mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-12-03 18:43:04 +00:00
Merge pull request #9065 from freqtrade/trades_data_handling
Improve Trades data handling
This commit is contained in:
@@ -441,7 +441,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
"dataformat_trades": Arg(
|
||||
'--data-format-trades',
|
||||
help='Storage format for downloaded trades data. (default: `feather`).',
|
||||
choices=constants.AVAILABLE_DATAHANDLERS_TRADES,
|
||||
choices=constants.AVAILABLE_DATAHANDLERS,
|
||||
),
|
||||
"show_timerange": Arg(
|
||||
'--show-timerange',
|
||||
|
||||
@@ -38,8 +38,7 @@ AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList', '
|
||||
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
|
||||
AVAILABLE_PROTECTIONS = ['CooldownPeriod',
|
||||
'LowProfitPairs', 'MaxDrawdown', 'StoplossGuard']
|
||||
AVAILABLE_DATAHANDLERS_TRADES = ['json', 'jsongz', 'hdf5', 'feather']
|
||||
AVAILABLE_DATAHANDLERS = AVAILABLE_DATAHANDLERS_TRADES + ['parquet']
|
||||
AVAILABLE_DATAHANDLERS = ['json', 'jsongz', 'hdf5', 'feather', 'parquet']
|
||||
BACKTEST_BREAKDOWNS = ['day', 'week', 'month']
|
||||
BACKTEST_CACHE_AGE = ['none', 'day', 'week', 'month']
|
||||
BACKTEST_CACHE_DEFAULT = 'day'
|
||||
@@ -50,6 +49,15 @@ DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
# Don't modify sequence of DEFAULT_TRADES_COLUMNS
|
||||
# it has wide consequences for stored trades files
|
||||
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
|
||||
TRADES_DTYPES = {
|
||||
'timestamp': 'int64',
|
||||
'id': 'str',
|
||||
'type': 'str',
|
||||
'side': 'str',
|
||||
'price': 'float64',
|
||||
'amount': 'float64',
|
||||
'cost': 'float64',
|
||||
}
|
||||
TRADING_MODES = ['spot', 'margin', 'futures']
|
||||
MARGIN_MODES = ['cross', 'isolated', '']
|
||||
|
||||
@@ -450,7 +458,7 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'dataformat_trades': {
|
||||
'type': 'string',
|
||||
'enum': AVAILABLE_DATAHANDLERS_TRADES,
|
||||
'enum': AVAILABLE_DATAHANDLERS,
|
||||
'default': 'feather'
|
||||
},
|
||||
'position_adjustment_enable': {'type': 'boolean'},
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
"""
|
||||
Functions to convert data from one format to another
|
||||
"""
|
||||
import itertools
|
||||
import logging
|
||||
from operator import itemgetter
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, Config, TradeList
|
||||
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TRADES_DTYPES,
|
||||
Config, TradeList)
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
|
||||
|
||||
@@ -195,15 +194,14 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
|
||||
return frame
|
||||
|
||||
|
||||
def trades_remove_duplicates(trades: List[List]) -> List[List]:
|
||||
def trades_df_remove_duplicates(trades: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Removes duplicates from the trades list.
|
||||
Uses itertools.groupby to avoid converting to pandas.
|
||||
Tests show it as being pretty efficient on lists of 4M Lists.
|
||||
:param trades: List of Lists with constants.DEFAULT_TRADES_COLUMNS as columns
|
||||
:return: same format as above, but with duplicates removed
|
||||
Removes duplicates from the trades DataFrame.
|
||||
Uses pandas.DataFrame.drop_duplicates to remove duplicates based on the 'timestamp' column.
