|
||||
|
||||
@@ -8,7 +8,7 @@ import logging
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from numpy import nan
|
||||
from pandas import DataFrame
|
||||
@@ -110,7 +110,7 @@ class Backtesting:
|
||||
backtesting.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Config, exchange: Optional[Exchange] = None) -> None:
|
||||
def __init__(self, config: Config, exchange: Exchange | None = None) -> None:
|
||||
LoggingMixin.show_output = False
|
||||
self.config = config
|
||||
self.results: BacktestResultType = get_BacktestResultType_default()
|
||||
@@ -685,7 +685,7 @@ class Backtesting:
|
||||
)
|
||||
|
||||
def _try_close_open_order(
|
||||
self, order: Optional[Order], trade: LocalTrade, current_date: datetime, row: tuple
|
||||
self, order: Order | None, trade: LocalTrade, current_date: datetime, row: tuple
|
||||
) -> bool:
|
||||
"""
|
||||
Check if an order is open and if it should've filled.
|
||||
@@ -732,7 +732,6 @@ class Backtesting:
|
||||
trade.close_date = current_time
|
||||
trade.close(order.ft_price, show_msg=False)
|
||||
|
||||
# logger.debug(f"{pair} - Backtesting exit {trade}")
|
||||
LocalTrade.close_bt_trade(trade)
|
||||
self.wallets.update()
|
||||
self.run_protections(pair, current_time, trade.trade_direction)
|
||||
@@ -743,8 +742,8 @@ class Backtesting:
|
||||
row: tuple,
|
||||
exit_: ExitCheckTuple,
|
||||
current_time: datetime,
|
||||
amount: Optional[float] = None,
|
||||
) -> Optional[LocalTrade]:
|
||||
amount: float | None = None,
|
||||
) -> LocalTrade | None:
|
||||
if exit_.exit_flag:
|
||||
trade.close_date = current_time
|
||||
exit_reason = exit_.exit_reason
|
||||
@@ -823,8 +822,8 @@ class Backtesting:
|
||||
sell_row: tuple,
|
||||
close_rate: float,
|
||||
amount: float,
|
||||
exit_reason: Optional[str],
|
||||
) -> Optional[LocalTrade]:
|
||||
exit_reason: str | None,
|
||||
) -> LocalTrade | None:
|
||||
self.order_id_counter += 1
|
||||
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
order_type = self.strategy.order_types["exit"]
|
||||
@@ -860,7 +859,7 @@ class Backtesting:
|
||||
|
||||
def _check_trade_exit(
|
||||
self, trade: LocalTrade, row: tuple, current_time: datetime
|
||||
) -> Optional[LocalTrade]:
|
||||
) -> LocalTrade | None:
|
||||
self._run_funding_fees(trade, current_time)
|
||||
|
||||
# Check if we need to adjust our current positions
|
||||
@@ -910,10 +909,10 @@ class Backtesting:
|
||||
stake_amount: float,
|
||||
direction: LongShort,
|
||||
current_time: datetime,
|
||||
entry_tag: Optional[str],
|
||||
trade: Optional[LocalTrade],
|
||||
entry_tag: str | None,
|
||||
trade: LocalTrade | None,
|
||||
order_type: str,
|
||||
price_precision: Optional[float],
|
||||
price_precision: float | None,
|
||||
) -> tuple[float, float, float, float]:
|
||||
if order_type == "limit":
|
||||
new_rate = strategy_safe_wrapper(
|
||||
@@ -1005,12 +1004,12 @@ class Backtesting:
|
||||
pair: str,
|
||||
row: tuple,
|
||||
direction: LongShort,
|
||||
stake_amount: Optional[float] = None,
|
||||
trade: Optional[LocalTrade] = None,
|
||||
requested_rate: Optional[float] = None,
|
||||
requested_stake: Optional[float] = None,
|
||||
entry_tag1: Optional[str] = None,
|
||||
) -> Optional[LocalTrade]:
|
||||
stake_amount: float | None = None,
|
||||
trade: LocalTrade | None = None,
|
||||
requested_rate: float | None = None,
|
||||
requested_stake: float | None = None,
|
||||
entry_tag1: str | None = None,
|
||||
) -> LocalTrade | None:
|
||||
"""
|
||||
:param trade: Trade to adjust - initial entry if None
|
||||
:param requested_rate: Adjusted entry rate
|
||||
@@ -1103,6 +1102,7 @@ class Backtesting:
|
||||
fee_close=self.fee,
|
||||
is_open=True,
|
||||
enter_tag=entry_tag,
|
||||
timeframe=self.timeframe_min,
|
||||
exchange=self._exchange_name,
|
||||
is_short=is_short,
|
||||
trading_mode=self.trading_mode,
|
||||
@@ -1139,7 +1139,7 @@ class Backtesting:
|
||||
amount=amount,
|
||||
filled=0,
|
||||
remaining=amount,
|
||||
cost=amount * propose_rate + trade.fee_open,
|
||||
cost=amount * propose_rate * (1 + self.fee),
|
||||
ft_order_tag=entry_tag,
|
||||
)
|
||||
order._trade_bt = trade
|
||||
@@ -1178,7 +1178,7 @@ class Backtesting:
|
||||
self.rejected_trades += 1
|
||||
return False
|
||||
|
||||
def check_for_trade_entry(self, row) -> Optional[LongShort]:
|
||||
def check_for_trade_entry(self, row) -> LongShort | None:
|
||||
enter_long = row[LONG_IDX] == 1
|
||||
exit_long = row[ELONG_IDX] == 1
|
||||
enter_short = self._can_short and row[SHORT_IDX] == 1
|
||||
@@ -1216,7 +1216,7 @@ class Backtesting:
|
||||
|
||||
def check_order_cancel(
|
||||
self, trade: LocalTrade, order: Order, current_time: datetime
|
||||
) -> Optional[bool]:
|
||||
) -> bool | None:
|
||||
"""
|
||||
Check if current analyzed order has to be canceled.
