mirror of
https://github.com/freqtrade/freqtrade.git
synced 2026-01-20 14:00:38 +00:00
Merge pull request #11805 from viotemp1/optuna_addons
fix hyperopt repeated parameters between batches
This commit is contained in:
@@ -15,13 +15,14 @@ from typing import Any
|
||||
|
||||
import rapidjson
|
||||
from joblib import Parallel, cpu_count
|
||||
from optuna.trial import FrozenTrial, Trial, TrialState
|
||||
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, LAST_BT_RESULT_FN, Config
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import file_dump_json, plural
|
||||
from freqtrade.optimize.hyperopt.hyperopt_logger import logging_mp_handle, logging_mp_setup
|
||||
from freqtrade.optimize.hyperopt.hyperopt_optimizer import HyperOptimizer
|
||||
from freqtrade.optimize.hyperopt.hyperopt_optimizer import INITIAL_POINTS, HyperOptimizer
|
||||
from freqtrade.optimize.hyperopt.hyperopt_output import HyperoptOutput
|
||||
from freqtrade.optimize.hyperopt_tools import (
|
||||
HyperoptStateContainer,
|
||||
@@ -34,9 +35,6 @@ from freqtrade.util import get_progress_tracker
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
|
||||
|
||||
log_queue: Any
|
||||
|
||||
|
||||
@@ -91,6 +89,7 @@ class Hyperopt:
|
||||
self.print_json = self.config.get("print_json", False)
|
||||
|
||||
self.hyperopter = HyperOptimizer(self.config, self.data_pickle_file)
|
||||
self.count_skipped_epochs = 0
|
||||
|
||||
@staticmethod
|
||||
def get_lock_filename(config: Config) -> str:
|
||||
@@ -169,6 +168,21 @@ class Hyperopt:
|
||||
asked.append(self.opt.ask(dimensions))
|
||||
return asked
|
||||
|
||||
def duplicate_optuna_asked_points(self, trial: Trial, asked_trials: list[FrozenTrial]) -> bool:
|
||||
asked_trials_no_dups: list[FrozenTrial] = []
|
||||
trials_to_consider = trial.study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
|
||||
# Check whether we already evaluated the sampled `params`.
|
||||
for t in reversed(trials_to_consider):
|
||||
if trial.params == t.params:
|
||||
return True
|
||||
# Check whether same`params` in one batch (asked_trials). Autosampler is doing this.
|
||||
for t in asked_trials:
|
||||
if t.params not in asked_trials_no_dups:
|
||||
asked_trials_no_dups.append(t)
|
||||
if len(asked_trials_no_dups) != len(asked_trials):
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_asked_points(self, n_points: int, dimensions: dict) -> tuple[list[Any], list[bool]]:
|
||||
"""
|
||||
Enforce points returned from `self.opt.ask` have not been already evaluated
|
||||
@@ -176,49 +190,27 @@ class Hyperopt:
|
||||
Steps:
|
||||
1. Try to get points using `self.opt.ask` first
|
||||
2. Discard the points that have already been evaluated
|
||||
3. Retry using `self.opt.ask` up to 3 times
|
||||
4. If still some points are missing in respect to `n_points`, random sample some points
|
||||
5. Repeat until at least `n_points` points in the `asked_non_tried` list
|
||||
6. Return a list with length truncated at `n_points`
|
||||
3. Retry using `self.opt.ask` up to `n_points` times
|
||||
"""
|
||||
|
||||
def unique_list(a_list):
|
||||
new_list = []
|
||||
for item in a_list:
|
||||
if item not in new_list:
|
||||
new_list.append(item)
|
||||
return new_list
|
||||
|
||||
asked_non_tried: list[FrozenTrial] = []
|
||||
optuna_asked_trials = self.get_optuna_asked_points(n_points=n_points, dimensions=dimensions)
|
||||
asked_non_tried += [
|
||||
x
|
||||
for x in optuna_asked_trials
|
||||
if not self.duplicate_optuna_asked_points(x, optuna_asked_trials)
