mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-11-29 08:33:07 +00:00
Merge remote-tracking branch 'upstream/develop' into feature/fetch-public-trades
This commit is contained in:
4
.github/workflows/ci.yml
vendored
4
.github/workflows/ci.yml
vendored
@@ -482,12 +482,12 @@ jobs:
|
||||
path: dist
|
||||
|
||||
- name: Publish to PyPI (Test)
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.11
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.12
|
||||
with:
|
||||
repository-url: https://test.pypi.org/legacy/
|
||||
|
||||
- name: Publish to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.11
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.12
|
||||
|
||||
|
||||
deploy-docker:
|
||||
|
||||
@@ -450,6 +450,8 @@ If the trading range over the last 10 days is <1% or >99%, remove the pair from
|
||||
]
|
||||
```
|
||||
|
||||
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting for this pairlist.
|
||||
|
||||
!!! Tip
|
||||
This Filter can be used to automatically remove stable coin pairs, which have a very low trading range, and are therefore extremely difficult to trade with profit.
|
||||
Additionally, it can also be used to automatically remove pairs with extreme high/low variance over a given amount of time.
|
||||
@@ -460,7 +462,7 @@ Volatility is the degree of historical variation of a pairs over time, it is mea
|
||||
|
||||
This filter removes pairs if the average volatility over a `lookback_days` days is below `min_volatility` or above `max_volatility`. Since this is a filter that requires additional data, the results are cached for `refresh_period`.
|
||||
|
||||
This filter can be used to narrow down your pairs to a certain volatility or avoid very volatile pairs.
|
||||
This filter can be used to narrow down your pairs to a certain volatility or avoid very volatile pairs.
|
||||
|
||||
In the below example:
|
||||
If the volatility over the last 10 days is not in the range of 0.05-0.50, remove the pair from the whitelist. The filter is applied every 24h.
|
||||
@@ -477,6 +479,8 @@ If the volatility over the last 10 days is not in the range of 0.05-0.50, remove
|
||||
]
|
||||
```
|
||||
|
||||
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting mode for this pairlist.
|
||||
|
||||
### Full example of Pairlist Handlers
|
||||
|
||||
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#pricefilter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
markdown==3.5.2
|
||||
mkdocs==1.5.3
|
||||
mkdocs-material==9.5.11
|
||||
mkdocs-material==9.5.12
|
||||
mdx_truly_sane_lists==1.3
|
||||
pymdown-extensions==10.7
|
||||
jinja2==3.1.3
|
||||
|
||||
@@ -791,21 +791,21 @@ Returning a value more than the above (so remaining stake_amount would become ne
|
||||
If you wish to buy additional orders with DCA, then make sure to leave enough funds in the wallet for that.
|
||||
Using 'unlimited' stake amount with DCA orders requires you to also implement the `custom_stake_amount()` callback to avoid allocating all funds to the initial order.
|
||||
|
||||
!!! Warning
|
||||
!!! Warning "Stoploss calculation"
|
||||
Stoploss is still calculated from the initial opening price, not averaged price.
|
||||
Regular stoploss rules still apply (cannot move down).
|
||||
|
||||
While `/stopentry` command stops the bot from entering new trades, the position adjustment feature will continue buying new orders on existing trades.
|
||||
|
||||
!!! Danger "Performance with many position adjustments"
|
||||
Position adjustments can be a good approach to increase a strategy's output - but it can also have drawbacks if using this feature extensively.
|
||||
Each of the orders will be attached to the trade object for the duration of the trade - hence increasing memory usage.
|
||||
Trades with long duration and 10s or even 100ds of position adjustments are therefore not recommended, and should be closed at regular intervals to not affect performance.
|
||||
|
||||
!!! Warning "Backtesting"
|
||||
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
|
||||
This can also cause deviating results between live and backtesting, since backtesting can adjust the trade only once per candle, whereas live could adjust the trade multiple times per candle.
|
||||
|
||||
!!! Warning "Performance with many position adjustments"
|
||||
Position adjustments can be a good approach to increase a strategy's output - but it can also have drawbacks if using this feature extensively.
|
||||
Each of the orders will be attached to the trade object for the duration of the trade - hence increasing memory usage.
|
||||
Trades with long duration and 10s or even 100ds of position adjustments are therefore not recommended, and should be closed at regular intervals to not affect performance.
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ To update your freqtrade installation, please use one of the below methods, corr
|
||||
Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release.
|
||||
For the develop branch, please follow PR's to avoid being surprised by changes.
|
||||
|
||||
## docker
|
||||
## Docker
|
||||
|
||||
!!! Note "Legacy installations using the `master` image"
|
||||
We're switching from master to stable for the release Images - please adjust your docker-file and replace `freqtradeorg/freqtrade:master` with `freqtradeorg/freqtrade:stable`
|
||||
|
||||
218
docs/utils.md
218
docs/utils.md
@@ -219,207 +219,49 @@ optional arguments:
|
||||
-a, --all Print all exchanges known to the ccxt library.
|
||||
```
|
||||
|
||||
* Example: see exchanges available for the bot:
|
||||
Example: see exchanges available for the bot:
|
||||
|
||||
```
|
||||
$ freqtrade list-exchanges
|
||||
Exchanges available for Freqtrade:
|
||||
Exchange name Valid reason
|
||||
--------------- ------- --------------------------------------------
|
||||
aax True
|
||||
ascendex True missing opt: fetchMyTrades
|
||||
bequant True
|
||||
bibox True
|
||||
bigone True
|
||||
binance True
|
||||
binanceus True
|
||||
bitbank True missing opt: fetchTickers
|
||||
bitcoincom True
|
||||
bitfinex True
|
||||
bitforex True missing opt: fetchMyTrades, fetchTickers
|
||||
bitget True
|
||||
bithumb True missing opt: fetchMyTrades
|
||||
bitkk True missing opt: fetchMyTrades
|
||||
bitmart True
|
||||
bitmax True missing opt: fetchMyTrades
|
||||
bitpanda True
|
||||
bitvavo True
|
||||
bitz True missing opt: fetchMyTrades
|
||||
btcalpha True missing opt: fetchTicker, fetchTickers
|
||||
btcmarkets True missing opt: fetchTickers
|
||||
buda True missing opt: fetchMyTrades, fetchTickers
|
||||
bw True missing opt: fetchMyTrades, fetchL2OrderBook
|
||||
bybit True
|
||||
bytetrade True
|
||||
cdax True
|
||||
cex True missing opt: fetchMyTrades
|
||||
coinbaseprime True missing opt: fetchTickers
|
||||
coinbasepro True missing opt: fetchTickers
|
||||
coinex True
|
||||
crex24 True
|
||||
deribit True
|
||||
digifinex True
|
||||
equos True missing opt: fetchTicker, fetchTickers
|
||||
eterbase True
|
||||
fcoin True missing opt: fetchMyTrades, fetchTickers
|
||||
fcoinjp True missing opt: fetchMyTrades, fetchTickers
|
||||
gateio True
|
||||
gemini True
|
||||
gopax True
|
||||
hbtc True
|
||||
hitbtc True
|
||||
huobijp True
|
||||
huobipro True
|
||||
idex True
|
||||
kraken True
|
||||
kucoin True
|
||||
lbank True missing opt: fetchMyTrades
|
||||
mercado True missing opt: fetchTickers
|
||||
ndax True missing opt: fetchTickers
|
||||
novadax True
|
||||
okcoin True
|
||||
okex True
|
||||
probit True
|
||||
qtrade True
|
||||
stex True
|
||||
timex True
|
||||
upbit True missing opt: fetchMyTrades
|
||||
vcc True
|
||||
zb True missing opt: fetchMyTrades
|
||||
|
||||
Exchange name Supported Markets Reason
|
||||
------------------ ----------- ---------------------- ------------------------------------------------------------------------
|
||||
binance Official spot, isolated futures
|
||||
bitmart Official spot
|
||||
bybit spot, isolated futures
|
||||
gate Official spot, isolated futures
|
||||
htx Official spot
|
||||
huobi spot
|
||||
kraken Official spot
|
||||
okx Official spot, isolated futures
|
||||
```
|
||||
|
||||
!!! info ""
|
||||
Output reduced for clarity - supported and available exchanges may change over time.
|
||||
|
||||
!!! Note "missing opt exchanges"
|
||||
Values with "missing opt:" might need special configuration (e.g. using orderbook if `fetchTickers` is missing) - but should in theory work (although we cannot guarantee they will).
|
||||
|
||||
* Example: see all exchanges supported by the ccxt library (including 'bad' ones, i.e. those that are known to not work with Freqtrade):
|
||||
Example: see all exchanges supported by the ccxt library (including 'bad' ones, i.e. those that are known to not work with Freqtrade)
|
||||
|
||||
```
|
||||
$ freqtrade list-exchanges -a
|
||||
All exchanges supported by the ccxt library:
|
||||
Exchange name Valid reason
|
||||
------------------ ------- ---------------------------------------------------------------------------------------
|
||||
aax True
|
||||
aofex False missing: fetchOrder
|
||||
ascendex True missing opt: fetchMyTrades
|
||||
bequant True
|
||||
bibox True
|
||||
bigone True
|
||||
binance True
|
||||
binanceus True
|
||||
bit2c False missing: fetchOrder, fetchOHLCV
|
||||
bitbank True missing opt: fetchTickers
|
||||
bitbay False missing: fetchOrder
|
||||
bitcoincom True
|
||||
bitfinex True
|
||||
bitfinex2 False missing: fetchOrder
|
||||
bitflyer False missing: fetchOrder, fetchOHLCV
|
||||
bitforex True missing opt: fetchMyTrades, fetchTickers
|
||||
bitget True
|
||||
bithumb True missing opt: fetchMyTrades
|
||||
bitkk True missing opt: fetchMyTrades
|
||||
bitmart True
|
||||
bitmax True missing opt: fetchMyTrades
|
||||
bitmex False Various reasons.