|
||||
Returns True if the trade should be Deleted (initial order was canceled),
|
||||
@@ -1298,7 +1298,7 @@ class Backtesting:
|
||||
|
||||
def validate_row(
|
||||
self, data: dict, pair: str, row_index: int, current_time: datetime
|
||||
) -> Optional[tuple]:
|
||||
) -> tuple | None:
|
||||
try:
|
||||
# Row is treated as "current incomplete candle".
|
||||
# entry / exit signals are shifted by 1 to compensate for this.
|
||||
@@ -1332,19 +1332,45 @@ class Backtesting:
|
||||
row: tuple,
|
||||
pair: str,
|
||||
current_time: datetime,
|
||||
end_date: datetime,
|
||||
trade_dir: Optional[LongShort],
|
||||
is_first: bool = True,
|
||||
trade_dir: LongShort | None,
|
||||
can_enter: bool,
|
||||
) -> None:
|
||||
"""
|
||||
Conditionally call backtest_loop_inner a 2nd time if shorting is enabled,
|
||||
a position closed and a new signal in the other direction is available.
|
||||
"""
|
||||
if not self._can_short or trade_dir is None:
|
||||
# No need to reverse position if shorting is disabled or there's no new signal
|
||||
self.backtest_loop_inner(row, pair, current_time, trade_dir, can_enter)
|
||||
else:
|
||||
for _ in (0, 1):
|
||||
a = self.backtest_loop_inner(row, pair, current_time, trade_dir, can_enter)
|
||||
if not a or a == trade_dir:
|
||||
# the trade didn't close or position change is in the same direction
|
||||
break
|
||||
|
||||
def backtest_loop_inner(
|
||||
self,
|
||||
row: tuple,
|
||||
pair: str,
|
||||
current_time: datetime,
|
||||
trade_dir: LongShort | None,
|
||||
can_enter: bool,
|
||||
) -> LongShort | None:
|
||||
"""
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
|
||||
Backtesting processing for one candle/pair.
|
||||
"""
|
||||
exiting_dir: LongShort | None = None
|
||||
if not self._position_stacking and len(LocalTrade.bt_trades_open_pp[pair]) > 0:
|
||||
# position_stacking not supported for now.
|
||||
exiting_dir = "short" if LocalTrade.bt_trades_open_pp[pair][0].is_short else "long"
|
||||
|
||||
for t in list(LocalTrade.bt_trades_open_pp[pair]):
|
||||
# 1. Manage currently open orders of active trades
|
||||
if self.manage_open_orders(t, current_time, row):
|
||||
# Close trade
|
||||
# Remove trade (initial open order never filled)
|
||||
LocalTrade.remove_bt_trade(t)
|
||||
self.wallets.update()
|
||||
|
||||
@@ -1354,13 +1380,12 @@ class Backtesting:
|
||||
# don't open on the last row
|
||||
# We only open trades on the main candle, not on detail candles
|
||||
if (
|
||||
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
|
||||
and is_first
|
||||
and current_time != end_date
|
||||
can_enter
|
||||
and trade_dir is not None
|
||||
and (self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
|
||||
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
|
||||
):
|
||||
if self.trade_slot_available(LocalTrade.bt_open_open_trade_count):
|
||||
if self.trade_slot_available(LocalTrade.bt_open_open_trade_count_candle):
|
||||
trade = self._enter_trade(pair, row, trade_dir)
|
||||
if trade:
|
||||
self.wallets.update()
|
||||
@@ -1382,6 +1407,10 @@ class Backtesting:
|
||||
if order:
|
||||
self._process_exit_order(order, trade, current_time, row, pair)
|
||||
|
||||
if exiting_dir and len(LocalTrade.bt_trades_open_pp[pair]) == 0:
|
||||
return exiting_dir
|
||||
return None
|
||||
|
||||
def time_pair_generator(
|
||||
self, start_date: datetime, end_date: datetime, increment: timedelta, pairs: list[str]
|
||||
):
|
||||
@@ -1429,11 +1458,15 @@ class Backtesting:
|
||||
indexes: dict = defaultdict(int)
|
||||
|
||||
# Loop timerange and get candle for each pair at that point in time
|
||||
for current_time, pair, is_first in self.time_pair_generator(
|
||||
for current_time, pair, is_first_call in self.time_pair_generator(
|
||||
start_date, end_date, self.timeframe_td, list(data.keys())
|
||||
):
|
||||
if is_first:
|
||||
if is_first_call:
|
||||
self.check_abort()
|
||||
# Reset open trade count for this candle
|
||||
# Critical to avoid exceeding max_open_trades in backtesting
|
||||
# when timeframe-detail is used and trades close within the opening candle.
|
||||
LocalTrade.bt_open_open_trade_count_candle = LocalTrade.bt_open_open_trade_count
|
||||
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)(
|
||||
current_time=current_time
|
||||
)
|
||||
@@ -1444,10 +1477,11 @@ class Backtesting:
|
||||
|
||||
row_index += 1
|
||||
indexes[pair] = row_index
|
||||
is_last_row = current_time == end_date
|
||||
self.dataprovider._set_dataframe_max_index(self.required_startup + row_index)
|
||||
self.dataprovider._set_dataframe_max_date(current_time)
|
||||
current_detail_time: datetime = row[DATE_IDX].to_pydatetime()
|
||||
trade_dir: Optional[LongShort] = self.check_for_trade_entry(row)
|
||||
trade_dir: LongShort | None = self.check_for_trade_entry(row)
|
||||
|
||||
if (
|
||||
(trade_dir is not None or len(LocalTrade.bt_trades_open_pp[pair]) > 0)
|
||||
@@ -1466,7 +1500,8 @@ class Backtesting:
|
||||
].copy()
|
||||
if len(detail_data) == 0:
|
||||
# Fall back to "regular" data if no detail data was found for this candle
|
||||
self.backtest_loop(row, pair, current_time, end_date, trade_dir)
|
||||
self.dataprovider._set_dataframe_max_date(current_time)
|
||||
self.backtest_loop(row, pair, current_time, trade_dir, not is_last_row)
|
||||
continue
|
||||
detail_data.loc[:, "enter_long"] = row[LONG_IDX]
|
||||
detail_data.loc[:, "exit_long"] = row[ELONG_IDX]
|
||||
@@ -1482,15 +1517,14 @@ class Backtesting:
|
||||
det_row,
|
||||
pair,
|
||||
current_time_det,
|
||||
end_date,
|
||||
trade_dir,
|
||||
is_first,
|
||||
is_first and not is_last_row,
|
||||
)
|
||||
current_time_det += self.timeframe_detail_td
|
||||
is_first = False
|
||||
else:
|
||||
self.dataprovider._set_dataframe_max_date(current_time)
|
||||
self.backtest_loop(row, pair, current_time, end_date, trade_dir)
|
||||
self.backtest_loop(row, pair, current_time, trade_dir, not is_last_row)
|
||||
|
||||
self.handle_left_open(LocalTrade.bt_trades_open_pp, data=data)
|
||||
self.wallets.update()
|
||||
@@ -1518,12 +1552,6 @@ class Backtesting:
|
||||
backtest_start_time = datetime.now(timezone.utc)
|
||||
self._set_strategy(strat)
|
||||
|
||||
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
||||
if not self.config.get("use_max_market_positions", True):
|
||||
logger.info("Ignoring max_open_trades (--disable-max-market-positions was used) ...")