|
||||
:param trades: DataFrame with the columns constants.DEFAULT_TRADES_COLUMNS
|
||||
:return: DataFrame with duplicates removed based on the 'timestamp' column
|
||||
"""
|
||||
return [i for i, _ in itertools.groupby(sorted(trades, key=itemgetter(0)))]
|
||||
return trades.drop_duplicates(subset=['timestamp', 'id'])
|
||||
|
||||
|
||||
def trades_dict_to_list(trades: List[Dict]) -> TradeList:
|
||||
@@ -215,7 +213,32 @@ def trades_dict_to_list(trades: List[Dict]) -> TradeList:
|
||||
return [[t[col] for col in DEFAULT_TRADES_COLUMNS] for t in trades]
|
||||
|
||||
|
||||
def trades_to_ohlcv(trades: TradeList, timeframe: str) -> DataFrame:
|
||||
def trades_convert_types(trades: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Convert Trades dtypes and add 'date' column
|
||||
"""
|
||||
trades = trades.astype(TRADES_DTYPES)
|
||||
trades['date'] = to_datetime(trades['timestamp'], unit='ms', utc=True)
|
||||
return trades
|
||||
|
||||
|
||||
def trades_list_to_df(trades: TradeList, convert: bool = True):
|
||||
"""
|
||||
convert trades list to dataframe
|
||||
:param trades: List of Lists with constants.DEFAULT_TRADES_COLUMNS as columns
|
||||
"""
|
||||
if not trades:
|
||||
df = DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
else:
|
||||
df = DataFrame(trades, columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
if convert:
|
||||
df = trades_convert_types(df)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def trades_to_ohlcv(trades: DataFrame, timeframe: str) -> DataFrame:
|
||||
"""
|
||||
Converts trades list to OHLCV list
|
||||
:param trades: List of trades, as returned by ccxt.fetch_trades.
|
||||
@@ -225,12 +248,9 @@ def trades_to_ohlcv(trades: TradeList, timeframe: str) -> DataFrame:
|
||||
"""
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
if not trades:
|
||||
if trades.empty:
|
||||
raise ValueError('Trade-list empty.')
|
||||
df = pd.DataFrame(trades, columns=DEFAULT_TRADES_COLUMNS)
|
||||
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms',
|
||||
utc=True,)
|
||||
df = df.set_index('timestamp')
|
||||
df = trades.set_index('date', drop=True)
|
||||
|
||||
df_new = df['price'].resample(f'{timeframe_minutes}min').ohlc()
|
||||
df_new['volume'] = df['amount'].resample(f'{timeframe_minutes}min').sum()
|
||||
|
||||
@@ -4,7 +4,7 @@ from typing import Optional
|
||||
from pandas import DataFrame, read_feather, to_datetime
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
@@ -82,43 +82,41 @@ class FeatherDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
self.create_dir_if_needed(filename)
|
||||
data.reset_index(drop=True).to_feather(filename, compression_level=9, compression='lz4')
|
||||
|
||||
tradesdata = DataFrame(data, columns=DEFAULT_TRADES_COLUMNS)
|
||||
tradesdata.to_feather(filename, compression_level=9, compression='lz4')
|
||||
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
def trades_append(self, pair: str, data: DataFrame):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
if not filename.exists():
|
||||
return []
|
||||
return DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
tradesdata = read_feather(filename)
|
||||
|
||||
return tradesdata.values.tolist()
|
||||
return tradesdata
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
|
||||
@@ -5,7 +5,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
@@ -100,42 +100,42 @@ class HDF5DataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
def _trades_store(self, pair: str, data: pd.DataFrame) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
key = self._pair_trades_key(pair)
|
||||
|
||||
pd.DataFrame(data, columns=DEFAULT_TRADES_COLUMNS).to_hdf(
|
||||
data.to_hdf(
|
||||
self._pair_trades_filename(self._datadir, pair), key,
|
||||
mode='a', complevel=9, complib='blosc',
|
||||
format='table', data_columns=['timestamp']
|
||||
)
|
||||
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
def trades_append(self, pair: str, data: pd.DataFrame):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load a pair from h5 file.
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
key = self._pair_trades_key(pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
|
||||
if not filename.exists():
|
||||
return []
|
||||
return pd.DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
where = []
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
@@ -145,7 +145,7 @@ class HDF5DataHandler(IDataHandler):
|
||||
|
||||
trades: pd.DataFrame = pd.read_hdf(filename, key=key, mode="r", where=where)
|
||||
trades[['id', 'type']] = trades[['id', 'type']].replace({np.nan: None})
|
||||
return trades.values.tolist()
|
||||
return trades
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
|
||||
@@ -10,14 +10,16 @@ from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import (DATETIME_PRINT_FORMAT, DEFAULT_DATAFRAME_COLUMNS,
|
||||
DL_DATA_TIMEFRAMES, Config)
|
||||
from freqtrade.data.converter import (clean_ohlcv_dataframe, ohlcv_to_dataframe,
|
||||
trades_remove_duplicates, trades_to_ohlcv)
|
||||
trades_df_remove_duplicates, trades_list_to_df,
|
||||
trades_to_ohlcv)
|
||||
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
from freqtrade.util import format_ms_time
|
||||
from freqtrade.util import dt_ts, format_ms_time
|
||||
from freqtrade.util.binance_mig import migrate_binance_futures_data
|
||||
from freqtrade.util.datetime_helpers import dt_now
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -349,24 +351,26 @@ def _download_trades_history(exchange: Exchange,
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
|
||||
if trades and since < trades[0][0]:
|
||||
if not trades.empty and since < trades.iloc[0]['timestamp']:
|
||||
# since is before the first trade
|
||||
logger.info(f"Start earlier than available data. Redownloading trades for {pair}...")