|
||||
bitpanda True
|
||||
bitso False missing: fetchOHLCV
|
||||
bitstamp True missing opt: fetchTickers
|
||||
bitstamp1 False missing: fetchOrder, fetchOHLCV
|
||||
bitvavo True
|
||||
bitz True missing opt: fetchMyTrades
|
||||
bl3p False missing: fetchOrder, fetchOHLCV
|
||||
bleutrade False missing: fetchOrder
|
||||
braziliex False missing: fetchOHLCV
|
||||
btcalpha True missing opt: fetchTicker, fetchTickers
|
||||
btcbox False missing: fetchOHLCV
|
||||
btcmarkets True missing opt: fetchTickers
|
||||
btctradeua False missing: fetchOrder, fetchOHLCV
|
||||
btcturk False missing: fetchOrder
|
||||
buda True missing opt: fetchMyTrades, fetchTickers
|
||||
bw True missing opt: fetchMyTrades, fetchL2OrderBook
|
||||
bybit True
|
||||
bytetrade True
|
||||
cdax True
|
||||
cex True missing opt: fetchMyTrades
|
||||
chilebit False missing: fetchOrder, fetchOHLCV
|
||||
coinbase False missing: fetchOrder, cancelOrder, createOrder, fetchOHLCV
|
||||
coinbaseprime True missing opt: fetchTickers
|
||||
coinbasepro True missing opt: fetchTickers
|
||||
coincheck False missing: fetchOrder, fetchOHLCV
|
||||
coinegg False missing: fetchOHLCV
|
||||
coinex True
|
||||
coinfalcon False missing: fetchOHLCV
|
||||
coinfloor False missing: fetchOrder, fetchOHLCV
|
||||
coingi False missing: fetchOrder, fetchOHLCV
|
||||
coinmarketcap False missing: fetchOrder, cancelOrder, createOrder, fetchBalance, fetchOHLCV
|
||||
coinmate False missing: fetchOHLCV
|
||||
coinone False missing: fetchOHLCV
|
||||
coinspot False missing: fetchOrder, cancelOrder, fetchOHLCV
|
||||
crex24 True
|
||||
currencycom False missing: fetchOrder
|
||||
delta False missing: fetchOrder
|
||||
deribit True
|
||||
digifinex True
|
||||
equos True missing opt: fetchTicker, fetchTickers
|
||||
eterbase True
|
||||
exmo False missing: fetchOrder
|
||||
exx False missing: fetchOHLCV
|
||||
fcoin True missing opt: fetchMyTrades, fetchTickers
|
||||
fcoinjp True missing opt: fetchMyTrades, fetchTickers
|
||||
flowbtc False missing: fetchOrder, fetchOHLCV
|
||||
foxbit False missing: fetchOrder, fetchOHLCV
|
||||
gateio True
|
||||
gemini True
|
||||
gopax True
|
||||
hbtc True
|
||||
hitbtc True
|
||||
hollaex False missing: fetchOrder
|
||||
huobijp True
|
||||
huobipro True
|
||||
idex True
|
||||
independentreserve False missing: fetchOHLCV
|
||||
indodax False missing: fetchOHLCV
|
||||
itbit False missing: fetchOHLCV
|
||||
kraken True
|
||||
kucoin True
|
||||
kuna False missing: fetchOHLCV
|
||||
lakebtc False missing: fetchOrder, fetchOHLCV
|
||||
latoken False missing: fetchOrder, fetchOHLCV
|
||||
lbank True missing opt: fetchMyTrades
|
||||
liquid False missing: fetchOHLCV
|
||||
luno False missing: fetchOHLCV
|
||||
lykke False missing: fetchOHLCV
|
||||
mercado True missing opt: fetchTickers
|
||||
mixcoins False missing: fetchOrder, fetchOHLCV
|
||||
ndax True missing opt: fetchTickers
|
||||
novadax True
|
||||
oceanex False missing: fetchOHLCV
|
||||
okcoin True
|
||||
okex True
|
||||
paymium False missing: fetchOrder, fetchOHLCV
|
||||
phemex False Does not provide history.
|
||||
poloniex False missing: fetchOrder
|
||||
probit True
|
||||
qtrade True
|
||||
rightbtc False missing: fetchOrder
|
||||
ripio False missing: fetchOHLCV
|
||||
southxchange False missing: fetchOrder, fetchOHLCV
|
||||
stex True
|
||||
surbitcoin False missing: fetchOrder, fetchOHLCV
|
||||
therock False missing: fetchOHLCV
|
||||
tidebit False missing: fetchOrder
|
||||
tidex False missing: fetchOHLCV
|
||||
timex True
|
||||
upbit True missing opt: fetchMyTrades
|
||||
vbtc False missing: fetchOrder, fetchOHLCV
|
||||
vcc True
|
||||
wavesexchange False missing: fetchOrder
|
||||
whitebit False missing: fetchOrder, cancelOrder, createOrder, fetchBalance
|
||||
xbtce False missing: fetchOrder, fetchOHLCV
|
||||
xena False missing: fetchOrder
|
||||
yobit False missing: fetchOHLCV
|
||||
zaif False missing: fetchOrder, fetchOHLCV
|
||||
zb True missing opt: fetchMyTrades
|
||||
Exchange name Valid Supported Markets Reason
|
||||
------------------ ------- ----------- ---------------------- ---------------------------------------------------------------------------------
|
||||
binance True Official spot, isolated futures
|
||||
bitflyer False spot missing: fetchOrder. missing opt: fetchTickers.
|
||||
bitmart True Official spot
|
||||
bybit True spot, isolated futures
|
||||
gate True Official spot, isolated futures
|
||||
htx True Official spot
|
||||
kraken True Official spot
|
||||
okx True Official spot, isolated futures
|
||||
```
|
||||
|
||||
!!! info ""
|
||||
Reduced output - supported and available exchanges may change over time.
|
||||
|
||||
## List Timeframes
|
||||
|
||||
Use the `list-timeframes` subcommand to see the list of timeframes available for the exchange.
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
""" Freqtrade bot """
|
||||
__version__ = '2024.2-dev'
|
||||
__version__ = '2024.3-dev'
|
||||
|
||||
if 'dev' in __version__:
|
||||
from pathlib import Path
|
||||
|
||||
@@ -69,7 +69,8 @@ ARGS_CONVERT_DATA_TRADES = ["pairs", "format_from_trades", "format_to", "erase",
|
||||
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase", "exchange"]
|
||||
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "trading_mode", "candle_types"]
|
||||
|
||||
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades"]
|
||||
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades",
|
||||
"trading_mode"]
|
||||
|
||||
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs", "trading_mode", "show_timerange"]
|
||||
|
||||
|
||||
@@ -8,9 +8,10 @@ from freqtrade.constants import DATETIME_PRINT_FORMAT, DL_DATA_TIMEFRAMES, Confi
|
||||
from freqtrade.data.converter import (convert_ohlcv_format, convert_trades_format,
|
||||
convert_trades_to_ohlcv)
|
||||
from freqtrade.data.history import download_data_main
|
||||
from freqtrade.enums import RunMode, TradingMode
|
||||
from freqtrade.enums import CandleType, RunMode, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.util.migrations import migrate_data
|
||||
|
||||
@@ -62,13 +63,21 @@ def start_convert_trades(args: Dict[str, Any]) -> None:
|
||||
|
||||
for timeframe in config['timeframes']:
|
||||
exchange.validate_timeframes(timeframe)
|
||||
available_pairs = [
|
||||
p for p in exchange.get_markets(
|
||||
tradable_only=True, active_only=not config.get('include_inactive')
|
||||
).keys()
|
||||
]
|
||||
|
||||
expanded_pairs = dynamic_expand_pairlist(config, available_pairs)
|
||||
|
||||
# Convert downloaded trade data to different timeframes
|
||||
convert_trades_to_ohlcv(
|
||||
pairs=config.get('pairs', []), timeframes=config['timeframes'],
|
||||
pairs=expanded_pairs, timeframes=config['timeframes'],
|
||||
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
|
||||
data_format_ohlcv=config['dataformat_ohlcv'],
|
||||
data_format_trades=config['dataformat_trades'],
|
||||
candle_type=config.get('candle_type_def', CandleType.SPOT)
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ from pandas import DataFrame, to_datetime
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TRADES_DTYPES,
|
||||
Config, TradeList)
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
@@ -88,10 +88,10 @@ def convert_trades_to_ohlcv(
|
||||
timeframes: List[str],
|
||||
datadir: Path,
|
||||
timerange: TimeRange,
|
||||
erase: bool = False,
|
||||
data_format_ohlcv: str = 'feather',
|
||||
data_format_trades: str = 'feather',
|
||||
candle_type: CandleType = CandleType.SPOT
|
||||
erase: bool,
|
||||
data_format_ohlcv: str,
|
||||
data_format_trades: str,
|
||||
candle_type: CandleType,
|
||||
) -> None:
|
||||
"""
|
||||
Convert stored trades data to ohlcv data
|
||||
@@ -99,14 +99,12 @@ def convert_trades_to_ohlcv(
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
|
||||
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
|
||||
if not pairs:
|
||||
pairs = data_handler_trades.trades_get_pairs(datadir)
|
||||
|
||||
logger.info(f"About to convert pairs: '{', '.join(pairs)}', "
|
||||
f"intervals: '{', '.join(timeframes)}' to {datadir}")
|
||||
|
||||
trading_mode = TradingMode.FUTURES if candle_type != CandleType.SPOT else TradingMode.SPOT
|
||||
for pair in pairs:
|
||||
trades = data_handler_trades.trades_load(pair)
|
||||
trades = data_handler_trades.trades_load(pair, trading_mode)
|
||||
for timeframe in timeframes:
|
||||
if erase:
|
||||
if data_handler_ohlcv.ohlcv_purge(pair, timeframe, candle_type=candle_type):
|
||||
@@ -116,7 +114,7 @@ def convert_trades_to_ohlcv(
|
||||
# Store ohlcv
|
||||
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv, candle_type=candle_type)
|
||||
except ValueError:
|
||||
logger.exception(f'Could not convert {pair} to OHLCV.')
|
||||
logger.warning(f'Could not convert {pair} to OHLCV.')
|
||||
|
||||
|
||||
def convert_trades_format(config: Config, convert_from: str, convert_to: str, erase: bool):
|
||||
@@ -144,11 +142,12 @@ def convert_trades_format(config: Config, convert_from: str, convert_to: str, er
|
||||
if 'pairs' not in config:
|
||||
config['pairs'] = src.trades_get_pairs(config['datadir'])
|
||||
logger.info(f"Converting trades for {config['pairs']}")
|
||||
|
||||
trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
|
||||
for pair in config['pairs']:
|
||||
data = src.trades_load(pair=pair)
|
||||
data = src.trades_load(pair, trading_mode)
|
||||
logger.info(f"Converting {len(data)} trades for {pair}")
|
||||
trg.trades_store(pair, data)
|
||||
trg.trades_store(pair, data, trading_mode)
|
||||
|
||||
if erase and convert_from != convert_to:
|
||||
logger.info(f"Deleting source Trade data for {pair}.")