|
||||
self.strategy.max_open_trades = float("inf")
|
||||
self.config.update({"max_open_trades": self.strategy.max_open_trades})
|
||||
|
||||
# need to reprocess data every time to populate signals
|
||||
preprocessed = self.strategy.advise_all_indicators(data)
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
@@ -28,7 +28,7 @@ class BaseAnalysis:
|
||||
def __init__(self, config: dict[str, Any], strategy_obj: dict):
|
||||
self.failed_bias_check = True
|
||||
self.full_varHolder = VarHolder()
|
||||
self.exchange: Optional[Any] = None
|
||||
self.exchange: Any | None = None
|
||||
self._fee = None
|
||||
|
||||
# pull variables the scope of the lookahead_analysis-instance
|
||||
|
||||
5
freqtrade/optimize/hyperopt/__init__.py
Normal file
5
freqtrade/optimize/hyperopt/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from freqtrade.optimize.hyperopt.hyperopt import Hyperopt
|
||||
from freqtrade.optimize.hyperopt_loss.hyperopt_loss_interface import IHyperOptLoss
|
||||
|
||||
|
||||
__all__ = ["Hyperopt", "IHyperOptLoss"]
|
||||
352
freqtrade/optimize/hyperopt/hyperopt.py
Normal file
352
freqtrade/optimize/hyperopt/hyperopt.py
Normal file
@@ -0,0 +1,352 @@
|
||||
# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
|
||||
|
||||
"""
|
||||
This module contains the hyperopt logic
|
||||
"""
|
||||
|
||||
import logging
|
||||
import random
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from math import ceil
|
||||
from multiprocessing import Manager
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import rapidjson
|
||||
from joblib import Parallel, cpu_count, delayed, wrap_non_picklable_objects
|
||||
from joblib.externals import cloudpickle
|
||||
from rich.console import Console
|
||||
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, LAST_BT_RESULT_FN, Config
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import file_dump_json, plural
|
||||
from freqtrade.optimize.hyperopt.hyperopt_logger import logging_mp_handle, logging_mp_setup
|
||||
from freqtrade.optimize.hyperopt.hyperopt_optimizer import HyperOptimizer
|
||||
from freqtrade.optimize.hyperopt.hyperopt_output import HyperoptOutput
|
||||
from freqtrade.optimize.hyperopt_tools import (
|
||||
HyperoptStateContainer,
|
||||
HyperoptTools,
|
||||
hyperopt_serializer,
|
||||
)
|
||||
from freqtrade.util import get_progress_tracker
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
|
||||
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
|
||||
# in the skopt model queue, to optimize memory consumption
|
||||
SKOPT_MODEL_QUEUE_SIZE = 10
|
||||
|
||||
log_queue: Any
|
||||
|
||||
|
||||
class Hyperopt:
|
||||
"""
|
||||
Hyperopt class, this class contains all the logic to run a hyperopt simulation
|
||||
|
||||
To start a hyperopt run:
|
||||
hyperopt = Hyperopt(config)
|
||||
hyperopt.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Config) -> None:
|
||||
self._hyper_out: HyperoptOutput = HyperoptOutput(streaming=True)
|
||||
|
||||
self.config = config
|
||||
|
||||
self.analyze_per_epoch = self.config.get("analyze_per_epoch", False)
|
||||
HyperoptStateContainer.set_state(HyperoptState.STARTUP)
|
||||
|
||||
if self.config.get("hyperopt"):
|
||||
raise OperationalException(
|
||||
"Using separate Hyperopt files has been removed in 2021.9. Please convert "
|
||||
"your existing Hyperopt file to the new Hyperoptable strategy interface"
|
||||
)
|
||||
|
||||
time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||||
strategy = str(self.config["strategy"])
|
||||
self.results_file: Path = (
|
||||
self.config["user_data_dir"]
|
||||
/ "hyperopt_results"
|
||||
/ f"strategy_{strategy}_{time_now}.fthypt"
|
||||
)
|
||||
self.data_pickle_file = (
|
||||
self.config["user_data_dir"] / "hyperopt_results" / "hyperopt_tickerdata.pkl"
|
||||
)
|
||||
self.total_epochs = config.get("epochs", 0)
|
||||
|
||||
self.current_best_loss = 100
|
||||
|
||||
self.clean_hyperopt()
|
||||
|
||||
self.num_epochs_saved = 0
|
||||
self.current_best_epoch: dict[str, Any] | None = None
|
||||
|
||||
if HyperoptTools.has_space(self.config, "sell"):
|
||||
# Make sure use_exit_signal is enabled
|
||||
self.config["use_exit_signal"] = True
|
||||
|
||||
self.print_all = self.config.get("print_all", False)
|
||||
self.hyperopt_table_header = 0
|
||||
self.print_colorized = self.config.get("print_colorized", False)
|
||||
self.print_json = self.config.get("print_json", False)
|
||||
|
||||
self.hyperopter = HyperOptimizer(self.config)
|
||||
|
||||
@staticmethod
|
||||
def get_lock_filename(config: Config) -> str:
|
||||
return str(config["user_data_dir"] / "hyperopt.lock")
|
||||
|
||||
def clean_hyperopt(self) -> None:
|
||||
"""
|
||||
Remove hyperopt pickle files to restart hyperopt.
|
||||
"""
|
||||
for f in [self.data_pickle_file, self.results_file]:
|
||||
p = Path(f)
|
||||
if p.is_file():
|
||||
logger.info(f"Removing `{p}`.")
|
||||
p.unlink()
|
||||
|
||||
def hyperopt_pickle_magic(self, bases) -> None:
|
||||
"""
|
||||
Hyperopt magic to allow strategy inheritance across files.
|
||||
For this to properly work, we need to register the module of the imported class
|
||||
to pickle as value.