|
||||
trades = []
|
||||
trades = trades_list_to_df([])
|
||||
|
||||
if not since:
|
||||
since = int((datetime.now() - timedelta(days=new_pairs_days)).timestamp()) * 1000
|
||||
since = dt_ts(dt_now() - timedelta(days=new_pairs_days))
|
||||
|
||||
from_id = trades[-1][1] if trades else None
|
||||
if trades and since < trades[-1][0]:
|
||||
from_id = trades.iloc[-1]['id'] if not trades.empty else None
|
||||
if not trades.empty and since < trades.iloc[-1]['timestamp']:
|
||||
# Reset since to the last available point
|
||||
# - 5 seconds (to ensure we're getting all trades)
|
||||
since = trades[-1][0] - (5 * 1000)
|
||||
since = trades.iloc[-1]['timestamp'] - (5 * 1000)
|
||||
logger.info(f"Using last trade date -5s - Downloading trades for {pair} "
|
||||
f"since: {format_ms_time(since)}.")
|
||||
|
||||
logger.debug(f"Current Start: {format_ms_time(trades[0][0]) if trades else 'None'}")
|
||||
logger.debug(f"Current End: {format_ms_time(trades[-1][0]) if trades else 'None'}")
|
||||
logger.debug("Current Start: %s", 'None' if trades.empty else
|
||||
f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}")
|
||||
logger.debug("Current End: %s", 'None' if trades.empty else
|
||||
f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}")
|
||||
logger.info(f"Current Amount of trades: {len(trades)}")
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
@@ -375,13 +379,16 @@ def _download_trades_history(exchange: Exchange,
|
||||
until=until,
|
||||
from_id=from_id,
|
||||
)
|
||||
trades.extend(new_trades[1])
|
||||
new_trades_df = trades_list_to_df(new_trades[1])
|
||||
trades = concat([trades, new_trades_df], axis=0)
|
||||
# Remove duplicates to make sure we're not storing data we don't need
|
||||
trades = trades_remove_duplicates(trades)
|
||||
trades = trades_df_remove_duplicates(trades)
|
||||
data_handler.trades_store(pair, data=trades)
|
||||
|
||||
logger.debug(f"New Start: {format_ms_time(trades[0][0])}")
|
||||
logger.debug(f"New End: {format_ms_time(trades[-1][0])}")
|
||||
logger.debug("New Start: %s", 'None' if trades.empty else
|
||||
f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}")
|
||||
logger.debug("New End: %s", 'None' if trades.empty else
|
||||
f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}")
|
||||
logger.info(f"New Amount of trades: {len(trades)}")
|
||||
return True
|
||||
|
||||
|
||||
@@ -15,8 +15,9 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade import misc
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import ListPairsWithTimeframes, TradeList
|
||||
from freqtrade.data.converter import clean_ohlcv_dataframe, trades_remove_duplicates, trim_dataframe
|
||||
from freqtrade.constants import DEFAULT_TRADES_COLUMNS, ListPairsWithTimeframes
|
||||
from freqtrade.data.converter import (clean_ohlcv_dataframe, trades_convert_types,
|
||||
trades_df_remove_duplicates, trim_dataframe)
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
|
||||
@@ -170,32 +171,42 @@ class IDataHandler(ABC):
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
@abstractmethod
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
def trades_append(self, pair: str, data: DataFrame):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
|
||||
def trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
# Filter on expected columns (will remove the actual date column).
|
||||
self._trades_store(pair, data[DEFAULT_TRADES_COLUMNS])
|
||||
|
||||
def trades_purge(self, pair: str) -> bool:
|
||||
"""
|
||||
Remove data for this pair
|
||||
@@ -208,7 +219,7 @@ class IDataHandler(ABC):
|
||||
return True
|
||||
return False
|
||||
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
Removes duplicates in the process.
