mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-12-03 18:43:04 +00:00
fix: Make XgboostMulti an alias of Xgboost since it supports multiple targets implicitly now
This commit is contained in:
@@ -4,8 +4,8 @@ from typing import Any
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.tensorboard import TBCallback
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -29,45 +29,32 @@ class XGBoostRegressorMultiTarget(BaseRegressionModel):
|
||||
:param dk: The datakitchen object for the current coin/model
|
||||
"""
|
||||
|
||||
xgb = XGBRegressor(**self.model_training_parameters)
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
|
||||
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
||||
eval_set = None
|
||||
eval_weights = None
|
||||
else:
|
||||
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"]), (X, y)]
|
||||
eval_weights = [data_dictionary["test_weights"], data_dictionary["train_weights"]]
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
eval_weights = None
|
||||
eval_sets = [None] * y.shape[1]
|
||||
xgb_model = self.get_init_model(dk.pair)
|
||||
|
||||
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
|
||||
eval_weights = [data_dictionary["test_weights"]]
|
||||
for i in range(data_dictionary["test_labels"].shape[1]):
|
||||
eval_sets[i] = [ # type: ignore
|
||||
(
|
||||
data_dictionary["test_features"],
|
||||
data_dictionary["test_labels"].iloc[:, i],
|
||||
)
|
||||
]
|
||||
model = XGBRegressor(**self.model_training_parameters)
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{
|
||||
"eval_set": eval_sets[i],
|
||||
"sample_weight_eval_set": eval_weights,
|
||||
"xgb_model": init_models[i],
|
||||
}
|
||||
)
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=xgb)
|
||||
thread_training = self.freqai_info.get("multitarget_parallel_training", False)
|
||||
if thread_training:
|
||||
model.n_jobs = y.shape[1]
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
model.set_params(callbacks=[TBCallback(dk.data_path)])
|
||||
model.fit(
|
||||
X=X,
|
||||
y=y,
|
||||
sample_weight=sample_weight,
|
||||
eval_set=eval_set,
|
||||
sample_weight_eval_set=eval_weights,
|
||||
xgb_model=xgb_model,
|
||||
)
|
||||
# set the callbacks to empty so that we can serialize to disk later
|
||||
model.set_params(callbacks=[])
|
||||
|
||||
return model
|
||||
|
||||
Reference in New Issue
Block a user