|
||||
"""
|
||||
for modules in bases:
|
||||
if modules.__name__ != "IStrategy":
|
||||
cloudpickle.register_pickle_by_value(sys.modules[modules.__module__])
|
||||
self.hyperopt_pickle_magic(modules.__bases__)
|
||||
|
||||
def _save_result(self, epoch: dict) -> None:
|
||||
"""
|
||||
Save hyperopt results to file
|
||||
Store one line per epoch.
|
||||
While not a valid json object - this allows appending easily.
|
||||
:param epoch: result dictionary for this epoch.
|
||||
"""
|
||||
epoch[FTHYPT_FILEVERSION] = 2
|
||||
with self.results_file.open("a") as f:
|
||||
rapidjson.dump(
|
||||
epoch,
|
||||
f,
|
||||
default=hyperopt_serializer,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN,
|
||||
)
|
||||
f.write("\n")
|
||||
|
||||
self.num_epochs_saved += 1
|
||||
logger.debug(
|
||||
f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'."
|
||||
)
|
||||
# Store hyperopt filename
|
||||
latest_filename = Path.joinpath(self.results_file.parent, LAST_BT_RESULT_FN)
|
||||
file_dump_json(latest_filename, {"latest_hyperopt": str(self.results_file.name)}, log=False)
|
||||
|
||||
def print_results(self, results: dict[str, Any]) -> None:
|
||||
"""
|
||||
Log results if it is better than any previous evaluation
|
||||
TODO: this should be moved to HyperoptTools too
|
||||
"""
|
||||
is_best = results["is_best"]
|
||||
|
||||
if self.print_all or is_best:
|
||||
self._hyper_out.add_data(
|
||||
self.config,
|
||||
[results],
|
||||
self.total_epochs,
|
||||
self.print_all,
|
||||
)
|
||||
|
||||
def run_optimizer_parallel(self, parallel: Parallel, asked: list[list]) -> list[dict[str, Any]]:
|
||||
"""Start optimizer in a parallel way"""
|
||||
|
||||
def optimizer_wrapper(*args, **kwargs):
|
||||
# global log queue. This must happen in the file that initializes Parallel
|
||||
logging_mp_setup(
|
||||
log_queue, logging.INFO if self.config["verbosity"] < 1 else logging.DEBUG
|
||||
)
|
||||
|
||||
return self.hyperopter.generate_optimizer(*args, **kwargs)
|
||||
|
||||
return parallel(delayed(wrap_non_picklable_objects(optimizer_wrapper))(v) for v in asked)
|
||||
|
||||
def _set_random_state(self, random_state: int | None) -> int:
|
||||
return random_state or random.randint(1, 2**16 - 1) # noqa: S311
|
||||
|
||||
def get_asked_points(self, n_points: int) -> tuple[list[list[Any]], list[bool]]:
|
||||
"""
|
||||
Enforce points returned from `self.opt.ask` have not been already evaluated
|
||||
|
||||
Steps:
|
||||
1. Try to get points using `self.opt.ask` first
|
||||
2. Discard the points that have already been evaluated
|
||||
3. Retry using `self.opt.ask` up to 3 times
|
||||
4. If still some points are missing in respect to `n_points`, random sample some points
|
||||
5. Repeat until at least `n_points` points in the `asked_non_tried` list
|
||||
6. Return a list with length truncated at `n_points`
|
||||
"""
|
||||
|
||||
def unique_list(a_list):
|
||||
new_list = []
|
||||
for item in a_list:
|
||||
if item not in new_list:
|
||||
new_list.append(item)
|
||||
return new_list
|
||||
|
||||
i = 0
|
||||
asked_non_tried: list[list[Any]] = []
|
||||
is_random_non_tried: list[bool] = []
|
||||
while i < 5 and len(asked_non_tried) < n_points:
|
||||
if i < 3:
|
||||
self.opt.cache_ = {}
|
||||
asked = unique_list(self.opt.ask(n_points=n_points * 5 if i > 0 else n_points))
|
||||
is_random = [False for _ in range(len(asked))]
|
||||
else:
|
||||
asked = unique_list(self.opt.space.rvs(n_samples=n_points * 5))
|
||||
is_random = [True for _ in range(len(asked))]
|
||||
is_random_non_tried += [
|
||||
rand
|
||||
for x, rand in zip(asked, is_random, strict=False)
|
||||
if x not in self.opt.Xi and x not in asked_non_tried
|
||||
]
|
||||
asked_non_tried += [
|
||||
x for x in asked if x not in self.opt.Xi and x not in asked_non_tried
|
||||
]
|
||||
i += 1
|
||||
|
||||
if asked_non_tried:
|
||||
return (
|
||||
asked_non_tried[: min(len(asked_non_tried), n_points)],
|
||||
is_random_non_tried[: min(len(asked_non_tried), n_points)],
|
||||
)
|
||||
else:
|
||||
return self.opt.ask(n_points=n_points), [False for _ in range(n_points)]
|
||||
|
||||
def evaluate_result(self, val: dict[str, Any], current: int, is_random: bool):
|
||||
"""
|
||||
Evaluate results returned from generate_optimizer
|
||||
"""
|
||||
val["current_epoch"] = current
|
||||
val["is_initial_point"] = current <= INITIAL_POINTS
|
||||
|
||||
logger.debug("Optimizer epoch evaluated: %s", val)
|
||||
|
||||
is_best = HyperoptTools.is_best_loss(val, self.current_best_loss)
|
||||
# This value is assigned here and not in the optimization method
|
||||
# to keep proper order in the list of results. That's because
|
||||
# evaluations can take different time. Here they are aligned in the
|
||||
# order they will be shown to the user.
|
||||
val["is_best"] = is_best
|
||||
val["is_random"] = is_random
|
||||
self.print_results(val)
|
||||
|
||||
if is_best:
|
||||
self.current_best_loss = val["loss"]
|
||||
self.current_best_epoch = val
|
||||
|
||||
self._save_result(val)
|
||||
|
||||
def _setup_logging_mp_workaround(self) -> None:
|
||||
"""
|
||||
Workaround for logging in child processes.
|
||||
local_queue must be a global in the file that initializes Parallel.
