Merge pull request #9861 from freqtrade/feat/sort_volatility

Add sorting to volatility and RangeStability pairlists
This commit is contained in:
Matthias
2024-03-01 06:52:34 +01:00
committed by GitHub
5 changed files with 234 additions and 70 deletions

View File

@@ -450,6 +450,8 @@ If the trading range over the last 10 days is <1% or >99%, remove the pair from
]
```
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting for this pairlist.
!!! Tip
This Filter can be used to automatically remove stable coin pairs, which have a very low trading range, and are therefore extremely difficult to trade with profit.
Additionally, it can also be used to automatically remove pairs with extreme high/low variance over a given amount of time.
@@ -460,7 +462,7 @@ Volatility is the degree of historical variation of a pairs over time, it is mea
This filter removes pairs if the average volatility over a `lookback_days` days is below `min_volatility` or above `max_volatility`. Since this is a filter that requires additional data, the results are cached for `refresh_period`.
This filter can be used to narrow down your pairs to a certain volatility or avoid very volatile pairs.
This filter can be used to narrow down your pairs to a certain volatility or avoid very volatile pairs.
In the below example:
If the volatility over the last 10 days is not in the range of 0.05-0.50, remove the pair from the whitelist. The filter is applied every 24h.
@@ -477,6 +479,8 @@ If the volatility over the last 10 days is not in the range of 0.05-0.50, remove
]
```
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting mode for this pairlist.
### Full example of Pairlist Handlers
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#pricefilter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.

View File

@@ -3,7 +3,6 @@ Volatility pairlist filter
"""
import logging
import sys
from copy import deepcopy
from datetime import timedelta
from typing import Any, Dict, List, Optional
@@ -37,6 +36,7 @@ class VolatilityFilter(IPairList):
self._max_volatility = pairlistconfig.get('max_volatility', sys.maxsize)
self._refresh_period = pairlistconfig.get('refresh_period', 1440)
self._def_candletype = self._config['candle_type_def']
self._sort_direction: Optional[str] = pairlistconfig.get('sort_direction', None)
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
@@ -46,6 +46,9 @@ class VolatilityFilter(IPairList):
if self._days > candle_limit:
raise OperationalException("VolatilityFilter requires lookback_days to not "
f"exceed exchange max request size ({candle_limit})")
if self._sort_direction not in [None, 'asc', 'desc']:
raise OperationalException("VolatilityFilter requires sort_direction to be "
"either None (undefined), 'asc' or 'desc'")
@property
def needstickers(self) -> bool:
@@ -89,6 +92,13 @@ class VolatilityFilter(IPairList):
"description": "Maximum Volatility",
"help": "Maximum volatility a pair must have to be considered.",
},
"sort_direction": {
"type": "option",
"default": None,
"options": ["", "asc", "desc"],
"description": "Sort pairlist",
"help": "Sort Pairlist ascending or descending by volatility.",
},
**IPairList.refresh_period_parameter()
}
@@ -105,43 +115,61 @@ class VolatilityFilter(IPairList):
since_ms = dt_ts(dt_floor_day(dt_now()) - timedelta(days=self._days))
candles = self._exchange.refresh_ohlcv_with_cache(needed_pairs, since_ms=since_ms)
if self._enabled:
for p in deepcopy(pairlist):
daily_candles = candles[(p, '1d', self._def_candletype)] if (
p, '1d', self._def_candletype) in candles else None
if not self._validate_pair_loc(p, daily_candles):
pairlist.remove(p)
return pairlist
resulting_pairlist: List[str] = []
volatilitys: Dict[str, float] = {}
for p in pairlist:
daily_candles = candles.get((p, '1d', self._def_candletype), None)
def _validate_pair_loc(self, pair: str, daily_candles: Optional[DataFrame]) -> bool:
"""
Validate trading range
:param pair: Pair that's currently validated
:param daily_candles: Downloaded daily candles
:return: True if the pair can stay, false if it should be removed
"""
volatility_avg = self._calculate_volatility(p, daily_candles)
if volatility_avg is not None:
if self._validate_pair_loc(p, volatility_avg):
resulting_pairlist.append(p)
volatilitys[p] = (
volatility_avg if volatility_avg and not np.isnan(volatility_avg) else 0
)
else:
self.log_once(f"Removed {p} from whitelist, no candles found.", logger.info)
if self._sort_direction:
resulting_pairlist = sorted(resulting_pairlist,
key=lambda p: volatilitys[p],
reverse=self._sort_direction == 'desc')
return resulting_pairlist
def _calculate_volatility(self, pair: str, daily_candles: DataFrame) -> Optional[float]:
# Check symbol in cache
if (cached_res := self._pair_cache.get(pair, None)) is not None:
return cached_res
if (volatility_avg := self._pair_cache.get(pair, None)) is not None:
return volatility_avg
result = False
if daily_candles is not None and not daily_candles.empty:
returns = (np.log(daily_candles["close"].shift(1) / daily_candles["close"]))
returns.fillna(0, inplace=True)
volatility_series = returns.rolling(window=self._days).std() * np.sqrt(self._days)
volatility_avg = volatility_series.mean()
self._pair_cache[pair] = volatility_avg
if self._min_volatility <= volatility_avg <= self._max_volatility:
result = True
else:
self.log_once(f"Removed {pair} from whitelist, because volatility "
f"over {self._days} {plural(self._days, 'day')} "
f"is: {volatility_avg:.3f} "
f"which is not in the configured range of "
f"{self._min_volatility}-{self._max_volatility}.",
logger.info)
result = False
self._pair_cache[pair] = result
return volatility_avg
else:
return None
def _validate_pair_loc(self, pair: str, volatility_avg: float) -> bool:
"""
Validate trading range
:param pair: Pair that's currently validated
:param volatility_avg: Average volatility
:return: True if the pair can stay, false if it should be removed
"""
if self._min_volatility <= volatility_avg <= self._max_volatility:
result = True
else:
self.log_once(f"Removed {pair} from whitelist, because volatility "
f"over {self._days} {plural(self._days, 'day')} "
f"is: {volatility_avg:.3f} "
f"which is not in the configured range of "
f"{self._min_volatility}-{self._max_volatility}.",
logger.info)
result = False
return result