|
||||
src.trades_purge(pair=pair)
|
||||
src.trades_purge(pair, trading_mode)
|
||||
|
||||
@@ -7,6 +7,7 @@ from freqtrade.constants import DATETIME_PRINT_FORMAT, DEFAULT_TRADES_COLUMNS, C
|
||||
from freqtrade.data.converter.trade_converter import (trades_convert_types,
|
||||
trades_df_remove_duplicates)
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
from freqtrade.enums import TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
@@ -79,4 +80,4 @@ def import_kraken_trades_from_csv(config: Config, convert_to: str):
|
||||
f"{trades_df['date'].min():{DATETIME_PRINT_FORMAT}} to "
|
||||
f"{trades_df['date'].max():{DATETIME_PRINT_FORMAT}}")
|
||||
|
||||
data_handler.trades_store(pair, trades_df)
|
||||
data_handler.trades_store(pair, trades_df, TradingMode.SPOT)
|
||||
|
||||
@@ -15,7 +15,7 @@ from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
|
||||
PairWithTimeframe)
|
||||
from freqtrade.data.history import get_datahandler, load_pair_history
|
||||
from freqtrade.enums import CandleType, RPCMessageType, RunMode
|
||||
from freqtrade.enums import CandleType, RPCMessageType, RunMode, TradingMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange, timeframe_to_prev_date, timeframe_to_seconds
|
||||
from freqtrade.exchange.types import OrderBook
|
||||
@@ -528,7 +528,7 @@ class DataProvider:
|
||||
candle_type) if candle_type != '' else self._config['candle_type_def']
|
||||
data_handler = get_datahandler(
|
||||
self._config['datadir'], data_format=self._config['dataformat_trades'])
|
||||
trades_df = data_handler.trades_load(pair)
|
||||
trades_df = data_handler.trades_load(pair, TradingMode.FUTURES)
|
||||
return trades_df
|
||||
|
||||
else:
|
||||
|
||||
@@ -5,7 +5,7 @@ from pandas import DataFrame, read_feather, to_datetime
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
@@ -82,14 +82,15 @@ class FeatherDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame, trading_mode: TradingMode) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
self.create_dir_if_needed(filename)
|
||||
data.reset_index(drop=True).to_feather(filename, compression_level=9, compression='lz4')
|
||||
|
||||
@@ -102,15 +103,18 @@ class FeatherDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ import pandas as pd
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
@@ -35,7 +35,7 @@ class HDF5DataHandler(IDataHandler):
|
||||
self.create_dir_if_needed(filename)
|
||||
|
||||
_data.loc[:, self._columns].to_hdf(
|
||||
filename, key, mode='a', complevel=9, complib='blosc',
|
||||
filename, key=key, mode='a', complevel=9, complib='blosc',
|
||||
format='table', data_columns=['date']
|
||||
)
|
||||
|
||||
@@ -100,17 +100,18 @@ class HDF5DataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_store(self, pair: str, data: pd.DataFrame) -> None:
|
||||
def _trades_store(self, pair: str, data: pd.DataFrame, trading_mode: TradingMode) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
"""
|
||||
key = self._pair_trades_key(pair)
|
||||
|
||||
data.to_hdf(
|
||||
self._pair_trades_filename(self._datadir, pair), key,
|
||||
self._pair_trades_filename(self._datadir, pair, trading_mode), key=key,
|
||||
mode='a', complevel=9, complib='blosc',
|
||||
format='table', data_columns=['timestamp']
|
||||
)
|
||||
@@ -124,15 +125,18 @@ class HDF5DataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> pd.DataFrame:
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Load a pair from h5 file.
|
||||
:param pair: Load trades for this pair
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
key = self._pair_trades_key(pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
|
||||
if not filename.exists():
|
||||
return pd.DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
@@ -13,7 +13,7 @@ from freqtrade.data.converter import (clean_ohlcv_dataframe, convert_trades_to_o
|
||||
ohlcv_to_dataframe, trades_df_remove_duplicates,
|
||||
trades_list_to_df)
|
||||
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
@@ -333,7 +333,8 @@ def _download_trades_history(exchange: Exchange,
|
||||
pair: str, *,
|
||||
new_pairs_days: int = 30,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
data_handler: IDataHandler
|
||||
data_handler: IDataHandler,
|
||||
trading_mode: TradingMode,
|
||||
) -> bool:
|
||||
"""
|
||||
Download trade history from the exchange.
|
||||
@@ -349,7 +350,7 @@ def _download_trades_history(exchange: Exchange,
|
||||
if timerange.stoptype == 'date':
|
||||
until = timerange.stopts * 1000
|
||||
|
||||
trades = data_handler.trades_load(pair)
|
||||
trades = data_handler.trades_load(pair, trading_mode)
|
||||
|
||||
# TradesList columns are defined in constants.DEFAULT_TRADES_COLUMNS
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
@@ -388,7 +389,7 @@ def _download_trades_history(exchange: Exchange,
|
||||
trades = concat([trades, new_trades_df], axis=0)
|
||||
# Remove duplicates to make sure we're not storing data we don't need
|
||||
trades = trades_df_remove_duplicates(trades)
|
||||
data_handler.trades_store(pair, data=trades)
|
||||
data_handler.trades_store(pair, trades, trading_mode)
|
||||
|
||||
logger.debug("New Start: %s", 'None' if trades.empty else
|
||||
f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}")
|
||||
@@ -405,8 +406,10 @@ def _download_trades_history(exchange: Exchange,
|
||||
|
||||
|
||||
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
|
||||
timerange: TimeRange, new_pairs_days: int = 30,
|
||||
erase: bool = False, data_format: str = 'feather') -> List[str]:
|
||||
timerange: TimeRange, trading_mode: TradingMode,
|
||||
new_pairs_days: int = 30,
|
||||
erase: bool = False, data_format: str = 'feather',
|
||||
) -> List[str]:
|
||||
"""
|
||||
Refresh stored trades data for backtesting and hyperopt operations.
|
||||
Used by freqtrade download-data subcommand.
|
||||
@@ -421,7 +424,7 @@ def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir:
|
||||
continue
|
||||
|
||||
if erase:
|
||||
if data_handler.trades_purge(pair):
|
||||
if data_handler.trades_purge(pair, trading_mode):
|
||||
logger.info(f'Deleting existing data for pair {pair}.')
|
||||
|
||||
logger.info(f'Downloading trades for pair {pair}.')
|
||||
@@ -429,7 +432,8 @@ def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir:
|
||||
pair=pair,
|
||||
new_pairs_days=new_pairs_days,
|
||||
timerange=timerange,
|
||||
data_handler=data_handler)
|
||||
data_handler=data_handler,
|
||||
trading_mode=trading_mode)
|
||||
return pairs_not_available
|
||||
|
||||
|
||||
@@ -519,7 +523,9 @@ def download_data_main(config: Config) -> None:
|
||||
pairs_not_available = refresh_backtest_trades_data(
|
||||
exchange, pairs=expanded_pairs, datadir=config['datadir'],
|
||||
timerange=timerange, new_pairs_days=config['new_pairs_days'],
|
||||
erase=bool(config.get('erase')), data_format=config['dataformat_trades'])
|
||||
erase=bool(config.get('erase')), data_format=config['dataformat_trades'],
|
||||
trading_mode=config.get('trading_mode', TradingMode.SPOT),
|
||||
)
|
||||
|
||||
# Convert downloaded trade data to different timeframes
|
||||
convert_trades_to_ohlcv(
|
||||
@@ -527,6 +533,7 @@ def download_data_main(config: Config) -> None:
|
||||
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
|
||||
data_format_ohlcv=config['dataformat_ohlcv'],
|
||||
data_format_trades=config['dataformat_trades'],
|
||||
candle_type=config.get('candle_type_def', CandleType.SPOT),
|
||||
)
|
||||
else:
|
||||
if not exchange.get_option('ohlcv_has_history', True):
|
||||
|
||||
@@ -172,12 +172,13 @@ class IDataHandler(ABC):
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
@abstractmethod
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame, trading_mode: TradingMode) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
@@ -190,45 +191,55 @@ class IDataHandler(ABC):
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
:param pair: Load trades for this pair
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
|
||||
def trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
def trades_store(self, pair: str, data: DataFrame, trading_mode: TradingMode) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
"""
|
||||
# Filter on expected columns (will remove the actual date column).
|
||||
self._trades_store(pair, data[DEFAULT_TRADES_COLUMNS])
|
||||
self._trades_store(pair, data[DEFAULT_TRADES_COLUMNS], trading_mode)
|
||||
|
||||
def trades_purge(self, pair: str) -> bool:
|
||||
def trades_purge(self, pair: str, trading_mode: TradingMode) -> bool:
|
||||
"""
|
||||
Remove data for this pair
|
||||
:param pair: Delete data for this pair.
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:return: True when deleted, false if file did not exist.