|
||||
"""
|
||||
global log_queue
|
||||
m = Manager()
|
||||
log_queue = m.Queue()
|
||||
|
||||
def start(self) -> None:
|
||||
self.random_state = self._set_random_state(self.config.get("hyperopt_random_state"))
|
||||
logger.info(f"Using optimizer random state: {self.random_state}")
|
||||
self.hyperopt_table_header = -1
|
||||
self.hyperopter.prepare_hyperopt()
|
||||
|
||||
cpus = cpu_count()
|
||||
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
|
||||
config_jobs = self.config.get("hyperopt_jobs", -1)
|
||||
logger.info(f"Number of parallel jobs set as: {config_jobs}")
|
||||
|
||||
self.opt = self.hyperopter.get_optimizer(
|
||||
config_jobs, self.random_state, INITIAL_POINTS, SKOPT_MODEL_QUEUE_SIZE
|
||||
)
|
||||
self._setup_logging_mp_workaround()
|
||||
try:
|
||||
with Parallel(n_jobs=config_jobs) as parallel:
|
||||
jobs = parallel._effective_n_jobs()
|
||||
logger.info(f"Effective number of parallel workers used: {jobs}")
|
||||
console = Console(
|
||||
color_system="auto" if self.print_colorized else None,
|
||||
)
|
||||
|
||||
# Define progressbar
|
||||
with get_progress_tracker(
|
||||
console=console,
|
||||
cust_callables=[self._hyper_out],
|
||||
) as pbar:
|
||||
task = pbar.add_task("Epochs", total=self.total_epochs)
|
||||
|
||||
start = 0
|
||||
|
||||
if self.analyze_per_epoch:
|
||||
# First analysis not in parallel mode when using --analyze-per-epoch.
|
||||
# This allows dataprovider to load it's informative cache.
|
||||
asked, is_random = self.get_asked_points(n_points=1)
|
||||
f_val0 = self.hyperopter.generate_optimizer(asked[0])
|
||||
self.opt.tell(asked, [f_val0["loss"]])
|
||||
self.evaluate_result(f_val0, 1, is_random[0])
|
||||
pbar.update(task, advance=1)
|
||||
start += 1
|
||||
|
||||
evals = ceil((self.total_epochs - start) / jobs)
|
||||
for i in range(evals):
|
||||
# Correct the number of epochs to be processed for the last
|
||||
# iteration (should not exceed self.total_epochs in total)
|
||||
n_rest = (i + 1) * jobs - (self.total_epochs - start)
|
||||
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
||||
|
||||
asked, is_random = self.get_asked_points(n_points=current_jobs)
|
||||
f_val = self.run_optimizer_parallel(parallel, asked)
|
||||
self.opt.tell(asked, [v["loss"] for v in f_val])
|
||||
|
||||
for j, val in enumerate(f_val):
|
||||
# Use human-friendly indexes here (starting from 1)
|
||||
current = i * jobs + j + 1 + start
|
||||
|
||||
self.evaluate_result(val, current, is_random[j])
|
||||
pbar.update(task, advance=1)
|
||||
logging_mp_handle(log_queue)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("User interrupted..")
|
||||
|
||||
logger.info(
|
||||
f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'."
|
||||
)
|
||||
|
||||
if self.current_best_epoch:
|
||||
HyperoptTools.try_export_params(
|
||||
self.config,
|
||||
self.hyperopter.get_strategy_name(),
|
||||
self.current_best_epoch,
|
||||
)
|
||||
|
||||
HyperoptTools.show_epoch_details(
|
||||
self.current_best_epoch, self.total_epochs, self.print_json
|
||||
)
|
||||
elif self.num_epochs_saved > 0:
|
||||
print(
|
||||
f"No good result found for given optimization function in {self.num_epochs_saved} "
|
||||
f"{plural(self.num_epochs_saved, 'epoch')}."
|
||||
)
|
||||
else:
|
||||
# This is printed when Ctrl+C is pressed quickly, before first epochs have
|
||||
# a chance to be evaluated.
|
||||
print("No epochs evaluated yet, no best result.")
|
||||
@@ -5,8 +5,8 @@ This module implements a convenience auto-hyperopt class, which can be used toge
|
||||
"""
|
||||
|
||||
import logging
|
||||
from collections.abc import Callable
|
||||
from contextlib import suppress
|
||||
from typing import Callable
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
@@ -14,7 +14,7 @@ from freqtrade.exceptions import OperationalException
|
||||
with suppress(ImportError):
|
||||
from skopt.space import Dimension
|
||||
|
||||
from freqtrade.optimize.hyperopt_interface import EstimatorType, IHyperOpt
|
||||
from freqtrade.optimize.hyperopt.hyperopt_interface import EstimatorType, IHyperOpt
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -6,7 +6,7 @@ This module defines the interface to apply for hyperopt
|
||||
import logging
|
||||
import math
|
||||
from abc import ABC
|
||||
from typing import Union
|
||||
from typing import TypeAlias
|
||||
|
||||
from sklearn.base import RegressorMixin
|
||||
from skopt.space import Categorical, Dimension, Integer
|
||||
@@ -20,7 +20,7 @@ from freqtrade.strategy import IStrategy
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
EstimatorType = Union[RegressorMixin, str]
|
||||
EstimatorType: TypeAlias = RegressorMixin | str
|
||||
|
||||
|
||||
class IHyperOpt(ABC):
|
||||
40
freqtrade/optimize/hyperopt/hyperopt_logger.py
Normal file
40
freqtrade/optimize/hyperopt/hyperopt_logger.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import logging
|
||||
from logging.handlers import QueueHandler
|
||||
from multiprocessing import Queue, current_process
|
||||
from queue import Empty
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def logging_mp_setup(log_queue: Queue, verbosity: int):
|
||||
"""
|
||||
Setup logging in a child process.
|
||||
Must be called in the child process before logging.
|
||||
log_queue MUST be passed to the child process via inheritance
|
||||
Which essentially means that the log_queue must be a global, created in the same
|
||||
file as Parallel is initialized.
|
||||
"""
|
||||
current_proc = current_process().name
|
||||
if current_proc != "MainProcess":
|
||||
h = QueueHandler(log_queue)
|
||||
root = logging.getLogger()
|
||||
root.setLevel(verbosity)
|
||||
root.addHandler(h)
|
||||
|
||||
|
||||
def logging_mp_handle(q: Queue):
|
||||
"""
|
||||
Handle logging from a child process.
|
||||
Must be called in the parent process to handle log messages from the child process.
