mirror of
https://github.com/freqtrade/freqtrade.git
synced 2026-01-20 14:00:38 +00:00
Merge pull request #9191 from freqtrade/fix/double-date-column
Bug: FreqAI fit_live_predictions()
This commit is contained in:
@@ -282,15 +282,12 @@ class FreqaiDataDrawer:
|
||||
# historically made during downtime. The newest pred will get appeneded later in
|
||||
# append_model_predictions)
|
||||
new_pred.iloc[:, :] = np.nan
|
||||
new_pred["date"] = dataframe["date"]
|
||||
|
||||
new_pred["date_pred"] = dataframe["date"]
|
||||
hist_preds = self.historic_predictions[pair].copy()
|
||||
# rename date_pred column to date so that we can merge on date
|
||||
hist_preds = hist_preds.rename(columns={"date_pred": "date"})
|
||||
|
||||
# find the closest common date between new_pred and historic predictions
|
||||
# and cut off the new_pred dataframe at that date
|
||||
common_dates = pd.merge(new_pred, hist_preds, on="date", how="inner")
|
||||
common_dates = pd.merge(new_pred, hist_preds, on="date_pred", how="inner")
|
||||
if len(common_dates.index) > 0:
|
||||
new_pred = new_pred.iloc[len(common_dates):]
|
||||
else:
|
||||
@@ -299,18 +296,12 @@ class FreqaiDataDrawer:
|
||||
f"for more than {len(dataframe.index)} candles.")
|
||||
|
||||
df_concat = pd.concat([hist_preds, new_pred], ignore_index=True, keys=hist_preds.keys())
|
||||
|
||||
# remove last row because we will append that later in append_model_predictions()
|
||||
df_concat = df_concat.iloc[:-1]
|
||||
# any missing values will get zeroed out so users can see the exact
|
||||
# downtime in FreqUI
|
||||
df_concat = df_concat.fillna(0)
|
||||
|
||||
# rename date column back to date_pred
|
||||
df_concat = df_concat.rename(columns={"date": "date_pred"})
|
||||
|
||||
self.historic_predictions[pair] = df_concat
|
||||
|
||||
self.model_return_values[pair] = df_concat.tail(len(dataframe.index)).reset_index(drop=True)
|
||||
|
||||
def append_model_predictions(self, pair: str, predictions: DataFrame,
|
||||
|
||||
@@ -244,6 +244,14 @@ class FreqaiDataKitchen:
|
||||
f"{self.pair}: dropped {len(unfiltered_df) - len(filtered_df)} training points"
|
||||
f" due to NaNs in populated dataset {len(unfiltered_df)}."
|
||||
)
|
||||
if len(unfiltered_df) == 0 and not self.live:
|
||||
raise OperationalException(
|
||||
f"{self.pair}: all training data dropped due to NaNs. "
|
||||
"You likely did not download enough training data prior "
|
||||
"to your backtest timerange. Hint:\n"
|
||||
"https://www.freqtrade.io/en/stable/freqai-running/"
|
||||
"#downloading-data-to-cover-the-full-backtest-period"
|
||||
)
|
||||
if (1 - len(filtered_df) / len(unfiltered_df)) > 0.1 and self.live:
|
||||
worst_indicator = str(unfiltered_df.count().idxmin())
|
||||
logger.warning(
|
||||
|
||||
@@ -181,7 +181,6 @@ def test_set_initial_return_values(mocker, freqai_conf):
|
||||
|
||||
assert (hist_pred_df['date_pred'].iloc[-1] ==
|
||||
pd.Timestamp(end_x_plus_5) - pd.Timedelta(days=1))
|
||||
assert 'date' not in hist_pred_df.columns
|
||||
assert 'date_pred' in hist_pred_df.columns
|
||||
assert hist_pred_df.shape[0] == 7 # Total rows: 5 from historic and 2 new zeros
|
||||
|
||||
@@ -236,7 +235,6 @@ def test_set_initial_return_values_warning(mocker, freqai_conf):
|
||||
model_return_df = freqai.dd.model_return_values[pair]
|
||||
|
||||
assert hist_pred_df['date_pred'].iloc[-1] == pd.Timestamp(end_x_plus_5) - pd.Timedelta(days=1)
|
||||
assert 'date' not in hist_pred_df.columns
|
||||
assert 'date_pred' in hist_pred_df.columns
|
||||
assert hist_pred_df.shape[0] == 9 # Total rows: 5 from historic and 4 new zeros
|
||||
|
||||
|
||||
Reference in New Issue
Block a user