View File

@@ -2,7 +2,6 @@
Rate of change pairlist filter
"""
import logging
from copy import deepcopy
from datetime import timedelta
from typing import Any, Dict, List, Optional
@@ -32,6 +31,7 @@ class RangeStabilityFilter(IPairList):
self._max_rate_of_change = pairlistconfig.get('max_rate_of_change')
self._refresh_period = pairlistconfig.get('refresh_period', 86400)
self._def_candletype = self._config['candle_type_def']
self._sort_direction: Optional[str] = pairlistconfig.get('sort_direction', None)
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
@@ -41,6 +41,9 @@ class RangeStabilityFilter(IPairList):
if self._days > candle_limit:
raise OperationalException("RangeStabilityFilter requires lookback_days to not "
f"exceed exchange max request size ({candle_limit})")
if self._sort_direction not in [None, 'asc', 'desc']:
raise OperationalException("RangeStabilityFilter requires sort_direction to be "
"either None (undefined), 'asc' or 'desc'")
@property
def needstickers(self) -> bool:
@@ -87,6 +90,13 @@ class RangeStabilityFilter(IPairList):
"description": "Maximum Rate of Change",
"help": "Maximum rate of change to filter pairs.",
},
"sort_direction": {
"type": "option",
"default": None,
"options": ["", "asc", "desc"],
"description": "Sort pairlist",
"help": "Sort Pairlist ascending or descending by rate of change.",
},
**IPairList.refresh_period_parameter()
}
@@ -103,45 +113,62 @@ class RangeStabilityFilter(IPairList):
since_ms = dt_ts(dt_floor_day(dt_now()) - timedelta(days=self._days + 1))
candles = self._exchange.refresh_ohlcv_with_cache(needed_pairs, since_ms=since_ms)
if self._enabled:
for p in deepcopy(pairlist):
daily_candles = candles[(p, '1d', self._def_candletype)] if (
p, '1d', self._def_candletype) in candles else None
if not self._validate_pair_loc(p, daily_candles):
pairlist.remove(p)
return pairlist
resulting_pairlist: List[str] = []
pct_changes: Dict[str, float] = {}
def _validate_pair_loc(self, pair: str, daily_candles: Optional[DataFrame]) -> bool:
"""
Validate trading range
:param pair: Pair that's currently validated
:param daily_candles: Downloaded daily candles
:return: True if the pair can stay, false if it should be removed
"""
for p in pairlist:
daily_candles = candles.get((p, '1d', self._def_candletype), None)
pct_change = self._calculate_rate_of_change(p, daily_candles)
if pct_change is not None:
if self._validate_pair_loc(p, pct_change):
resulting_pairlist.append(p)
pct_changes[p] = pct_change
else:
self.log_once(f"Removed {p} from whitelist, no candles found.", logger.info)
if self._sort_direction:
resulting_pairlist = sorted(resulting_pairlist,
key=lambda p: pct_changes[p],
reverse=self._sort_direction == 'desc')
return resulting_pairlist
def _calculate_rate_of_change(self, pair: str, daily_candles: DataFrame) -> Optional[float]:
# Check symbol in cache
if (cached_res := self._pair_cache.get(pair, None)) is not None:
return cached_res
result = True
if (pct_change := self._pair_cache.get(pair, None)) is not None:
return pct_change
if daily_candles is not None and not daily_candles.empty:
highest_high = daily_candles['high'].max()
lowest_low = daily_candles['low'].min()
pct_change = ((highest_high - lowest_low) / lowest_low) if lowest_low > 0 else 0
if pct_change < self._min_rate_of_change:
self.log_once(f"Removed {pair} from whitelist, because rate of change "
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
f"which is below the threshold of {self._min_rate_of_change}.",
logger.info)
result = False
if self._max_rate_of_change:
if pct_change > self._max_rate_of_change:
self.log_once(
f"Removed {pair} from whitelist, because rate of change "
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
f"which is above the threshold of {self._max_rate_of_change}.",
logger.info)
result = False
self._pair_cache[pair] = result
self._pair_cache[pair] = pct_change
return pct_change
else:
self.log_once(f"Removed {pair} from whitelist, no candles found.", logger.info)
return None
def _validate_pair_loc(self, pair: str, pct_change: float) -> bool:
"""
Validate trading range
:param pair: Pair that's currently validated
:param pct_change: Rate of change
:return: True if the pair can stay, false if it should be removed
"""
result = True
if pct_change < self._min_rate_of_change:
self.log_once(f"Removed {pair} from whitelist, because rate of change "
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
f"which is below the threshold of {self._min_rate_of_change}.",
logger.info)
result = False
if self._max_rate_of_change:
if pct_change > self._max_rate_of_change:
self.log_once(
f"Removed {pair} from whitelist, because rate of change "
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
f"which is above the threshold of {self._max_rate_of_change}.",
logger.info)
result = False
return result