|
||||
"""
|
||||
|
||||
try:
|
||||
while True:
|
||||
record = q.get(block=False)
|
||||
if record is None:
|
||||
break
|
||||
logger.handle(record)
|
||||
|
||||
except Empty:
|
||||
pass
|
||||
@@ -1,45 +1,33 @@
|
||||
# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
|
||||
|
||||
"""
|
||||
This module contains the hyperopt logic
|
||||
This module contains the hyperopt optimizer class, which needs to be pickled
|
||||
and will be sent to the hyperopt worker processes.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from datetime import datetime, timezone
|
||||
from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import rapidjson
|
||||
from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects
|
||||
from joblib import dump, load
|
||||
from joblib.externals import cloudpickle
|
||||
from pandas import DataFrame
|
||||
from rich.console import Console
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN, Config
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.data.metrics import calculate_market_change
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
|
||||
from freqtrade.misc import deep_merge_dicts
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
|
||||
from freqtrade.optimize.hyperopt_output import HyperoptOutput
|
||||
from freqtrade.optimize.hyperopt_tools import (
|
||||
HyperoptStateContainer,
|
||||
HyperoptTools,
|
||||
hyperopt_serializer,
|
||||
)
|
||||
# Import IHyperOptLoss to allow unpickling classes from these modules
|
||||
from freqtrade.optimize.hyperopt.hyperopt_auto import HyperOptAuto
|
||||
from freqtrade.optimize.hyperopt_loss.hyperopt_loss_interface import IHyperOptLoss
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptStateContainer, HyperoptTools
|
||||
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
|
||||
from freqtrade.util import get_progress_tracker
|
||||
|
||||
|
||||
# Suppress scikit-learn FutureWarnings from skopt
|
||||
@@ -51,22 +39,13 @@ with warnings.catch_warnings():
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
|
||||
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
|
||||
# in the skopt model queue, to optimize memory consumption
|
||||
SKOPT_MODEL_QUEUE_SIZE = 10
|
||||
|
||||
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
||||
|
||||
|
||||
class Hyperopt:
|
||||
class HyperOptimizer:
|
||||
"""
|
||||
Hyperopt class, this class contains all the logic to run a hyperopt simulation
|
||||
|
||||
To start a hyperopt run:
|
||||
hyperopt = Hyperopt(config)
|
||||
hyperopt.start()
|
||||
HyperoptOptimizer class
|
||||
This class is sent to the hyperopt worker processes.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Config) -> None:
|
||||
@@ -79,8 +58,6 @@ class Hyperopt:
|
||||
self.max_open_trades_space: list[Dimension] = []
|
||||
self.dimensions: list[Dimension] = []
|
||||
|
||||
self._hyper_out: HyperoptOutput = HyperoptOutput(streaming=True)
|
||||
|
||||
self.config = config
|
||||
self.min_date: datetime
|
||||
self.max_date: datetime
|
||||
@@ -89,7 +66,6 @@ class Hyperopt:
|
||||
self.pairlist = self.backtesting.pairlists.whitelist
|
||||
self.custom_hyperopt: HyperOptAuto
|
||||
self.analyze_per_epoch = self.config.get("analyze_per_epoch", False)
|
||||
HyperoptStateContainer.set_state(HyperoptState.STARTUP)
|
||||
|
||||
if not self.config.get("hyperopt"):
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
@@ -107,54 +83,35 @@ class Hyperopt:
|
||||
self.config
|
||||
)
|
||||
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
|
||||
time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||||
strategy = str(self.config["strategy"])
|
||||
self.results_file: Path = (
|
||||
self.config["user_data_dir"]
|
||||
/ "hyperopt_results"
|
||||
/ f"strategy_{strategy}_{time_now}.fthypt"
|
||||
)
|
||||
|
||||
self.data_pickle_file = (
|
||||
self.config["user_data_dir"] / "hyperopt_results" / "hyperopt_tickerdata.pkl"
|
||||
)
|
||||
self.total_epochs = config.get("epochs", 0)
|
||||
|
||||
self.current_best_loss = 100
|
||||
|
||||
self.clean_hyperopt()
|
||||
|
||||
self.market_change = 0.0
|
||||
self.num_epochs_saved = 0
|
||||
self.current_best_epoch: Optional[dict[str, Any]] = None
|
||||
|
||||
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
|
||||
if not self.config.get("use_max_market_positions", True):
|
||||
logger.debug("Ignoring max_open_trades (--disable-max-market-positions was used) ...")
|
||||
self.backtesting.strategy.max_open_trades = float("inf")
|
||||
config.update({"max_open_trades": self.backtesting.strategy.max_open_trades})
|
||||
|
||||
if HyperoptTools.has_space(self.config, "sell"):
|
||||
# Make sure use_exit_signal is enabled
|
||||
self.config["use_exit_signal"] = True
|
||||
|
||||
self.print_all = self.config.get("print_all", False)
|
||||
self.hyperopt_table_header = 0
|
||||
self.print_colorized = self.config.get("print_colorized", False)
|
||||
self.print_json = self.config.get("print_json", False)
|
||||
def prepare_hyperopt(self) -> None:
|
||||
# Initialize spaces ...
|
||||
self.init_spaces()
|
||||
|
||||
@staticmethod
|
||||
def get_lock_filename(config: Config) -> str:
|
||||
return str(config["user_data_dir"] / "hyperopt.lock")
|
||||
self.prepare_hyperopt_data()
|
||||
|
||||
def clean_hyperopt(self) -> None:
|
||||
"""
|
||||
Remove hyperopt pickle files to restart hyperopt.
|
||||
"""
|
||||
for f in [self.data_pickle_file, self.results_file]:
|
||||
p = Path(f)
|
||||
if p.is_file():
|
||||
logger.info(f"Removing `{p}`.")
|
||||
p.unlink()
|
||||
# We don't need exchange instance anymore while running hyperopt
|
||||
self.backtesting.exchange.close()
|
||||
self.backtesting.exchange._api = None
|
||||
self.backtesting.exchange._api_async = None
|
||||
self.backtesting.exchange.loop = None # type: ignore
|
||||
self.backtesting.exchange._loop_lock = None # type: ignore
|
||||
self.backtesting.exchange._cache_lock = None # type: ignore
|
||||
# self.backtesting.exchange = None # type: ignore
|
||||
self.backtesting.pairlists = None # type: ignore
|
||||
|
||||
def get_strategy_name(self) -> str:
|
||||
return self.backtesting.strategy.get_strategy_name()
|
||||
|
||||
def hyperopt_pickle_magic(self, bases) -> None:
|
||||
"""
|
||||
@@ -177,33 +134,7 @@ class Hyperopt:
|
||||
|
||||
# Return a dict where the keys are the names of the dimensions
|
||||
# and the values are taken from the list of parameters.
|
||||
return {d.name: v for d, v in zip(dimensions, raw_params)}
|
||||
|
||||
def _save_result(self, epoch: dict) -> None:
|
||||
"""
|
||||
Save hyperopt results to file
|
||||
Store one line per epoch.