|
||||
@@ -216,7 +227,10 @@ class IDataHandler(ABC):
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
return trades_remove_duplicates(self._trades_load(pair, timerange=timerange))
|
||||
trades = trades_df_remove_duplicates(self._trades_load(pair, timerange=timerange))
|
||||
|
||||
trades = trades_convert_types(trades)
|
||||
return trades
|
||||
|
||||
@classmethod
|
||||
def create_dir_if_needed(cls, datadir: Path):
|
||||
|
||||
@@ -6,8 +6,8 @@ from pandas import DataFrame, read_json, to_datetime
|
||||
|
||||
from freqtrade import misc
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList
|
||||
from freqtrade.data.converter import trades_dict_to_list
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.data.converter import trades_dict_to_list, trades_list_to_df
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
@@ -94,45 +94,46 @@ class JsonDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
misc.file_dump_json(filename, data, is_zip=self._use_zip)
|
||||
trades = data.values.tolist()
|
||||
misc.file_dump_json(filename, trades, is_zip=self._use_zip)
|
||||
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
def trades_append(self, pair: str, data: DataFrame):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
tradesdata = misc.file_load_json(filename)
|
||||
|
||||
if not tradesdata:
|
||||
return []
|
||||
return DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
if isinstance(tradesdata[0], dict):
|
||||
# Convert trades dict to list
|
||||
logger.info("Old trades format detected - converting")
|
||||
tradesdata = trades_dict_to_list(tradesdata)
|
||||
pass
|
||||
return tradesdata
|
||||
return trades_list_to_df(tradesdata, convert=False)
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
|
||||
@@ -4,7 +4,7 @@ from typing import Optional
|
||||
from pandas import DataFrame, read_parquet, to_datetime
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
@@ -81,25 +81,22 @@ class ParquetDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
# filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
self.create_dir_if_needed(filename)
|
||||
data.reset_index(drop=True).to_parquet(filename)
|
||||
|
||||
raise NotImplementedError()
|
||||
# array = pa.array(data)
|
||||
# array
|
||||
# feather.write_feather(data, filename)
|
||||
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
def trades_append(self, pair: str, data: DataFrame):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
@@ -112,14 +109,13 @@ class ParquetDataHandler(IDataHandler):
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
# filename = self._pair_trades_filename(self._datadir, pair)
|
||||
# tradesdata = misc.file_load_json(filename)
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
# if not tradesdata:
|
||||
# return []
|
||||
tradesdata = read_parquet(filename)
|
||||
|
||||
# return tradesdata
|
||||
return tradesdata
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
|
||||
@@ -14,7 +14,7 @@ import pytest
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.commands import Arguments
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe, trades_list_to_df
|
||||
from freqtrade.edge import PairInfo
|
||||
from freqtrade.enums import CandleType, MarginMode, RunMode, SignalDirection, TradingMode
|
||||
from freqtrade.exchange import Exchange
|
||||
@@ -2346,7 +2346,15 @@ def trades_history():
|
||||
[1565798399629, '1261813bb30', None, 'buy', 0.019627, 0.244, 0.004788987999999999],
|
||||
[1565798399752, '1261813cc31', None, 'sell', 0.019626, 0.011, 0.00021588599999999999],
|
||||
[1565798399862, '126181cc332', None, 'sell', 0.019626, 0.011, 0.00021588599999999999],
|
||||
[1565798399872, '1261aa81333', None, 'sell', 0.019626, 0.011, 0.00021588599999999999]]
|
||||
[1565798399862, '126181cc333', None, 'sell', 0.019626, 0.012, 0.00021588599999999999],
|
||||
[1565798399872, '1261aa81334', None, 'sell', 0.019626, 0.011, 0.00021588599999999999]]