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
if filename.exists():
|
||||
filename.unlink()
|
||||
return True
|
||||
return False
|
||||
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
def trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
Removes duplicates in the process.
|
||||
:param pair: Load trades for this pair
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
trades = trades_df_remove_duplicates(self._trades_load(pair, timerange=timerange))
|
||||
trades = trades_df_remove_duplicates(
|
||||
self._trades_load(pair, trading_mode, timerange=timerange)
|
||||
)
|
||||
|
||||
trades = trades_convert_types(trades)
|
||||
return trades
|
||||
@@ -264,8 +275,12 @@ class IDataHandler(ABC):
|
||||
return filename
|
||||
|
||||
@classmethod
|
||||
def _pair_trades_filename(cls, datadir: Path, pair: str) -> Path:
|
||||
def _pair_trades_filename(cls, datadir: Path, pair: str, trading_mode: TradingMode) -> Path:
|
||||
pair_s = misc.pair_to_filename(pair)
|
||||
if trading_mode == TradingMode.FUTURES:
|
||||
# Futures pair ...
|
||||
datadir = datadir.joinpath('futures')
|
||||
|
||||
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
|
||||
return filename
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ from freqtrade import misc
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.data.converter import trades_dict_to_list, trades_list_to_df
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
@@ -37,7 +37,7 @@ class JsonDataHandler(IDataHandler):
|
||||
self.create_dir_if_needed(filename)
|
||||
_data = data.copy()
|
||||
# Convert date to int
|
||||
_data['date'] = _data['date'].view(np.int64) // 1000 // 1000
|
||||
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
|
||||
|
||||
# Reset index, select only appropriate columns and save as json
|
||||
_data.reset_index(drop=True).loc[:, self._columns].to_json(
|
||||
@@ -94,14 +94,15 @@ class JsonDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame, trading_mode: TradingMode) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
trades = data.values.tolist()
|
||||
misc.file_dump_json(filename, trades, is_zip=self._use_zip)
|
||||
|
||||
@@ -114,15 +115,18 @@ class JsonDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> DataFrame:
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
tradesdata = misc.file_load_json(filename)
|
||||
|
||||
if not tradesdata:
|
||||
|
||||
@@ -4,8 +4,8 @@ from typing import Optional
|
||||
from pandas import DataFrame, read_parquet, to_datetime
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
@@ -81,14 +81,15 @@ class ParquetDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_store(self, pair: str, data: DataFrame) -> None:
|
||||
def _trades_store(self, pair: str, data: DataFrame, trading_mode: TradingMode) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
self.create_dir_if_needed(filename)
|
||||
data.reset_index(drop=True).to_parquet(filename)
|
||||
|
||||
@@ -101,15 +102,18 @@ class ParquetDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ import logging
|
||||
import signal
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from math import floor
|
||||
from math import floor, isnan
|
||||
from threading import Lock
|
||||
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
|
||||
|
||||
@@ -3053,7 +3053,7 @@ class Exchange:
|
||||
else:
|
||||
# Fill up missing funding_rate candles with fallback value
|
||||
combined = mark_rates.merge(
|
||||
funding_rates, on='date', how="outer", suffixes=["_mark", "_fund"]
|
||||
funding_rates, on='date', how="left", suffixes=["_mark", "_fund"]
|
||||
)
|
||||
combined['open_fund'] = combined['open_fund'].fillna(futures_funding_rate)
|
||||
return combined
|
||||
@@ -3082,7 +3082,8 @@ class Exchange:
|
||||
if not df.empty:
|
||||
df1 = df[(df['date'] >= open_date) & (df['date'] <= close_date)]
|
||||
fees = sum(df1['open_fund'] * df1['open_mark'] * amount)
|
||||
|
||||
if isnan(fees):
|
||||
fees = 0.0
|
||||
# Negate fees for longs as funding_fees expects it this way based on live endpoints.
|
||||
return fees if is_short else -fees
|
||||
|
||||
|
||||
@@ -36,8 +36,15 @@ class XGBoostRegressor(BaseRegressionModel):
|
||||
eval_set = None
|
||||
eval_weights = None
|
||||
else:
|
||||
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
|
||||
eval_weights = [data_dictionary['test_weights']]
|
||||
eval_set = [
|
||||
(data_dictionary["test_features"],
|
||||
data_dictionary["test_labels"]),
|
||||
(X, y)
|
||||
]
|
||||
eval_weights = [
|
||||
data_dictionary['test_weights'],
|
||||
data_dictionary['train_weights']
|
||||
]
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
|
||||
@@ -43,13 +43,11 @@ class TensorBoardCallback(BaseTensorBoardCallback):
|
||||
if not evals_log:
|
||||
return False
|
||||
|
||||
for data, metric in evals_log.items():
|
||||
for metric_name, log in metric.items():
|
||||
evals = ["validation", "train"]
|
||||
for metric, eval in zip(evals_log.items(), evals):
|
||||
for metric_name, log in metric[1].items():
|
||||
score = log[-1][0] if isinstance(log[-1], tuple) else log[-1]
|
||||
if data == "train":
|
||||
self.writer.add_scalar("train_loss", score, epoch)
|
||||
else:
|
||||
self.writer.add_scalar("valid_loss", score, epoch)
|
||||
self.writer.add_scalar(f"{eval}-{metric_name}", score, epoch)
|
||||
|
||||
return False
|
||||
|
||||
|
||||
@@ -107,9 +107,9 @@ class LookaheadAnalysisSubFunctions:
|
||||
csv_df = add_or_update_row(csv_df, new_row_data)
|
||||
|
||||
# Fill NaN values with a default value (e.g., 0)
|
||||
csv_df['total_signals'] = csv_df['total_signals'].fillna(0)
|
||||
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].fillna(0)
|
||||
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].fillna(0)
|
||||
csv_df['total_signals'] = csv_df['total_signals'].astype(int).fillna(0)
|
||||
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].astype(int).fillna(0)
|
||||
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].astype(int).fillna(0)
|
||||
|
||||
# Convert columns to integers
|
||||
csv_df['total_signals'] = csv_df['total_signals'].astype(int)
|
||||
|
||||
@@ -215,7 +215,7 @@ def _get_resample_from_period(period: str) -> str:
|
||||
# Weekly defaulting to Monday.
|
||||
return '1W-MON'
|
||||
if period == 'month':
|
||||
return '1M'
|
||||
return '1ME'
|
||||
raise ValueError(f"Period {period} is not supported.")
|
||||
|
||||
|
||||
|
||||
@@ -3,7 +3,6 @@ Volatility pairlist filter
|
||||
"""
|
||||
import logging
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
from datetime import timedelta
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
@@ -37,6 +36,7 @@ class VolatilityFilter(IPairList):
|
||||
self._max_volatility = pairlistconfig.get('max_volatility', sys.maxsize)
|
||||
self._refresh_period = pairlistconfig.get('refresh_period', 1440)
|
||||
self._def_candletype = self._config['candle_type_def']
|
||||
self._sort_direction: Optional[str] = pairlistconfig.get('sort_direction', None)
|
||||
|
||||
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
|
||||
|
||||
@@ -46,6 +46,9 @@ class VolatilityFilter(IPairList):
|
||||
if self._days > candle_limit:
|
||||
raise OperationalException("VolatilityFilter requires lookback_days to not "
|
||||
f"exceed exchange max request size ({candle_limit})")
|
||||
if self._sort_direction not in [None, 'asc', 'desc']:
|
||||
raise OperationalException("VolatilityFilter requires sort_direction to be "
|
||||
"either None (undefined), 'asc' or 'desc'")
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
@@ -89,6 +92,13 @@ class VolatilityFilter(IPairList):
|
||||
"description": "Maximum Volatility",
|
||||
"help": "Maximum volatility a pair must have to be considered.",
|
||||
},
|
||||
"sort_direction": {
|
||||
"type": "option",
|
||||
"default": None,
|
||||
"options": ["", "asc", "desc"],
|
||||
"description": "Sort pairlist",
|
||||
"help": "Sort Pairlist ascending or descending by volatility.",
|
||||
},
|
||||
**IPairList.refresh_period_parameter()
|
||||
}
|
||||
|
||||
@@ -105,43 +115,61 @@ class VolatilityFilter(IPairList):
|
||||
since_ms = dt_ts(dt_floor_day(dt_now()) - timedelta(days=self._days))
|
||||
candles = self._exchange.refresh_ohlcv_with_cache(needed_pairs, since_ms=since_ms)
|
||||
|
||||
if self._enabled:
|
||||
for p in deepcopy(pairlist):
|
||||
daily_candles = candles[(p, '1d', self._def_candletype)] if (
|
||||
p, '1d', self._def_candletype) in candles else None
|
||||
if not self._validate_pair_loc(p, daily_candles):
|
||||
pairlist.remove(p)
|
||||
return pairlist
|
||||
resulting_pairlist: List[str] = []
|
||||
volatilitys: Dict[str, float] = {}
|
||||
for p in pairlist:
|
||||
daily_candles = candles.get((p, '1d', self._def_candletype), None)
|
||||
|
||||
def _validate_pair_loc(self, pair: str, daily_candles: Optional[DataFrame]) -> bool:
|
||||
"""
|
||||
Validate trading range
|
||||
:param pair: Pair that's currently validated