View File

@@ -142,8 +142,8 @@ def generate_trades_history(n_rows, start_date: Optional[datetime] = None, days=
return df
def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
np.random.seed(42)
def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05', random_seed=42):
np.random.seed(random_seed)
base = np.random.normal(20, 2, size=size)
if timeframe == '1y':
@@ -174,9 +174,9 @@ def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
return df
def generate_test_data_raw(timeframe: str, size: int, start: str = '2020-07-05'):
def generate_test_data_raw(timeframe: str, size: int, start: str = '2020-07-05', random_seed=42):
""" Generates data in the ohlcv format used by ccxt """
df = generate_test_data(timeframe, size, start)
df = generate_test_data(timeframe, size, start, random_seed)
df['date'] = df.loc[:, 'date'].astype(np.int64) // 1000 // 1000
return list(list(x) for x in zip(*(df[x].values.tolist() for x in df.columns)))

View File

@@ -19,7 +19,7 @@ from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist,
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.resolvers import PairListResolver
from freqtrade.util.datetime_helpers import dt_now
from tests.conftest import (EXMS, create_mock_trades_usdt, get_patched_exchange,
from tests.conftest import (EXMS, create_mock_trades_usdt, generate_test_data, get_patched_exchange,
get_patched_freqtradebot, log_has, log_has_re, num_log_has)
@@ -748,6 +748,104 @@ def test_PerformanceFilter_error(mocker, whitelist_conf, caplog) -> None:
assert log_has("PerformanceFilter is not available in this mode.", caplog)
def test_VolatilityFilter_error(mocker, whitelist_conf) -> None:
volatility_filter = {"method": "VolatilityFilter", "lookback_days": -1}
whitelist_conf['pairlists'] = [{"method": "StaticPairList"}, volatility_filter]
mocker.patch(f'{EXMS}.exchange_has', MagicMock(return_value=True))
exchange_mock = MagicMock()
exchange_mock.ohlcv_candle_limit = MagicMock(return_value=1000)
with pytest.raises(OperationalException,
match=r"VolatilityFilter requires lookback_days to be >= 1*"):
PairListManager(exchange_mock, whitelist_conf, MagicMock())
volatility_filter = {"method": "VolatilityFilter", "lookback_days": 2000}
whitelist_conf['pairlists'] = [{"method": "StaticPairList"}, volatility_filter]
with pytest.raises(OperationalException,
match=r"VolatilityFilter requires lookback_days to not exceed exchange max"):
PairListManager(exchange_mock, whitelist_conf, MagicMock())
volatility_filter = {"method": "VolatilityFilter", "sort_direction": "Random"}
whitelist_conf['pairlists'] = [{"method": "StaticPairList"}, volatility_filter]
with pytest.raises(OperationalException,
match=r"VolatilityFilter requires sort_direction to be either "
r"None .*'asc'.*'desc'"):
PairListManager(exchange_mock, whitelist_conf, MagicMock())
@pytest.mark.parametrize('pairlist,expected_pairlist', [
({"method": "VolatilityFilter", "sort_direction": "asc"},
['XRP/BTC', 'ETH/BTC', 'LTC/BTC', 'TKN/BTC']),
({"method": "VolatilityFilter", "sort_direction": "desc"},
['TKN/BTC', 'LTC/BTC', 'ETH/BTC', 'XRP/BTC']),
({"method": "VolatilityFilter", "sort_direction": "desc", 'min_volatility': 0.4},
['TKN/BTC', 'LTC/BTC', 'ETH/BTC']),