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def trades_history_df(trades_history):
|
||||
trades = trades_list_to_df(trades_history)
|
||||
trades['date'] = pd.to_datetime(trades['timestamp'], unit='ms', utc=True)
|
||||
return trades
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
|
||||
@@ -4,13 +4,14 @@ from pathlib import Path
|
||||
from shutil import copyfile
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from freqtrade.configuration.timerange import TimeRange
|
||||
from freqtrade.data.converter import (convert_ohlcv_format, convert_trades_format,
|
||||
ohlcv_fill_up_missing_data, ohlcv_to_dataframe,
|
||||
reduce_dataframe_footprint, trades_dict_to_list,
|
||||
trades_remove_duplicates, trades_to_ohlcv, trim_dataframe)
|
||||
reduce_dataframe_footprint, trades_df_remove_duplicates,
|
||||
trades_dict_to_list, trades_to_ohlcv, trim_dataframe)
|
||||
from freqtrade.data.history import (get_timerange, load_data, load_pair_history,
|
||||
validate_backtest_data)
|
||||
from freqtrade.data.history.idatahandler import IDataHandler
|
||||
@@ -34,13 +35,13 @@ def test_ohlcv_to_dataframe(ohlcv_history_list, caplog):
|
||||
assert log_has('Converting candle (OHLCV) data to dataframe for pair UNITTEST/BTC.', caplog)
|
||||
|
||||
|
||||
def test_trades_to_ohlcv(trades_history, caplog):
|
||||
def test_trades_to_ohlcv(trades_history_df, caplog):
|
||||
|
||||
caplog.set_level(logging.DEBUG)
|
||||
with pytest.raises(ValueError, match="Trade-list empty."):
|
||||
trades_to_ohlcv([], '1m')
|
||||
trades_to_ohlcv(pd.DataFrame(columns=trades_history_df.columns), '1m')
|
||||
|
||||
df = trades_to_ohlcv(trades_history, '1m')
|
||||
df = trades_to_ohlcv(trades_history_df, '1m')
|
||||
assert not df.empty
|
||||
assert len(df) == 1
|
||||
assert 'open' in df.columns
|
||||
@@ -297,13 +298,13 @@ def test_trim_dataframe(testdatadir) -> None:
|
||||
assert all(data_modify.iloc[0] == data.iloc[25])
|
||||
|
||||
|
||||
def test_trades_remove_duplicates(trades_history):
|
||||
trades_history1 = trades_history * 3
|
||||
assert len(trades_history1) == len(trades_history) * 3
|
||||
res = trades_remove_duplicates(trades_history1)
|
||||
assert len(res) == len(trades_history)
|
||||
for i, t in enumerate(res):
|
||||
assert t == trades_history[i]
|
||||
def test_trades_df_remove_duplicates(trades_history_df):
|
||||
trades_history1 = pd.concat([trades_history_df, trades_history_df, trades_history_df]
|
||||
).reset_index(drop=True)
|
||||
assert len(trades_history1) == len(trades_history_df) * 3
|
||||
res = trades_df_remove_duplicates(trades_history1)
|
||||
assert len(res) == len(trades_history_df)
|
||||
assert res.equals(trades_history_df)
|
||||
|
||||
|
||||
def test_trades_dict_to_list(fetch_trades_result):
|
||||
|
||||
@@ -6,7 +6,8 @@ from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from pandas import DataFrame
|
||||
from pandas import DataFrame, Timestamp
|
||||
from pandas.testing import assert_frame_equal
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import AVAILABLE_DATAHANDLERS
|
||||
@@ -117,12 +118,6 @@ def test_datahandler_ohlcv_get_available_data(testdatadir):
|
||||
assert set(paircombs) == {('UNITTEST/BTC', '5m', CandleType.SPOT)}
|
||||
|
||||
|
||||
def test_jsondatahandler_trades_get_pairs(testdatadir):
|
||||
pairs = JsonGzDataHandler.trades_get_pairs(testdatadir)
|
||||
# Convert to set to avoid failures due to sorting
|
||||
assert set(pairs) == {'XRP/ETH', 'XRP/OLD'}
|
||||
|
||||
|
||||
def test_jsondatahandler_ohlcv_purge(mocker, testdatadir):
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
|
||||
unlinkmock = mocker.patch.object(Path, "unlink", MagicMock())
|
||||
@@ -246,8 +241,10 @@ def test_datahandler__check_empty_df(testdatadir, caplog):
|
||||
assert log_has_re(expected_text, caplog)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('datahandler', ['parquet'])
|
||||
# @pytest.mark.parametrize('datahandler', [])
|
||||
@pytest.mark.skip("All datahandlers currently support trades data.")
