Merge pull request #9191 from freqtrade/fix/double-date-column

Bug: FreqAI fit_live_predictions()
This commit is contained in:
Matthias
2023-09-20 08:23:41 +02:00
committed by GitHub
3 changed files with 10 additions and 13 deletions

View File

@@ -282,15 +282,12 @@ class FreqaiDataDrawer:
# historically made during downtime. The newest pred will get appeneded later in
# append_model_predictions)
new_pred.iloc[:, :] = np.nan
new_pred["date"] = dataframe["date"]
new_pred["date_pred"] = dataframe["date"]
hist_preds = self.historic_predictions[pair].copy()
# rename date_pred column to date so that we can merge on date
hist_preds = hist_preds.rename(columns={"date_pred": "date"})
# find the closest common date between new_pred and historic predictions
# and cut off the new_pred dataframe at that date
common_dates = pd.merge(new_pred, hist_preds, on="date", how="inner")
common_dates = pd.merge(new_pred, hist_preds, on="date_pred", how="inner")
if len(common_dates.index) > 0:
new_pred = new_pred.iloc[len(common_dates):]
else:
@@ -299,18 +296,12 @@ class FreqaiDataDrawer:
f"for more than {len(dataframe.index)} candles.")
df_concat = pd.concat([hist_preds, new_pred], ignore_index=True, keys=hist_preds.keys())
# remove last row because we will append that later in append_model_predictions()
df_concat = df_concat.iloc[:-1]
# any missing values will get zeroed out so users can see the exact
# downtime in FreqUI
df_concat = df_concat.fillna(0)
# rename date column back to date_pred
df_concat = df_concat.rename(columns={"date": "date_pred"})
self.historic_predictions[pair] = df_concat
self.model_return_values[pair] = df_concat.tail(len(dataframe.index)).reset_index(drop=True)
def append_model_predictions(self, pair: str, predictions: DataFrame,

View File

@@ -244,6 +244,14 @@ class FreqaiDataKitchen:
f"{self.pair}: dropped {len(unfiltered_df) - len(filtered_df)} training points"
f" due to NaNs in populated dataset {len(unfiltered_df)}."
)
if len(unfiltered_df) == 0 and not self.live:
raise OperationalException(
f"{self.pair}: all training data dropped due to NaNs. "
"You likely did not download enough training data prior "
"to your backtest timerange. Hint:\n"
"https://www.freqtrade.io/en/stable/freqai-running/"
"#downloading-data-to-cover-the-full-backtest-period"
)
if (1 - len(filtered_df) / len(unfiltered_df)) > 0.1 and self.live:
worst_indicator = str(unfiltered_df.count().idxmin())
logger.warning(

View File

@@ -181,7 +181,6 @@ def test_set_initial_return_values(mocker, freqai_conf):
assert (hist_pred_df['date_pred'].iloc[-1] ==
pd.Timestamp(end_x_plus_5) - pd.Timedelta(days=1))
assert 'date' not in hist_pred_df.columns
assert 'date_pred' in hist_pred_df.columns
assert hist_pred_df.shape[0] == 7 # Total rows: 5 from historic and 2 new zeros
@@ -236,7 +235,6 @@ def test_set_initial_return_values_warning(mocker, freqai_conf):
model_return_df = freqai.dd.model_return_values[pair]
assert hist_pred_df['date_pred'].iloc[-1] == pd.Timestamp(end_x_plus_5) - pd.Timedelta(days=1)
assert 'date' not in hist_pred_df.columns
assert 'date_pred' in hist_pred_df.columns
assert hist_pred_df.shape[0] == 9 # Total rows: 5 from historic and 4 new zeros