|
||||
While not a valid json object - this allows appending easily.
|
||||
:param epoch: result dictionary for this epoch.
|
||||
"""
|
||||
epoch[FTHYPT_FILEVERSION] = 2
|
||||
with self.results_file.open("a") as f:
|
||||
rapidjson.dump(
|
||||
epoch,
|
||||
f,
|
||||
default=hyperopt_serializer,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN,
|
||||
)
|
||||
f.write("\n")
|
||||
|
||||
self.num_epochs_saved += 1
|
||||
logger.debug(
|
||||
f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'."
|
||||
)
|
||||
# Store hyperopt filename
|
||||
latest_filename = Path.joinpath(self.results_file.parent, LAST_BT_RESULT_FN)
|
||||
file_dump_json(latest_filename, {"latest_hyperopt": str(self.results_file.name)}, log=False)
|
||||
return {d.name: v for d, v in zip(dimensions, raw_params, strict=False)}
|
||||
|
||||
def _get_params_details(self, params: dict) -> dict:
|
||||
"""
|
||||
@@ -257,21 +188,6 @@ class Hyperopt:
|
||||
result["max_open_trades"] = {"max_open_trades": strategy.max_open_trades}
|
||||
return result
|
||||
|
||||
def print_results(self, results: dict[str, Any]) -> None:
|
||||
"""
|
||||
Log results if it is better than any previous evaluation
|
||||
TODO: this should be moved to HyperoptTools too
|
||||
"""
|
||||
is_best = results["is_best"]
|
||||
|
||||
if self.print_all or is_best:
|
||||
self._hyper_out.add_data(
|
||||
self.config,
|
||||
[results],
|
||||
self.total_epochs,
|
||||
self.print_all,
|
||||
)
|
||||
|
||||
def init_spaces(self):
|
||||
"""
|
||||
Assign the dimensions in the hyperoptimization space.
|
||||
@@ -458,7 +374,14 @@ class Hyperopt:
|
||||
"total_profit": total_profit,
|
||||
}
|
||||
|
||||
def get_optimizer(self, dimensions: list[Dimension], cpu_count) -> Optimizer:
|
||||
def get_optimizer(
|
||||
self,
|
||||
cpu_count: int,
|
||||
random_state: int,
|
||||
initial_points: int,
|
||||
model_queue_size: int,
|
||||
) -> Optimizer:
|
||||
dimensions = self.dimensions
|
||||
estimator = self.custom_hyperopt.generate_estimator(dimensions=dimensions)
|
||||
|
||||
acq_optimizer = "sampling"
|
||||
@@ -473,21 +396,12 @@ class Hyperopt:
|
||||
dimensions,
|
||||
base_estimator=estimator,
|
||||
acq_optimizer=acq_optimizer,
|
||||
n_initial_points=INITIAL_POINTS,
|
||||
n_initial_points=initial_points,
|
||||
acq_optimizer_kwargs={"n_jobs": cpu_count},
|
||||
random_state=self.random_state,
|
||||
model_queue_size=SKOPT_MODEL_QUEUE_SIZE,
|
||||
random_state=random_state,
|
||||
model_queue_size=model_queue_size,
|
||||
)
|
||||
|
||||
def run_optimizer_parallel(self, parallel: Parallel, asked: list[list]) -> list[dict[str, Any]]:
|
||||
"""Start optimizer in a parallel way"""
|
||||
return parallel(
|
||||
delayed(wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked
|
||||
)
|
||||
|
||||
def _set_random_state(self, random_state: Optional[int]) -> int:
|
||||
return random_state or random.randint(1, 2**16 - 1) # noqa: S311
|
||||
|
||||
def advise_and_trim(self, data: dict[str, DataFrame]) -> dict[str, DataFrame]:
|
||||
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
|
||||
|
||||
@@ -523,173 +437,3 @@ class Hyperopt:
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
else:
|
||||
dump(data, self.data_pickle_file)
|
||||
|
||||
def get_asked_points(self, n_points: int) -> tuple[list[list[Any]], list[bool]]:
|
||||
"""
|
||||
Enforce points returned from `self.opt.ask` have not been already evaluated
|
||||
|
||||
Steps:
|
||||
1. Try to get points using `self.opt.ask` first
|
||||
2. Discard the points that have already been evaluated
|
||||
3. Retry using `self.opt.ask` up to 3 times
|
||||
4. If still some points are missing in respect to `n_points`, random sample some points
|
||||
5. Repeat until at least `n_points` points in the `asked_non_tried` list
|
||||
6. Return a list with length truncated at `n_points`
|
||||
"""
|
||||
|
||||
def unique_list(a_list):
|
||||
new_list = []
|
||||
for item in a_list:
|
||||
if item not in new_list:
|
||||
new_list.append(item)
|
||||
return new_list
|
||||
|
||||
i = 0
|
||||
asked_non_tried: list[list[Any]] = []
|
||||
is_random_non_tried: list[bool] = []
|
||||
while i < 5 and len(asked_non_tried) < n_points:
|
||||
if i < 3:
|
||||
self.opt.cache_ = {}
|
||||
asked = unique_list(self.opt.ask(n_points=n_points * 5 if i > 0 else n_points))
|
||||
is_random = [False for _ in range(len(asked))]
|
||||
else:
|
||||
asked = unique_list(self.opt.space.rvs(n_samples=n_points * 5))
|
||||
is_random = [True for _ in range(len(asked))]
|
||||
is_random_non_tried += [
|
||||
rand
|
||||
for x, rand in zip(asked, is_random)
|
||||
if x not in self.opt.Xi and x not in asked_non_tried
|
||||
]
|
||||
asked_non_tried += [
|
||||
x for x in asked if x not in self.opt.Xi and x not in asked_non_tried
|
||||
]
|
||||
i += 1
|
||||
|
||||
if asked_non_tried:
|
||||
return (
|
||||
asked_non_tried[: min(len(asked_non_tried), n_points)],
|
||||
is_random_non_tried[: min(len(asked_non_tried), n_points)],
|
||||
)
|
||||
else:
|
||||
return self.opt.ask(n_points=n_points), [False for _ in range(n_points)]
|
||||
|
||||
def evaluate_result(self, val: dict[str, Any], current: int, is_random: bool):
|
||||
"""
|
||||
Evaluate results returned from generate_optimizer
|
||||
"""
|
||||
val["current_epoch"] = current
|
||||
val["is_initial_point"] = current <= INITIAL_POINTS
|
||||
|
||||
logger.debug("Optimizer epoch evaluated: %s", val)
|
||||
|
||||
is_best = HyperoptTools.is_best_loss(val, self.current_best_loss)