|
||||
def test_datahandler_trades_not_supported(datahandler, testdatadir, ):
|
||||
# Currently disabled. Reenable should a new provider not support trades data.
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
with pytest.raises(NotImplementedError):
|
||||
dh.trades_load('UNITTEST/ETH')
|
||||
@@ -266,18 +263,6 @@ def test_jsondatahandler_trades_load(testdatadir, caplog):
|
||||
assert log_has(logmsg, caplog)
|
||||
|
||||
|
||||
def test_jsondatahandler_trades_purge(mocker, testdatadir):
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
|
||||
unlinkmock = mocker.patch.object(Path, "unlink", MagicMock())
|
||||
dh = JsonGzDataHandler(testdatadir)
|
||||
assert not dh.trades_purge('UNITTEST/NONEXIST')
|
||||
assert unlinkmock.call_count == 0
|
||||
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
|
||||
assert dh.trades_purge('UNITTEST/NONEXIST')
|
||||
assert unlinkmock.call_count == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize('datahandler', AVAILABLE_DATAHANDLERS)
|
||||
def test_datahandler_ohlcv_append(datahandler, testdatadir, ):
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
@@ -291,79 +276,48 @@ def test_datahandler_ohlcv_append(datahandler, testdatadir, ):
|
||||
def test_datahandler_trades_append(datahandler, testdatadir):
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
with pytest.raises(NotImplementedError):
|
||||
dh.trades_append('UNITTEST/ETH', [])
|
||||
dh.trades_append('UNITTEST/ETH', DataFrame())
|
||||
|
||||
|
||||
def test_hdf5datahandler_trades_get_pairs(testdatadir):
|
||||
pairs = HDF5DataHandler.trades_get_pairs(testdatadir)
|
||||
@pytest.mark.parametrize('datahandler,expected', [
|
||||
('jsongz', {'XRP/ETH', 'XRP/OLD'}),
|
||||
('hdf5', {'XRP/ETH'}),
|
||||
('feather', {'XRP/ETH'}),
|
||||
('parquet', {'XRP/ETH'}),
|
||||
])
|
||||
def test_datahandler_trades_get_pairs(testdatadir, datahandler, expected):
|
||||
|
||||
pairs = get_datahandlerclass(datahandler).trades_get_pairs(testdatadir)
|
||||
# Convert to set to avoid failures due to sorting
|
||||
assert set(pairs) == {'XRP/ETH'}
|
||||
assert set(pairs) == expected
|
||||
|
||||
|
||||
def test_hdf5datahandler_trades_load(testdatadir):
|
||||
dh = get_datahandler(testdatadir, 'hdf5')
|
||||
trades = dh.trades_load('XRP/ETH')
|
||||
assert isinstance(trades, list)
|
||||
assert isinstance(trades, DataFrame)
|
||||
|
||||
trades1 = dh.trades_load('UNITTEST/NONEXIST')
|
||||
assert trades1 == []
|
||||
assert isinstance(trades1, DataFrame)
|
||||
assert trades1.empty
|
||||
# data goes from 2019-10-11 - 2019-10-13
|
||||
timerange = TimeRange.parse_timerange('20191011-20191012')
|
||||
|
||||
trades2 = dh._trades_load('XRP/ETH', timerange)
|
||||
assert len(trades) > len(trades2)
|
||||
# Check that ID is None (If it's nan, it's wrong)
|
||||
assert trades2[0][2] is None
|
||||
assert trades2.iloc[0]['type'] is None
|
||||
|
||||
# unfiltered load has trades before starttime
|
||||
assert len([t for t in trades if t[0] < timerange.startts * 1000]) >= 0
|
||||
|
||||
assert len(trades.loc[trades['timestamp'] < timerange.startts * 1000]) >= 0
|
||||
# filtered list does not have trades before starttime
|
||||
assert len([t for t in trades2 if t[0] < timerange.startts * 1000]) == 0
|
||||
assert len(trades2.loc[trades2['timestamp'] < timerange.startts * 1000]) == 0
|
||||
# unfiltered load has trades after endtime
|
||||