|
||||
:param daily_candles: Downloaded daily candles
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
volatility_avg = self._calculate_volatility(p, daily_candles)
|
||||
|
||||
if volatility_avg is not None:
|
||||
if self._validate_pair_loc(p, volatility_avg):
|
||||
resulting_pairlist.append(p)
|
||||
volatilitys[p] = (
|
||||
volatility_avg if volatility_avg and not np.isnan(volatility_avg) else 0
|
||||
)
|
||||
else:
|
||||
self.log_once(f"Removed {p} from whitelist, no candles found.", logger.info)
|
||||
|
||||
if self._sort_direction:
|
||||
resulting_pairlist = sorted(resulting_pairlist,
|
||||
key=lambda p: volatilitys[p],
|
||||
reverse=self._sort_direction == 'desc')
|
||||
return resulting_pairlist
|
||||
|
||||
def _calculate_volatility(self, pair: str, daily_candles: DataFrame) -> Optional[float]:
|
||||
# Check symbol in cache
|
||||
if (cached_res := self._pair_cache.get(pair, None)) is not None:
|
||||
return cached_res
|
||||
if (volatility_avg := self._pair_cache.get(pair, None)) is not None:
|
||||
return volatility_avg
|
||||
|
||||
result = False
|
||||
if daily_candles is not None and not daily_candles.empty:
|
||||
returns = (np.log(daily_candles["close"].shift(1) / daily_candles["close"]))
|
||||
returns.fillna(0, inplace=True)
|
||||
|
||||
volatility_series = returns.rolling(window=self._days).std() * np.sqrt(self._days)
|
||||
volatility_avg = volatility_series.mean()
|
||||
self._pair_cache[pair] = volatility_avg
|
||||
|
||||
if self._min_volatility <= volatility_avg <= self._max_volatility:
|
||||
result = True
|
||||
else:
|
||||
self.log_once(f"Removed {pair} from whitelist, because volatility "
|
||||
f"over {self._days} {plural(self._days, 'day')} "
|
||||
f"is: {volatility_avg:.3f} "
|
||||
f"which is not in the configured range of "
|
||||
f"{self._min_volatility}-{self._max_volatility}.",
|
||||
logger.info)
|
||||
result = False
|
||||
self._pair_cache[pair] = result
|
||||
return volatility_avg
|
||||
else:
|
||||
return None
|
||||
|
||||
def _validate_pair_loc(self, pair: str, volatility_avg: float) -> bool:
|
||||
"""
|
||||
Validate trading range
|
||||
:param pair: Pair that's currently validated
|
||||
:param volatility_avg: Average volatility
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
|
||||
if self._min_volatility <= volatility_avg <= self._max_volatility:
|
||||
result = True
|
||||
else:
|
||||
self.log_once(f"Removed {pair} from whitelist, because volatility "
|
||||
f"over {self._days} {plural(self._days, 'day')} "
|
||||
f"is: {volatility_avg:.3f} "
|
||||
f"which is not in the configured range of "
|
||||
f"{self._min_volatility}-{self._max_volatility}.",
|
||||
logger.info)
|
||||
result = False
|
||||
return result
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
Rate of change pairlist filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from datetime import timedelta
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
@@ -32,6 +31,7 @@ class RangeStabilityFilter(IPairList):
|
||||
self._max_rate_of_change = pairlistconfig.get('max_rate_of_change')
|
||||
self._refresh_period = pairlistconfig.get('refresh_period', 86400)
|
||||
self._def_candletype = self._config['candle_type_def']
|
||||
self._sort_direction: Optional[str] = pairlistconfig.get('sort_direction', None)
|
||||
|
||||
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
|
||||
|
||||
@@ -41,6 +41,9 @@ class RangeStabilityFilter(IPairList):
|
||||
if self._days > candle_limit:
|
||||
raise OperationalException("RangeStabilityFilter requires lookback_days to not "
|
||||
f"exceed exchange max request size ({candle_limit})")
|
||||
if self._sort_direction not in [None, 'asc', 'desc']:
|
||||
raise OperationalException("RangeStabilityFilter requires sort_direction to be "
|
||||
"either None (undefined), 'asc' or 'desc'")
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
@@ -87,6 +90,13 @@ class RangeStabilityFilter(IPairList):
|
||||
"description": "Maximum Rate of Change",
|
||||
"help": "Maximum rate of change to filter pairs.",
|
||||
},
|
||||
"sort_direction": {
|
||||
"type": "option",
|
||||
"default": None,
|
||||
"options": ["", "asc", "desc"],
|
||||
"description": "Sort pairlist",
|
||||
"help": "Sort Pairlist ascending or descending by rate of change.",
|
||||
},
|
||||
**IPairList.refresh_period_parameter()
|
||||
}
|
||||
|
||||
@@ -103,45 +113,62 @@ class RangeStabilityFilter(IPairList):
|
||||
since_ms = dt_ts(dt_floor_day(dt_now()) - timedelta(days=self._days + 1))
|
||||
candles = self._exchange.refresh_ohlcv_with_cache(needed_pairs, since_ms=since_ms)
|
||||
|
||||
if self._enabled:
|
||||
for p in deepcopy(pairlist):
|
||||
daily_candles = candles[(p, '1d', self._def_candletype)] if (
|
||||
p, '1d', self._def_candletype) in candles else None
|
||||
if not self._validate_pair_loc(p, daily_candles):
|
||||
pairlist.remove(p)
|
||||
return pairlist
|
||||
resulting_pairlist: List[str] = []
|
||||
pct_changes: Dict[str, float] = {}
|
||||
|
||||
def _validate_pair_loc(self, pair: str, daily_candles: Optional[DataFrame]) -> bool:
|
||||
"""
|
||||
Validate trading range
|
||||
:param pair: Pair that's currently validated
|
||||
:param daily_candles: Downloaded daily candles
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
for p in pairlist:
|
||||
daily_candles = candles.get((p, '1d', self._def_candletype), None)
|
||||
|
||||
pct_change = self._calculate_rate_of_change(p, daily_candles)
|
||||
|
||||
if pct_change is not None:
|
||||
if self._validate_pair_loc(p, pct_change):
|
||||
resulting_pairlist.append(p)
|
||||
pct_changes[p] = pct_change
|
||||
else:
|
||||
self.log_once(f"Removed {p} from whitelist, no candles found.", logger.info)
|
||||
|
||||
if self._sort_direction:
|
||||
resulting_pairlist = sorted(resulting_pairlist,
|
||||
key=lambda p: pct_changes[p],
|
||||
reverse=self._sort_direction == 'desc')
|
||||
return resulting_pairlist
|
||||
|
||||
def _calculate_rate_of_change(self, pair: str, daily_candles: DataFrame) -> Optional[float]:
|
||||
# Check symbol in cache
|
||||
if (cached_res := self._pair_cache.get(pair, None)) is not None:
|
||||
return cached_res
|
||||
|
||||
result = True
|
||||
if (pct_change := self._pair_cache.get(pair, None)) is not None:
|
||||
return pct_change
|
||||
if daily_candles is not None and not daily_candles.empty:
|
||||
|
||||
highest_high = daily_candles['high'].max()
|
||||
lowest_low = daily_candles['low'].min()
|
||||
pct_change = ((highest_high - lowest_low) / lowest_low) if lowest_low > 0 else 0
|
||||
if pct_change < self._min_rate_of_change:
|
||||
self.log_once(f"Removed {pair} from whitelist, because rate of change "
|
||||
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
|
||||
f"which is below the threshold of {self._min_rate_of_change}.",
|
||||
logger.info)
|
||||
result = False
|
||||
if self._max_rate_of_change:
|
||||
if pct_change > self._max_rate_of_change:
|
||||
self.log_once(
|
||||
f"Removed {pair} from whitelist, because rate of change "
|
||||
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
|
||||
f"which is above the threshold of {self._max_rate_of_change}.",
|
||||
logger.info)
|
||||
result = False
|
||||
self._pair_cache[pair] = result
|
||||
self._pair_cache[pair] = pct_change
|
||||
return pct_change
|
||||
else:
|
||||
self.log_once(f"Removed {pair} from whitelist, no candles found.", logger.info)
|
||||
return None
|
||||
|
||||
def _validate_pair_loc(self, pair: str, pct_change: float) -> bool:
|
||||
"""
|
||||
Validate trading range
|
||||
:param pair: Pair that's currently validated
|
||||
:param pct_change: Rate of change
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
|
||||
result = True
|
||||
if pct_change < self._min_rate_of_change:
|
||||
self.log_once(f"Removed {pair} from whitelist, because rate of change "
|
||||
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
|
||||
f"which is below the threshold of {self._min_rate_of_change}.",
|
||||
logger.info)
|
||||
result = False
|
||||
if self._max_rate_of_change:
|
||||
if pct_change > self._max_rate_of_change:
|
||||
self.log_once(
|
||||
f"Removed {pair} from whitelist, because rate of change "
|
||||
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
|
||||
f"which is above the threshold of {self._max_rate_of_change}.",
|
||||
logger.info)
|
||||
result = False
|
||||
return result
|
||||
|
||||
@@ -1155,7 +1155,7 @@ class RPC:
|
||||
}
|
||||
if has_content:
|
||||
|
||||
dataframe.loc[:, '__date_ts'] = dataframe.loc[:, 'date'].view(int64) // 1000 // 1000
|
||||
dataframe.loc[:, '__date_ts'] = dataframe.loc[:, 'date'].astype(int64) // 1000 // 1000
|
||||
# Move signal close to separate column when signal for easy plotting
|
||||
for sig_type in signals.keys():
|
||||
if sig_type in dataframe.columns:
|
||||
|
||||
@@ -7,10 +7,10 @@
|
||||
-r docs/requirements-docs.txt
|
||||
|
||||
coveralls==3.3.1
|
||||
ruff==0.2.2