({"method": "VolatilityFilter", "sort_direction": "asc", 'min_volatility': 0.4},
['ETH/BTC', 'LTC/BTC', 'TKN/BTC']),
({"method": "VolatilityFilter", "sort_direction": "desc", 'max_volatility': 0.5},
['LTC/BTC', 'ETH/BTC', 'XRP/BTC']),
({"method": "VolatilityFilter", "sort_direction": "asc", 'max_volatility': 0.5},
['XRP/BTC', 'ETH/BTC', 'LTC/BTC']),
({"method": "RangeStabilityFilter", "sort_direction": "asc"},
['ETH/BTC', 'XRP/BTC', 'LTC/BTC', 'TKN/BTC']),
({"method": "RangeStabilityFilter", "sort_direction": "desc"},
['TKN/BTC', 'LTC/BTC', 'XRP/BTC', 'ETH/BTC']),
({"method": "RangeStabilityFilter", "sort_direction": "asc", 'min_rate_of_change': 0.4},
['XRP/BTC', 'LTC/BTC', 'TKN/BTC']),
({"method": "RangeStabilityFilter", "sort_direction": "desc", 'min_rate_of_change': 0.4},
['TKN/BTC', 'LTC/BTC', 'XRP/BTC']),
])
def test_VolatilityFilter_RangeStabilityFilter_sort(
mocker, whitelist_conf, tickers, time_machine, pairlist, expected_pairlist) -> None:
whitelist_conf['pairlists'] = [
{'method': 'VolumePairList', 'number_assets': 10},
pairlist
]
df1 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=42)
df2 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=2)
df3 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=3)
df4 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=4)
df5 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=5)
df6 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=6)
assert not df1.equals(df2)
time_machine.move_to('2022-01-15 00:00:00+00:00')
ohlcv_data = {
('ETH/BTC', '1d', CandleType.SPOT): df1,
('TKN/BTC', '1d', CandleType.SPOT): df2,
('LTC/BTC', '1d', CandleType.SPOT): df3,
('XRP/BTC', '1d', CandleType.SPOT): df4,
('HOT/BTC', '1d', CandleType.SPOT): df5,
('BLK/BTC', '1d', CandleType.SPOT): df6,
}
ohlcv_mock = MagicMock(return_value=ohlcv_data)
mocker.patch.multiple(
EXMS,
exchange_has=MagicMock(return_value=True),
refresh_latest_ohlcv=ohlcv_mock,
get_tickers=tickers
)
exchange = get_patched_exchange(mocker, whitelist_conf)
exchange.ohlcv_candle_limit = MagicMock(return_value=1000)
plm = PairListManager(exchange, whitelist_conf, MagicMock())
assert exchange.ohlcv_candle_limit.call_count == 2
plm.refresh_pairlist()
assert ohlcv_mock.call_count == 1
assert exchange.ohlcv_candle_limit.call_count == 2
assert plm.whitelist == expected_pairlist
plm.refresh_pairlist()
assert exchange.ohlcv_candle_limit.call_count == 2
assert ohlcv_mock.call_count == 1
def test_ShuffleFilter_init(mocker, whitelist_conf, caplog) -> None:
whitelist_conf['pairlists'] = [
{"method": "StaticPairList"},
@@ -1095,6 +1193,13 @@ def test_rangestabilityfilter_checks(mocker, default_conf, markets, tickers):
match='RangeStabilityFilter requires lookback_days to be >= 1'):
get_patched_freqtradebot(mocker, default_conf)
default_conf['pairlists'] = [{'method': 'VolumePairList', 'number_assets': 10},
{'method': 'RangeStabilityFilter', 'sort_direction': 'something'}]
with pytest.raises(OperationalException,
match='RangeStabilityFilter requires sort_direction to be either None.*'):
get_patched_freqtradebot(mocker, default_conf)
@pytest.mark.parametrize('min_rate_of_change,max_rate_of_change,expected_length', [
(0.01, 0.99, 5),