assert len([t for t in trades if t[0] > timerange.stopts * 1000]) > 0
|
||||
assert len(trades.loc[trades['timestamp'] > timerange.stopts * 1000]) >= 0
|
||||
# filtered list does not have trades after endtime
|
||||
assert len([t for t in trades2 if t[0] > timerange.stopts * 1000]) == 0
|
||||
|
||||
|
||||
def test_hdf5datahandler_trades_store(testdatadir, tmpdir):
|
||||
tmpdir1 = Path(tmpdir)
|
||||
dh = get_datahandler(testdatadir, 'hdf5')
|
||||
trades = dh.trades_load('XRP/ETH')
|
||||
|
||||
dh1 = get_datahandler(tmpdir1, 'hdf5')
|
||||
dh1.trades_store('XRP/NEW', trades)
|
||||
file = tmpdir1 / 'XRP_NEW-trades.h5'
|
||||
assert file.is_file()
|
||||
# Load trades back
|
||||
trades_new = dh1.trades_load('XRP/NEW')
|
||||
|
||||
assert len(trades_new) == len(trades)
|
||||
assert trades[0][0] == trades_new[0][0]
|
||||
assert trades[0][1] == trades_new[0][1]
|
||||
# assert trades[0][2] == trades_new[0][2] # This is nan - so comparison does not make sense
|
||||
assert trades[0][3] == trades_new[0][3]
|
||||
assert trades[0][4] == trades_new[0][4]
|
||||
assert trades[0][5] == trades_new[0][5]
|
||||
assert trades[0][6] == trades_new[0][6]
|
||||
assert trades[-1][0] == trades_new[-1][0]
|
||||
assert trades[-1][1] == trades_new[-1][1]
|
||||
# assert trades[-1][2] == trades_new[-1][2] # This is nan - so comparison does not make sense
|
||||
assert trades[-1][3] == trades_new[-1][3]
|
||||
assert trades[-1][4] == trades_new[-1][4]
|
||||
assert trades[-1][5] == trades_new[-1][5]
|
||||
assert trades[-1][6] == trades_new[-1][6]
|
||||
|
||||
|
||||
def test_hdf5datahandler_trades_purge(mocker, testdatadir):
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
|
||||
unlinkmock = mocker.patch.object(Path, "unlink", MagicMock())
|
||||
dh = get_datahandler(testdatadir, 'hdf5')
|
||||
assert not dh.trades_purge('UNITTEST/NONEXIST')
|
||||
assert unlinkmock.call_count == 0
|
||||
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
|
||||
assert dh.trades_purge('UNITTEST/NONEXIST')
|
||||
assert unlinkmock.call_count == 1
|
||||
assert len(trades2.loc[trades2['timestamp'] > timerange.stopts * 1000]) == 0
|
||||
# assert len([t for t in trades2 if t[0] > timerange.stopts * 1000]) == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize('pair,timeframe,candle_type,candle_append,startdt,enddt', [
|
||||
@@ -490,50 +444,42 @@ def test_hdf5datahandler_ohlcv_purge(mocker, testdatadir):
|
||||
assert unlinkmock.call_count == 2
|
||||
|
||||
|
||||
def test_featherdatahandler_trades_load(testdatadir):
|
||||
dh = get_datahandler(testdatadir, 'feather')
|
||||
@pytest.mark.parametrize('datahandler', ['jsongz', 'hdf5', 'feather', 'parquet'])
|
||||
def test_datahandler_trades_load(testdatadir, datahandler):
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
trades = dh.trades_load('XRP/ETH')
|
||||
assert isinstance(trades, list)
|
||||
assert trades[0][0] == 1570752011620
|
||||
assert trades[-1][-1] == 0.1986231
|
||||
assert isinstance(trades, DataFrame)
|
||||
assert trades.iloc[0]['timestamp'] == 1570752011620
|
||||
assert trades.iloc[0]['date'] == Timestamp('2019-10-11 00:00:11.620000+0000')
|
||||
assert trades.iloc[-1]['cost'] == 0.1986231
|
||||
|
||||
trades1 = dh.trades_load('UNITTEST/NONEXIST')
|
||||
assert trades1 == []
|
||||
assert isinstance(trades, DataFrame)
|
||||
assert trades1.empty
|
||||
|
||||
|
||||
def test_featherdatahandler_trades_store(testdatadir, tmpdir):
|
||||