|
||||
ruff==0.3.0
|
||||
mypy==1.8.0
|
||||
pre-commit==3.6.2
|
||||
pytest==8.0.2
|
||||
pytest==8.1.0
|
||||
pytest-asyncio==0.23.5
|
||||
pytest-cov==4.1.0
|
||||
pytest-mock==3.12.0
|
||||
@@ -18,7 +18,7 @@ pytest-random-order==1.1.1
|
||||
pytest-xdist==3.5.0
|
||||
isort==5.13.2
|
||||
# For datetime mocking
|
||||
time-machine==2.13.0
|
||||
time-machine==2.14.0
|
||||
|
||||
# Convert jupyter notebooks to markdown documents
|
||||
nbconvert==7.16.1
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
numpy==1.26.4
|
||||
pandas==2.1.4
|
||||
pandas==2.2.1
|
||||
pandas-ta==0.3.14b
|
||||
|
||||
ccxt==4.2.51
|
||||
ccxt==4.2.58
|
||||
cryptography==42.0.5
|
||||
aiohttp==3.9.3
|
||||
SQLAlchemy==2.0.27
|
||||
@@ -10,7 +10,7 @@ python-telegram-bot==20.8
|
||||
# can't be hard-pinned due to telegram-bot pinning httpx with ~
|
||||
httpx>=0.24.1
|
||||
arrow==1.3.0
|
||||
cachetools==5.3.2
|
||||
cachetools==5.3.3
|
||||
requests==2.31.0
|
||||
urllib3==2.2.1
|
||||
jsonschema==4.21.1
|
||||
@@ -21,14 +21,14 @@ pycoingecko==3.1.0
|
||||
jinja2==3.1.3
|
||||
tables==3.9.1
|
||||
joblib==1.3.2
|
||||
rich==13.7.0
|
||||
rich==13.7.1
|
||||
pyarrow==15.0.0; platform_machine != 'armv7l'
|
||||
|
||||
# find first, C search in arrays
|
||||
py_find_1st==1.1.6
|
||||
|
||||
# Load ticker files 30% faster
|
||||
python-rapidjson==1.14
|
||||
python-rapidjson==1.16
|
||||
# Properly format api responses
|
||||
orjson==3.9.15
|
||||
|
||||
@@ -37,7 +37,7 @@ sdnotify==0.3.2
|
||||
|
||||
# API Server
|
||||
fastapi==0.110.0
|
||||
pydantic==2.6.2
|
||||
pydantic==2.6.3
|
||||
uvicorn==0.27.1
|
||||
pyjwt==2.8.0
|
||||
aiofiles==23.2.1
|
||||
@@ -49,7 +49,7 @@ colorama==0.4.6
|
||||
questionary==2.0.1
|
||||
prompt-toolkit==3.0.36
|
||||
# Extensions to datetime library
|
||||
python-dateutil==2.8.2
|
||||
python-dateutil==2.9.0.post0
|
||||
pytz==2024.1
|
||||
|
||||
#Futures
|
||||
|
||||
@@ -820,12 +820,6 @@ def test_download_data_trades(mocker):
|
||||
"--trading-mode", "futures",
|
||||
"--dl-trades"
|
||||
]
|
||||
pargs = get_args(args)
|
||||
pargs['config'] = None
|
||||
start_download_data(pargs)
|
||||
assert dl_mock.call_args[1]['timerange'].starttype == "date"
|
||||
assert dl_mock.call_count == 2
|
||||
assert convert_mock.call_count == 2
|
||||
|
||||
|
||||
def test_download_data_data_invalid(mocker):
|
||||
@@ -843,10 +837,11 @@ def test_download_data_data_invalid(mocker):
|
||||
start_download_data(pargs)
|
||||
|
||||
|
||||
def test_start_convert_trades(mocker, caplog):
|
||||
def test_start_convert_trades(mocker):
|
||||
convert_mock = mocker.patch('freqtrade.commands.data_commands.convert_trades_to_ohlcv',
|
||||
MagicMock(return_value=[]))
|
||||
patch_exchange(mocker)
|
||||
mocker.patch(f'{EXMS}.get_markets')
|
||||
mocker.patch(f'{EXMS}.markets', PropertyMock(return_value={}))
|
||||
args = [
|
||||
"trades-to-ohlcv",
|
||||
|
||||
@@ -142,8 +142,8 @@ def generate_trades_history(n_rows, start_date: Optional[datetime] = None, days=
|
||||
return df
|
||||
|
||||
|
||||
def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
|
||||
np.random.seed(42)
|
||||
def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05', random_seed=42):
|
||||
np.random.seed(random_seed)
|
||||
|
||||
base = np.random.normal(20, 2, size=size)
|
||||
if timeframe == '1y':
|
||||
@@ -174,10 +174,10 @@ def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
|
||||
return df
|
||||
|
||||
|
||||
def generate_test_data_raw(timeframe: str, size: int, start: str = '2020-07-05'):
|
||||
def generate_test_data_raw(timeframe: str, size: int, start: str = '2020-07-05', random_seed=42):
|
||||
""" Generates data in the ohlcv format used by ccxt """
|
||||
df = generate_test_data(timeframe, size, start)
|
||||
df['date'] = df.loc[:, 'date'].view(np.int64) // 1000 // 1000
|
||||
df = generate_test_data(timeframe, size, start, random_seed)
|
||||
df['date'] = df.loc[:, 'date'].astype(np.int64) // 1000 // 1000
|
||||
return list(list(x) for x in zip(*(df[x].values.tolist() for x in df.columns)))
|
||||
|
||||
|
||||
|
||||
@@ -542,7 +542,9 @@ def test_convert_trades_to_ohlcv(testdatadir, tmp_path, caplog):
|
||||
|
||||
convert_trades_to_ohlcv([pair], timeframes=['1m', '5m'],
|
||||
data_format_trades='jsongz',
|
||||
datadir=tmp_path, timerange=tr, erase=True)
|
||||
datadir=tmp_path, timerange=tr, erase=True,
|
||||
data_format_ohlcv='feather',
|
||||
candle_type=CandleType.SPOT)
|
||||
|
||||
assert log_has("Deleting existing data for pair XRP/ETH, interval 1m.", caplog)
|
||||
# Load new data
|
||||
@@ -556,5 +558,7 @@ def test_convert_trades_to_ohlcv(testdatadir, tmp_path, caplog):
|
||||
|
||||
convert_trades_to_ohlcv(['NoDatapair'], timeframes=['1m', '5m'],
|
||||
data_format_trades='jsongz',
|
||||
datadir=tmp_path, timerange=tr, erase=True)
|
||||
datadir=tmp_path, timerange=tr, erase=True,
|
||||
data_format_ohlcv='feather',
|
||||
candle_type=CandleType.SPOT)
|
||||
assert log_has(msg, caplog)
|
||||
|
||||
@@ -261,11 +261,11 @@ def test_datahandler_trades_not_supported(datahandler, testdatadir, ):
|
||||
def test_jsondatahandler_trades_load(testdatadir, caplog):
|
||||
dh = JsonGzDataHandler(testdatadir)
|
||||
logmsg = "Old trades format detected - converting"
|
||||
dh.trades_load('XRP/ETH')
|
||||
dh.trades_load('XRP/ETH', TradingMode.SPOT)
|
||||
assert not log_has(logmsg, caplog)
|
||||
|
||||
# Test conversation is happening
|
||||
dh.trades_load('XRP/OLD')
|
||||
dh.trades_load('XRP/OLD', TradingMode.SPOT)
|
||||
assert log_has(logmsg, caplog)
|
||||
|
||||
|
||||
@@ -300,16 +300,16 @@ def test_datahandler_trades_get_pairs(testdatadir, datahandler, expected):
|
||||
|
||||
def test_hdf5datahandler_trades_load(testdatadir):
|
||||
dh = get_datahandler(testdatadir, 'hdf5')
|
||||
trades = dh.trades_load('XRP/ETH')
|
||||
trades = dh.trades_load('XRP/ETH', TradingMode.SPOT)
|
||||
assert isinstance(trades, DataFrame)
|
||||
|
||||
trades1 = dh.trades_load('UNITTEST/NONEXIST')
|
||||
trades1 = dh.trades_load('UNITTEST/NONEXIST', TradingMode.SPOT)
|
||||
assert isinstance(trades1, DataFrame)
|
||||
assert trades1.empty
|
||||
# data goes from 2019-10-11 - 2019-10-13
|
||||
timerange = TimeRange.parse_timerange('20191011-20191012')
|
||||
|
||||
trades2 = dh._trades_load('XRP/ETH', timerange)
|
||||
trades2 = dh._trades_load('XRP/ETH', TradingMode.SPOT, timerange)
|
||||
assert len(trades) > len(trades2)
|
||||
# Check that ID is None (If it's nan, it's wrong)
|
||||
assert trades2.iloc[0]['type'] is None
|
||||
@@ -451,13 +451,13 @@ def test_hdf5datahandler_ohlcv_purge(mocker, testdatadir):
|
||||
@pytest.mark.parametrize('datahandler', ['jsongz', 'hdf5', 'feather', 'parquet'])
|
||||
def test_datahandler_trades_load(testdatadir, datahandler):
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
trades = dh.trades_load('XRP/ETH')
|
||||
trades = dh.trades_load('XRP/ETH', TradingMode.SPOT)
|
||||
assert isinstance(trades, DataFrame)
|
||||
assert trades.iloc[0]['timestamp'] == 1570752011620
|
||||
assert trades.iloc[0]['date'] == Timestamp('2019-10-11 00:00:11.620000+0000')
|
||||
assert trades.iloc[-1]['cost'] == 0.1986231
|
||||
|
||||
trades1 = dh.trades_load('UNITTEST/NONEXIST')
|
||||
trades1 = dh.trades_load('UNITTEST/NONEXIST', TradingMode.SPOT)
|
||||
assert isinstance(trades, DataFrame)
|
||||
assert trades1.empty
|
||||
|
||||
@@ -465,15 +465,15 @@ def test_datahandler_trades_load(testdatadir, datahandler):
|
||||
@pytest.mark.parametrize('datahandler', ['jsongz', 'hdf5', 'feather', 'parquet'])
|
||||
def test_datahandler_trades_store(testdatadir, tmp_path, datahandler):
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
trades = dh.trades_load('XRP/ETH')
|
||||
trades = dh.trades_load('XRP/ETH', TradingMode.SPOT)
|
||||
|
||||
dh1 = get_datahandler(tmp_path, datahandler)
|
||||
dh1.trades_store('XRP/NEW', trades)
|
||||
dh1.trades_store('XRP/NEW', trades, TradingMode.SPOT)
|
||||
|
||||
file = tmp_path / f'XRP_NEW-trades.{dh1._get_file_extension()}'
|
||||
assert file.is_file()
|
||||
# Load trades back
|
||||
trades_new = dh1.trades_load('XRP/NEW')
|
||||
trades_new = dh1.trades_load('XRP/NEW', TradingMode.SPOT)
|
||||
assert_frame_equal(trades, trades_new, check_exact=True)
|
||||
assert len(trades_new) == len(trades)
|
||||
|
||||
@@ -483,11 +483,11 @@ def test_datahandler_trades_purge(mocker, testdatadir, datahandler):
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
|
||||
unlinkmock = mocker.patch.object(Path, "unlink", MagicMock())
|
||||
dh = get_datahandler(testdatadir, datahandler)
|
||||
assert not dh.trades_purge('UNITTEST/NONEXIST')
|
||||
assert not dh.trades_purge('UNITTEST/NONEXIST', TradingMode.SPOT)
|
||||
assert unlinkmock.call_count == 0
|
||||
|
||||
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
|
||||
assert dh.trades_purge('UNITTEST/NONEXIST')
|
||||
assert dh.trades_purge('UNITTEST/NONEXIST', TradingMode.SPOT)
|