|
||||
]
|
||||
i = 0
|
||||
asked_non_tried: list[list[Any]] = []
|
||||
is_random_non_tried: list[bool] = []
|
||||
while i < 5 and len(asked_non_tried) < n_points:
|
||||
if i < 3:
|
||||
self.opt.cache_ = {}
|
||||
asked = unique_list(
|
||||
self.get_optuna_asked_points(
|
||||
n_points=n_points * 5 if i > 0 else n_points, dimensions=dimensions
|
||||
)
|
||||
)
|
||||
is_random = [False for _ in range(len(asked))]
|
||||
else:
|
||||
asked = unique_list(self.opt.space.rvs(n_samples=n_points * 5))
|
||||
is_random = [True for _ in range(len(asked))]
|
||||
is_random_non_tried += [
|
||||
rand for x, rand in zip(asked, is_random, strict=False) if x not in asked_non_tried
|
||||
]
|
||||
asked_non_tried += [x for x in asked if x not in asked_non_tried]
|
||||
while i < 2 * n_points and len(asked_non_tried) < n_points:
|
||||
asked_new = self.get_optuna_asked_points(n_points=1, dimensions=dimensions)[0]
|
||||
if not self.duplicate_optuna_asked_points(asked_new, asked_non_tried):
|
||||
asked_non_tried.append(asked_new)
|
||||
i += 1
|
||||
if len(asked_non_tried) < n_points:
|
||||
if self.count_skipped_epochs == 0:
|
||||
logger.warning("Duplicate params detected. Maybe your search space is too small?")
|
||||
self.count_skipped_epochs += n_points - len(asked_non_tried)
|
||||
|
||||
if asked_non_tried:
|
||||
return (
|
||||
asked_non_tried[: min(len(asked_non_tried), n_points)],
|
||||
is_random_non_tried[: min(len(asked_non_tried), n_points)],
|
||||
)
|
||||
else:
|
||||
return self.get_optuna_asked_points(n_points=n_points, dimensions=dimensions), [
|
||||
False for _ in range(n_points)
|
||||
]
|
||||
return asked_non_tried, [False for _ in range(len(asked_non_tried))]
|
||||
|
||||
def evaluate_result(self, val: dict[str, Any], current: int, is_random: bool):
|
||||
"""
|
||||
@@ -304,6 +296,7 @@ class Hyperopt:
|
||||
parallel,
|
||||
[asked1.params for asked1 in asked],
|
||||
)
|
||||
|
||||
f_val_loss = [v["loss"] for v in f_val]
|
||||
for o_ask, v in zip(asked, f_val_loss, strict=False):
|
||||
self.opt.tell(o_ask, v)
|
||||
@@ -327,6 +320,12 @@ class Hyperopt:
|
||||
except KeyboardInterrupt:
|
||||
print("User interrupted..")
|
||||
|
||||
if self.count_skipped_epochs > 0:
|
||||
logger.info(
|
||||
f"{self.count_skipped_epochs} {plural(self.count_skipped_epochs, 'epoch')} "
|
||||
f"skipped due to duplicate parameters."
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'."
|
||||
|
||||
@@ -45,6 +45,7 @@ from freqtrade.util.dry_run_wallet import get_dry_run_wallet
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
|
||||
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
||||
|
||||
@@ -425,7 +426,16 @@ class HyperOptimizer:
|
||||
raise OperationalException(f"Optuna Sampler {o_sampler} not supported.")
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(action="ignore", category=ExperimentalWarning)
|
||||
sampler = optuna_samplers_dict[o_sampler](seed=random_state)
|
||||
if o_sampler in ["NSGAIIISampler", "NSGAIISampler"]:
|
||||
sampler = optuna_samplers_dict[o_sampler](
|
||||
seed=random_state, population_size=INITIAL_POINTS
|
||||
)
|
||||
elif o_sampler in ["GPSampler", "TPESampler", "CmaEsSampler"]:
|
||||
sampler = optuna_samplers_dict[o_sampler](
|
||||
seed=random_state, n_startup_trials=INITIAL_POINTS
|
||||
)
|
||||
else:
|
||||
sampler = optuna_samplers_dict[o_sampler](seed=random_state)
|
||||
else:
|
||||
sampler = o_sampler
|
||||
|
||||
|
||||
Reference in New Issue
Block a user