@pytest.mark.parametrize('datahandler', ['jsongz', 'hdf5', 'feather', 'parquet'])
|
||||
def test_datahandler_trades_store(testdatadir, tmpdir, datahandler):
|
||||
tmpdir1 = Path(tmpdir)
|
||||
dh = get_datahandler(testdatadir, 'feather')
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
trades = dh.trades_load('XRP/ETH')
|
||||
|
||||
dh1 = get_datahandler(tmpdir1, 'feather')
|
||||
dh1 = get_datahandler(tmpdir1, datahandler)
|
||||
dh1.trades_store('XRP/NEW', trades)
|
||||
file = tmpdir1 / 'XRP_NEW-trades.feather'
|
||||
|
||||
file = tmpdir1 / f'XRP_NEW-trades.{dh1._get_file_extension()}'
|
||||
assert file.is_file()
|
||||
# Load trades back
|
||||
trades_new = dh1.trades_load('XRP/NEW')
|
||||
|
||||
assert_frame_equal(trades, trades_new, check_exact=True)
|
||||
assert len(trades_new) == len(trades)
|
||||
assert trades[0][0] == trades_new[0][0]
|
||||
assert trades[0][1] == trades_new[0][1]
|
||||
# assert trades[0][2] == trades_new[0][2] # This is nan - so comparison does not make sense
|
||||
assert trades[0][3] == trades_new[0][3]
|
||||
assert trades[0][4] == trades_new[0][4]
|
||||
assert trades[0][5] == trades_new[0][5]
|
||||
assert trades[0][6] == trades_new[0][6]
|
||||
assert trades[-1][0] == trades_new[-1][0]
|
||||
assert trades[-1][1] == trades_new[-1][1]
|
||||
# assert trades[-1][2] == trades_new[-1][2] # This is nan - so comparison does not make sense
|
||||
assert trades[-1][3] == trades_new[-1][3]
|
||||
assert trades[-1][4] == trades_new[-1][4]
|
||||
assert trades[-1][5] == trades_new[-1][5]
|
||||
assert trades[-1][6] == trades_new[-1][6]
|
||||
|
||||
|
||||
def test_featherdatahandler_trades_purge(mocker, testdatadir):
|
||||
@pytest.mark.parametrize('datahandler', ['jsongz', 'hdf5', 'feather', 'parquet'])
|
||||
def test_datahandler_trades_purge(mocker, testdatadir, datahandler):
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
|
||||
unlinkmock = mocker.patch.object(Path, "unlink", MagicMock())
|
||||
dh = get_datahandler(testdatadir, 'feather')
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
assert not dh.trades_purge('UNITTEST/NONEXIST')
|
||||
assert unlinkmock.call_count == 0
|
||||
|
||||
|
||||
@@ -581,7 +581,7 @@ def test_download_trades_history(trades_history, mocker, default_conf, testdatad
|
||||
|
||||
assert _download_trades_history(data_handler=data_handler, exchange=exchange,
|
||||
pair='ETH/BTC')
|
||||
assert log_has("New Amount of trades: 5", caplog)
|
||||
assert log_has("New Amount of trades: 6", caplog)
|
||||
assert file1.is_file()
|
||||
|
||||
ght_mock.reset_mock()
|
||||
@@ -651,10 +651,10 @@ def test_convert_trades_to_ohlcv(testdatadir, tmpdir, caplog):
|
||||
|
||||
assert_frame_equal(dfbak_1m, df_1m, check_exact=True)
|
||||
assert_frame_equal(dfbak_5m, df_5m, check_exact=True)
|
||||
|
||||
assert not log_has('Could not convert NoDatapair to OHLCV.', caplog)
|
||||
msg = 'Could not convert NoDatapair to OHLCV.'
|
||||
assert not log_has(msg, caplog)
|
||||
|
||||
convert_trades_to_ohlcv(['NoDatapair'], timeframes=['1m', '5m'],
|
||||
data_format_trades='jsongz',
|
||||
datadir=tmpdir1, timerange=tr, erase=True)
|
||||
assert log_has('Could not convert NoDatapair to OHLCV.', caplog)
|
||||
assert log_has(msg, caplog)
|
||||
|
||||
BIN
tests/testdata/XRP_ETH-trades.parquet
vendored
Normal file
BIN
tests/testdata/XRP_ETH-trades.parquet
vendored
Normal file
Binary file not shown.
Reference in New Issue
Block a user