||||
assert unlinkmock.call_count == 1
|
||||
|
||||
|
||||
|
||||
@@ -78,11 +78,6 @@ def test_download_data_main_trades(mocker):
|
||||
"trading_mode": "futures",
|
||||
})
|
||||
|
||||
download_data_main(config)
|
||||
assert dl_mock.call_args[1]['timerange'].starttype == "date"
|
||||
assert dl_mock.call_count == 2
|
||||
assert convert_mock.call_count == 2
|
||||
|
||||
|
||||
def test_download_data_main_data_invalid(mocker):
|
||||
patch_exchange(mocker, id="kraken")
|
||||
|
||||
@@ -23,7 +23,7 @@ from freqtrade.data.history.history_utils import (_download_pair_history, _downl
|
||||
validate_backtest_data)
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
from freqtrade.data.history.jsondatahandler import JsonDataHandler, JsonGzDataHandler
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
@@ -168,20 +168,21 @@ def test_json_pair_data_filename(pair, timeframe, expected_result, candle_type):
|
||||
assert fn == Path(expected_result + '.gz')
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pair,expected_result", [
|
||||
("ETH/BTC", 'freqtrade/hello/world/ETH_BTC-trades.json'),
|
||||
("Fabric Token/ETH", 'freqtrade/hello/world/Fabric_Token_ETH-trades.json'),
|
||||
("ETHH20", 'freqtrade/hello/world/ETHH20-trades.json'),
|
||||
(".XBTBON2H", 'freqtrade/hello/world/_XBTBON2H-trades.json'),
|
||||
("ETHUSD.d", 'freqtrade/hello/world/ETHUSD_d-trades.json'),
|
||||
("ACC_OLD_BTC", 'freqtrade/hello/world/ACC_OLD_BTC-trades.json'),
|
||||
@pytest.mark.parametrize("pair,trading_mode,expected_result", [
|
||||
("ETH/BTC", '', 'freqtrade/hello/world/ETH_BTC-trades.json'),
|
||||
("ETH/USDT:USDT", 'futures', 'freqtrade/hello/world/futures/ETH_USDT_USDT-trades.json'),
|
||||
("Fabric Token/ETH", '', 'freqtrade/hello/world/Fabric_Token_ETH-trades.json'),
|
||||
("ETHH20", '', 'freqtrade/hello/world/ETHH20-trades.json'),
|
||||
(".XBTBON2H", '', 'freqtrade/hello/world/_XBTBON2H-trades.json'),
|
||||
("ETHUSD.d", '', 'freqtrade/hello/world/ETHUSD_d-trades.json'),
|
||||
("ACC_OLD_BTC", '', 'freqtrade/hello/world/ACC_OLD_BTC-trades.json'),
|
||||
])
|
||||
def test_json_pair_trades_filename(pair, expected_result):
|
||||
fn = JsonDataHandler._pair_trades_filename(Path('freqtrade/hello/world'), pair)
|
||||
def test_json_pair_trades_filename(pair, trading_mode, expected_result):
|
||||
fn = JsonDataHandler._pair_trades_filename(Path('freqtrade/hello/world'), pair, trading_mode)
|
||||
assert isinstance(fn, Path)
|
||||
assert fn == Path(expected_result)
|
||||
|
||||
fn = JsonGzDataHandler._pair_trades_filename(Path('freqtrade/hello/world'), pair)
|
||||
fn = JsonGzDataHandler._pair_trades_filename(Path('freqtrade/hello/world'), pair, trading_mode)
|
||||
assert isinstance(fn, Path)
|
||||
assert fn == Path(expected_result + '.gz')
|
||||
|
||||
@@ -559,7 +560,8 @@ def test_refresh_backtest_trades_data(mocker, default_conf, markets, caplog, tes
|
||||
unavailable_pairs = refresh_backtest_trades_data(exchange=ex,
|
||||
pairs=["ETH/BTC", "XRP/BTC", "XRP/ETH"],
|
||||
datadir=testdatadir,
|
||||
timerange=timerange, erase=True
|
||||
timerange=timerange, erase=True,
|
||||
trading_mode=TradingMode.SPOT,
|
||||
)
|
||||
|
||||
assert dl_mock.call_count == 2
|
||||
@@ -584,7 +586,7 @@ def test_download_trades_history(trades_history, mocker, default_conf, testdatad
|
||||
assert not file1.is_file()
|
||||
|
||||
assert _download_trades_history(data_handler=data_handler, exchange=exchange,
|
||||
pair='ETH/BTC')
|
||||
pair='ETH/BTC', trading_mode=TradingMode.SPOT)
|
||||
assert log_has("Current Amount of trades: 0", caplog)
|
||||
assert log_has("New Amount of trades: 6", caplog)
|
||||
assert ght_mock.call_count == 1
|
||||
@@ -597,8 +599,9 @@ def test_download_trades_history(trades_history, mocker, default_conf, testdatad
|
||||
since_time = int(trades_history[-3][0] // 1000)
|
||||
since_time2 = int(trades_history[-1][0] // 1000)
|
||||
timerange = TimeRange('date', None, since_time, 0)
|
||||
assert _download_trades_history(data_handler=data_handler, exchange=exchange,
|
||||
pair='ETH/BTC', timerange=timerange)
|
||||
assert _download_trades_history(
|
||||
data_handler=data_handler, exchange=exchange, pair='ETH/BTC',
|
||||
timerange=timerange, trading_mode=TradingMode.SPOT)
|
||||
|
||||
assert ght_mock.call_count == 1
|
||||
# Check this in seconds - since we had to convert to seconds above too.
|
||||
@@ -611,7 +614,7 @@ def test_download_trades_history(trades_history, mocker, default_conf, testdatad
|
||||
caplog.clear()
|
||||
|
||||
assert not _download_trades_history(data_handler=data_handler, exchange=exchange,
|
||||
pair='ETH/BTC')
|
||||
pair='ETH/BTC', trading_mode=TradingMode.SPOT)
|
||||
assert log_has_re('Failed to download and store historic trades for pair: "ETH/BTC".*', caplog)
|
||||
|
||||
file2 = tmp_path / 'XRP_ETH-trades.json.gz'
|
||||
@@ -623,8 +626,9 @@ def test_download_trades_history(trades_history, mocker, default_conf, testdatad
|
||||
since_time = int(trades_history[0][0] // 1000) - 500
|
||||
timerange = TimeRange('date', None, since_time, 0)
|
||||
|
||||
assert _download_trades_history(data_handler=data_handler, exchange=exchange,
|
||||
pair='XRP/ETH', timerange=timerange)
|
||||
assert _download_trades_history(
|
||||
data_handler=data_handler, exchange=exchange, pair='XRP/ETH',
|
||||
timerange=timerange, trading_mode=TradingMode.SPOT)
|
||||
|
||||
assert ght_mock.call_count == 1
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ import pytest
|
||||
|
||||
from freqtrade.data.converter.trade_converter_kraken import import_kraken_trades_from_csv
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
from freqtrade.enums import TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from tests.conftest import EXMS, log_has, log_has_re, patch_exchange
|
||||
|
||||
@@ -40,7 +41,7 @@ def test_import_kraken_trades_from_csv(testdatadir, tmp_path, caplog, default_co
|
||||
assert dstfile.is_file()
|
||||
|
||||
dh = get_datahandler(tmp_path, 'feather')
|
||||
trades = dh.trades_load('BCH_EUR')
|
||||
trades = dh.trades_load('BCH_EUR', TradingMode.SPOT)
|
||||
assert len(trades) == 340
|
||||
|
||||
assert trades['date'].min().to_pydatetime() == datetime(2023, 1, 1, 0, 3, 56,
|
||||
|
||||
@@ -7,6 +7,7 @@ from unittest.mock import MagicMock, Mock, PropertyMock, patch
|
||||
|
||||
import ccxt
|
||||
import pytest
|
||||
from numpy import NaN
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.enums import CandleType, MarginMode, RunMode, TradingMode
|
||||
@@ -4203,6 +4204,7 @@ def test_get_max_leverage_from_margin(default_conf, mocker, pair, nominal_value,
|
||||
(10, 0.0001, 2.0, 1.0, 0.002, 0.002),
|
||||
(10, 0.0002, 2.0, 0.01, 0.004, 0.00004),
|
||||
(10, 0.0002, 2.5, None, 0.005, None),
|
||||
(10, 0.0002, NaN, None, 0.0, None),
|
||||
])
|
||||
def test_calculate_funding_fees(
|
||||
default_conf,
|
||||
@@ -4312,8 +4314,8 @@ def test_combine_funding_and_mark(
|
||||
assert len(df) == 1
|
||||
|
||||
# Empty funding rates
|
||||
funding_rates = DataFrame([], columns=['date', 'open'])
|
||||
df = exchange.combine_funding_and_mark(funding_rates, mark_rates, futures_funding_rate)
|
||||
funding_rates2 = DataFrame([], columns=['date', 'open'])
|
||||
df = exchange.combine_funding_and_mark(funding_rates2, mark_rates, futures_funding_rate)
|
||||
if futures_funding_rate is not None:
|
||||
assert len(df) == 3
|
||||
assert df.iloc[0]['open_fund'] == futures_funding_rate
|
||||
@@ -4322,6 +4324,12 @@ def test_combine_funding_and_mark(
|
||||
else:
|
||||
assert len(df) == 0
|
||||
|
||||
# Empty mark candles
|
||||
mark_candles = DataFrame([], columns=['date', 'open'])
|
||||
df = exchange.combine_funding_and_mark(funding_rates, mark_candles, futures_funding_rate)
|
||||
|
||||
assert len(df) == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize('exchange,rate_start,rate_end,d1,d2,amount,expected_fees', [
|
||||
('binance', 0, 2, "2021-09-01 01:00:00", "2021-09-01 04:00:00", 30.0, 0.0),
|
||||
|
||||
@@ -57,28 +57,30 @@ def test_backtest_position_adjustment(default_conf, fee, mocker, testdatadir) ->
|
||||
),
|
||||
'close_date': pd.to_datetime([dt_utc(2018, 1, 29, 22, 00, 0),
|
||||
dt_utc(2018, 1, 30, 4, 10, 0)], utc=True),
|
||||
'open_rate': [0.10401764894444211, 0.10302485],
|
||||
'close_rate': [0.10453904066847439, 0.103541],
|
||||
'open_rate': [0.10401764891917063, 0.10302485],
|
||||
'close_rate': [0.10453904064307624, 0.10354126528822055],
|
||||
'fee_open': [0.0025, 0.0025],
|
||||
'fee_close': [0.0025, 0.0025],
|
||||
'trade_duration': [200, 40],
|
||||
'profit_ratio': [0.0, 0.0],
|
||||
'profit_abs': [0.0, 0.0],
|
||||
'exit_reason': [ExitType.ROI.value, ExitType.ROI.value],
|
||||
'initial_stop_loss_abs': [0.0940005, 0.09272236],
|
||||
'initial_stop_loss_abs': [0.0940005, 0.092722365],
|
||||
'initial_stop_loss_ratio': [-0.1, -0.1],
|
||||
'stop_loss_abs': [0.0940005, 0.09272236],
|
||||
'stop_loss_abs': [0.0940005, 0.092722365],