|
||||
# This value is assigned here and not in the optimization method
|
||||
# to keep proper order in the list of results. That's because
|
||||
# evaluations can take different time. Here they are aligned in the
|
||||
# order they will be shown to the user.
|
||||
val["is_best"] = is_best
|
||||
val["is_random"] = is_random
|
||||
self.print_results(val)
|
||||
|
||||
if is_best:
|
||||
self.current_best_loss = val["loss"]
|
||||
self.current_best_epoch = val
|
||||
|
||||
self._save_result(val)
|
||||
|
||||
def start(self) -> None:
|
||||
self.random_state = self._set_random_state(self.config.get("hyperopt_random_state"))
|
||||
logger.info(f"Using optimizer random state: {self.random_state}")
|
||||
self.hyperopt_table_header = -1
|
||||
# Initialize spaces ...
|
||||
self.init_spaces()
|
||||
|
||||
self.prepare_hyperopt_data()
|
||||
|
||||
# We don't need exchange instance anymore while running hyperopt
|
||||
self.backtesting.exchange.close()
|
||||
self.backtesting.exchange._api = None
|
||||
self.backtesting.exchange._api_async = None
|
||||
self.backtesting.exchange.loop = None # type: ignore
|
||||
self.backtesting.exchange._loop_lock = None # type: ignore
|
||||
self.backtesting.exchange._cache_lock = None # type: ignore
|
||||
# self.backtesting.exchange = None # type: ignore
|
||||
self.backtesting.pairlists = None # type: ignore
|
||||
|
||||
cpus = cpu_count()
|
||||
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
|
||||
config_jobs = self.config.get("hyperopt_jobs", -1)
|
||||
logger.info(f"Number of parallel jobs set as: {config_jobs}")
|
||||
|
||||
self.opt = self.get_optimizer(self.dimensions, config_jobs)
|
||||
|
||||
try:
|
||||
with Parallel(n_jobs=config_jobs) as parallel:
|
||||
jobs = parallel._effective_n_jobs()
|
||||
logger.info(f"Effective number of parallel workers used: {jobs}")
|
||||
console = Console(
|
||||
color_system="auto" if self.print_colorized else None,
|
||||
)
|
||||
|
||||
# Define progressbar
|
||||
with get_progress_tracker(
|
||||
console=console,
|
||||
cust_callables=[self._hyper_out],
|
||||
) as pbar:
|
||||
task = pbar.add_task("Epochs", total=self.total_epochs)
|
||||
|
||||
start = 0
|
||||
|
||||
if self.analyze_per_epoch:
|
||||
# First analysis not in parallel mode when using --analyze-per-epoch.
|
||||
# This allows dataprovider to load it's informative cache.
|
||||
asked, is_random = self.get_asked_points(n_points=1)
|
||||
f_val0 = self.generate_optimizer(asked[0])
|
||||
self.opt.tell(asked, [f_val0["loss"]])
|
||||
self.evaluate_result(f_val0, 1, is_random[0])
|
||||
pbar.update(task, advance=1)
|
||||
start += 1
|
||||
|
||||
evals = ceil((self.total_epochs - start) / jobs)
|
||||
for i in range(evals):
|
||||
# Correct the number of epochs to be processed for the last
|
||||
# iteration (should not exceed self.total_epochs in total)
|
||||
n_rest = (i + 1) * jobs - (self.total_epochs - start)
|
||||
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
||||
|
||||
asked, is_random = self.get_asked_points(n_points=current_jobs)
|
||||
f_val = self.run_optimizer_parallel(parallel, asked)
|
||||
self.opt.tell(asked, [v["loss"] for v in f_val])
|
||||
|
||||
for j, val in enumerate(f_val):
|
||||
# Use human-friendly indexes here (starting from 1)
|
||||
current = i * jobs + j + 1 + start
|
||||
|
||||
self.evaluate_result(val, current, is_random[j])
|
||||
pbar.update(task, advance=1)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("User interrupted..")
|
||||
|
||||
logger.info(
|
||||
f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'."
|
||||
)
|
||||
|
||||
if self.current_best_epoch:
|
||||
HyperoptTools.try_export_params(
|
||||
self.config, self.backtesting.strategy.get_strategy_name(), self.current_best_epoch
|
||||
)
|
||||
|
||||
HyperoptTools.show_epoch_details(
|
||||
self.current_best_epoch, self.total_epochs, self.print_json
|
||||
)
|
||||
elif self.num_epochs_saved > 0:
|
||||
print(
|
||||
f"No good result found for given optimization function in {self.num_epochs_saved} "
|
||||
f"{plural(self.num_epochs_saved, 'epoch')}."
|
||||
)
|
||||
else:
|
||||
# This is printed when Ctrl+C is pressed quickly, before first epochs have
|
||||
# a chance to be evaluated.
|
||||
print("No epochs evaluated yet, no best result.")
|
||||
@@ -1,6 +1,6 @@
|
||||
import sys
|
||||
from os import get_terminal_size
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from rich.align import Align
|
||||
from rich.console import Console
|
||||
@@ -37,7 +37,7 @@ class HyperoptOutput:
|
||||
self.table.add_column("Objective", justify="right")
|
||||
self.table.add_column("Max Drawdown (Acct)", justify="right")
|
||||
|
||||
def print(self, console: Optional[Console] = None, *, print_colorized=True):
|
||||
def print(self, console: Console | None = None, *, print_colorized=True):
|
||||
if not console:
|
||||
console = Console(
|
||||
color_system="auto" if print_colorized else None,
|
||||
@@ -57,7 +57,7 @@ class HyperoptOutput:
|
||||
stake_currency = config["stake_currency"]
|
||||
self._results.extend(results)
|
||||
|
||||
max_rows: Optional[int] = None
|
||||
max_rows: int | None = None
|
||||
|
||||
if self._streaming:
|
||||
try:
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user