|
||||
'stop_loss_ratio': [-0.1, -0.1],
|
||||
'min_rate': [0.10370188, 0.10300000000000001],
|
||||
'max_rate': [0.10481985, 0.1038888],
|
||||
'max_rate': [0.10481985, 0.10388887000000001],
|
||||
'is_open': [False, False],
|
||||
'enter_tag': ['', ''],
|
||||
'leverage': [1.0, 1.0],
|
||||
'is_short': [False, False],
|
||||
'open_timestamp': [1517251200000, 1517283000000],
|
||||
'close_timestamp': [1517265300000, 1517285400000],
|
||||
'close_timestamp': [1517263200000, 1517285400000],
|
||||
})
|
||||
pd.testing.assert_frame_equal(results.drop(columns=['orders']), expected)
|
||||
results_no = results.drop(columns=['orders'])
|
||||
pd.testing.assert_frame_equal(results_no, expected, check_exact=True)
|
||||
|
||||
data_pair = processed[pair]
|
||||
assert len(results.iloc[0]['orders']) == 6
|
||||
assert len(results.iloc[1]['orders']) == 2
|
||||
|
||||
@@ -498,7 +498,7 @@ def test__get_resample_from_period():
|
||||
|
||||
assert _get_resample_from_period('day') == '1d'
|
||||
assert _get_resample_from_period('week') == '1W-MON'
|
||||
assert _get_resample_from_period('month') == '1M'
|
||||
assert _get_resample_from_period('month') == '1ME'
|
||||
with pytest.raises(ValueError, match=r"Period noooo is not supported."):
|
||||
_get_resample_from_period('noooo')
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist,
|
||||
from freqtrade.plugins.pairlistmanager import PairListManager
|
||||
from freqtrade.resolvers import PairListResolver
|
||||
from freqtrade.util.datetime_helpers import dt_now
|
||||
from tests.conftest import (EXMS, create_mock_trades_usdt, get_patched_exchange,
|
||||
from tests.conftest import (EXMS, create_mock_trades_usdt, generate_test_data, get_patched_exchange,
|
||||
get_patched_freqtradebot, log_has, log_has_re, num_log_has)
|
||||
|
||||
|
||||
@@ -748,6 +748,104 @@ def test_PerformanceFilter_error(mocker, whitelist_conf, caplog) -> None:
|
||||
assert log_has("PerformanceFilter is not available in this mode.", caplog)
|
||||
|
||||
|
||||
def test_VolatilityFilter_error(mocker, whitelist_conf) -> None:
|
||||
volatility_filter = {"method": "VolatilityFilter", "lookback_days": -1}
|
||||
whitelist_conf['pairlists'] = [{"method": "StaticPairList"}, volatility_filter]
|
||||
|
||||
mocker.patch(f'{EXMS}.exchange_has', MagicMock(return_value=True))
|
||||
exchange_mock = MagicMock()
|
||||
exchange_mock.ohlcv_candle_limit = MagicMock(return_value=1000)
|
||||
|
||||
with pytest.raises(OperationalException,
|
||||
match=r"VolatilityFilter requires lookback_days to be >= 1*"):
|
||||
PairListManager(exchange_mock, whitelist_conf, MagicMock())
|
||||
|
||||
volatility_filter = {"method": "VolatilityFilter", "lookback_days": 2000}
|
||||
whitelist_conf['pairlists'] = [{"method": "StaticPairList"}, volatility_filter]
|
||||
with pytest.raises(OperationalException,
|
||||
match=r"VolatilityFilter requires lookback_days to not exceed exchange max"):
|
||||
PairListManager(exchange_mock, whitelist_conf, MagicMock())
|
||||
|
||||
volatility_filter = {"method": "VolatilityFilter", "sort_direction": "Random"}
|
||||
whitelist_conf['pairlists'] = [{"method": "StaticPairList"}, volatility_filter]
|
||||
with pytest.raises(OperationalException,
|
||||
match=r"VolatilityFilter requires sort_direction to be either "
|
||||
r"None .*'asc'.*'desc'"):
|
||||
PairListManager(exchange_mock, whitelist_conf, MagicMock())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('pairlist,expected_pairlist', [
|
||||
({"method": "VolatilityFilter", "sort_direction": "asc"},
|
||||
['XRP/BTC', 'ETH/BTC', 'LTC/BTC', 'TKN/BTC']),
|
||||
({"method": "VolatilityFilter", "sort_direction": "desc"},
|
||||
['TKN/BTC', 'LTC/BTC', 'ETH/BTC', 'XRP/BTC']),
|
||||
({"method": "VolatilityFilter", "sort_direction": "desc", 'min_volatility': 0.4},
|
||||
['TKN/BTC', 'LTC/BTC', 'ETH/BTC']),
|
||||
({"method": "VolatilityFilter", "sort_direction": "asc", 'min_volatility': 0.4},
|
||||
['ETH/BTC', 'LTC/BTC', 'TKN/BTC']),
|
||||
({"method": "VolatilityFilter", "sort_direction": "desc", 'max_volatility': 0.5},
|
||||
['LTC/BTC', 'ETH/BTC', 'XRP/BTC']),
|
||||
({"method": "VolatilityFilter", "sort_direction": "asc", 'max_volatility': 0.5},
|
||||
['XRP/BTC', 'ETH/BTC', 'LTC/BTC']),
|
||||
({"method": "RangeStabilityFilter", "sort_direction": "asc"},
|
||||
['ETH/BTC', 'XRP/BTC', 'LTC/BTC', 'TKN/BTC']),
|
||||
({"method": "RangeStabilityFilter", "sort_direction": "desc"},
|
||||
['TKN/BTC', 'LTC/BTC', 'XRP/BTC', 'ETH/BTC']),
|
||||
({"method": "RangeStabilityFilter", "sort_direction": "asc", 'min_rate_of_change': 0.4},
|
||||
['XRP/BTC', 'LTC/BTC', 'TKN/BTC']),
|
||||
({"method": "RangeStabilityFilter", "sort_direction": "desc", 'min_rate_of_change': 0.4},
|
||||
['TKN/BTC', 'LTC/BTC', 'XRP/BTC']),
|
||||
])
|
||||
def test_VolatilityFilter_RangeStabilityFilter_sort(
|
||||
mocker, whitelist_conf, tickers, time_machine, pairlist, expected_pairlist) -> None:
|
||||
whitelist_conf['pairlists'] = [
|
||||
{'method': 'VolumePairList', 'number_assets': 10},
|
||||
pairlist
|
||||
]
|
||||
|
||||
df1 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=42)
|
||||
df2 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=2)
|
||||
df3 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=3)
|
||||
df4 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=4)
|
||||
df5 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=5)
|
||||
df6 = generate_test_data('1d', 10, '2022-01-05 00:00:00+00:00', random_seed=6)
|
||||
|
||||
assert not df1.equals(df2)
|
||||
time_machine.move_to('2022-01-15 00:00:00+00:00')
|
||||
|
||||
ohlcv_data = {
|
||||
('ETH/BTC', '1d', CandleType.SPOT): df1,
|
||||
('TKN/BTC', '1d', CandleType.SPOT): df2,
|
||||
('LTC/BTC', '1d', CandleType.SPOT): df3,
|
||||
('XRP/BTC', '1d', CandleType.SPOT): df4,
|
||||
('HOT/BTC', '1d', CandleType.SPOT): df5,
|
||||
('BLK/BTC', '1d', CandleType.SPOT): df6,
|
||||
|
||||
}
|
||||
ohlcv_mock = MagicMock(return_value=ohlcv_data)
|
||||
mocker.patch.multiple(
|
||||
EXMS,
|
||||
exchange_has=MagicMock(return_value=True),
|
||||
refresh_latest_ohlcv=ohlcv_mock,
|
||||
get_tickers=tickers
|
||||
|
||||
)
|
||||
|
||||
exchange = get_patched_exchange(mocker, whitelist_conf)
|
||||
exchange.ohlcv_candle_limit = MagicMock(return_value=1000)
|
||||
plm = PairListManager(exchange, whitelist_conf, MagicMock())
|
||||
|
||||
assert exchange.ohlcv_candle_limit.call_count == 2
|
||||
plm.refresh_pairlist()
|
||||
assert ohlcv_mock.call_count == 1
|
||||
assert exchange.ohlcv_candle_limit.call_count == 2
|
||||
assert plm.whitelist == expected_pairlist
|
||||
|
||||
plm.refresh_pairlist()
|
||||
assert exchange.ohlcv_candle_limit.call_count == 2
|
||||
assert ohlcv_mock.call_count == 1
|
||||
|
||||
|
||||
def test_ShuffleFilter_init(mocker, whitelist_conf, caplog) -> None:
|
||||
whitelist_conf['pairlists'] = [
|
||||
{"method": "StaticPairList"},
|
||||
@@ -1095,6 +1193,13 @@ def test_rangestabilityfilter_checks(mocker, default_conf, markets, tickers):
|
||||
match='RangeStabilityFilter requires lookback_days to be >= 1'):
|
||||
get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
default_conf['pairlists'] = [{'method': 'VolumePairList', 'number_assets': 10},
|
||||
{'method': 'RangeStabilityFilter', 'sort_direction': 'something'}]
|
||||
|
||||
with pytest.raises(OperationalException,
|
||||
match='RangeStabilityFilter requires sort_direction to be either None.*'):
|
||||
get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('min_rate_of_change,max_rate_of_change,expected_length', [
|
||||
(0.01, 0.99, 5),
|
||||
|
||||
@@ -1022,22 +1022,22 @@ def test_auto_hyperopt_interface_loadparams(default_conf, mocker, caplog):
|
||||
|
||||
|
||||
@pytest.mark.parametrize('function,raises', [
|
||||
('populate_entry_trend', True),
|
||||
('populate_entry_trend', False),
|
||||
('advise_entry', False),
|
||||
('populate_exit_trend', True),
|
||||
('populate_exit_trend', False),
|
||||
('advise_exit', False),
|
||||
])
|
||||
def test_pandas_warning_direct(ohlcv_history, function, raises):
|
||||
def test_pandas_warning_direct(ohlcv_history, function, raises, recwarn):
|
||||
|
||||
df = _STRATEGY.populate_indicators(ohlcv_history, {'pair': 'ETH/BTC'})
|
||||
if raises:
|
||||
with pytest.warns(FutureWarning):
|
||||
# Test for Future warning
|
||||
# FutureWarning: Setting an item of incompatible dtype is
|
||||
# deprecated and will raise in a future error of pandas
|
||||
# https://github.com/pandas-dev/pandas/issues/56503
|
||||
getattr(_STRATEGY, function)(df, {'pair': 'ETH/BTC'})
|
||||
assert len(recwarn) == 1
|
||||
# https://github.com/pandas-dev/pandas/issues/56503
|
||||
# Fixed in 2.2.x
|
||||
getattr(_STRATEGY, function)(df, {'pair': 'ETH/BTC'})
|
||||
else:
|
||||
assert len(recwarn) == 0
|
||||
|
||||
getattr(_STRATEGY, function)(df, {'pair': 'ETH/BTC'})
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user