refactor: move some utils to a separate file

This commit is contained in:
Matthias
2025-04-27 11:17:14 +02:00
parent efdb726362
commit 6afcc80937
3 changed files with 65 additions and 54 deletions

View File

@@ -1,9 +1,7 @@
# flake8: noqa: F401
from .btanalysis import (
BT_DATA_COLUMNS,
analyze_trade_parallelism,
delete_backtest_result,
evaluate_result_multi,
extract_trades_of_period,
find_existing_backtest_stats,
get_backtest_market_change,
@@ -27,3 +25,7 @@ from .btanalysis import (
trade_list_to_dataframe,
update_backtest_metadata,
)
from .trade_parallelism import (
analyze_trade_parallelism,
evaluate_result_multi,
)

View File

@@ -13,7 +13,7 @@ from typing import Any, Literal
import numpy as np
import pandas as pd
from freqtrade.constants import LAST_BT_RESULT_FN, IntOrInf
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.exceptions import ConfigurationError, OperationalException
from freqtrade.ft_types import BacktestHistoryEntryType, BacktestResultType
from freqtrade.misc import file_dump_json, json_load
@@ -491,57 +491,6 @@ def load_exit_signal_candles(backtest_dir: Path) -> dict[str, dict[str, pd.DataF
return load_backtest_analysis_data(backtest_dir, "exited")
def analyze_trade_parallelism(trades: pd.DataFrame, timeframe: str) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps.
:param trades: Trades Dataframe - can be loaded from backtest, or created
via trade_list_to_dataframe
:param timeframe: Timeframe used for backtest
:return: dataframe with open-counts per time-period in timeframe
"""
from freqtrade.exchange import timeframe_to_resample_freq
timeframe_freq = timeframe_to_resample_freq(timeframe)
dates = [
pd.Series(
pd.date_range(
row[1]["open_date"],
row[1]["close_date"],
freq=timeframe_freq,
# Exclude right boundary - the date is the candle open date.
inclusive="left",
)
)
for row in trades[["open_date", "close_date"]].iterrows()
]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name="date")
df2 = pd.DataFrame(np.repeat(trades.values, deltas, axis=0), columns=trades.columns)
df2 = pd.concat([dates, df2], axis=1)
df2 = df2.set_index("date")
df_final = df2.resample(timeframe_freq)[["pair"]].count()
df_final = df_final.rename({"pair": "open_trades"}, axis=1)
return df_final
def evaluate_result_multi(
trades: pd.DataFrame, timeframe: str, max_open_trades: IntOrInf
) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps
:param trades: Trades Dataframe - can be loaded from backtest, or created
via trade_list_to_dataframe
:param timeframe: Frequency used for the backtest
:param max_open_trades: parameter max_open_trades used during backtest run
:return: dataframe with open-counts per time-period in freq
"""
df_final = analyze_trade_parallelism(trades, timeframe)
return df_final[df_final["open_trades"] > max_open_trades]
def trade_list_to_dataframe(trades: list[Trade] | list[LocalTrade]) -> pd.DataFrame:
"""
Convert list of Trade objects to pandas Dataframe

View File

@@ -0,0 +1,60 @@
import logging
import numpy as np
import pandas as pd
from freqtrade.constants import IntOrInf
logger = logging.getLogger(__name__)
def analyze_trade_parallelism(trades: pd.DataFrame, timeframe: str) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps.
:param trades: Trades Dataframe - can be loaded from backtest, or created
via trade_list_to_dataframe
:param timeframe: Timeframe used for backtest
:return: dataframe with open-counts per time-period in timeframe
"""
from freqtrade.exchange import timeframe_to_resample_freq
timeframe_freq = timeframe_to_resample_freq(timeframe)
dates = [
pd.Series(
pd.date_range(
row[1]["open_date"],
row[1]["close_date"],
freq=timeframe_freq,
# Exclude right boundary - the date is the candle open date.
inclusive="left",
)
)
for row in trades[["open_date", "close_date"]].iterrows()
]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name="date")
df2 = pd.DataFrame(np.repeat(trades.values, deltas, axis=0), columns=trades.columns)
df2 = pd.concat([dates, df2], axis=1)
df2 = df2.set_index("date")
df_final = df2.resample(timeframe_freq)[["pair"]].count()
df_final = df_final.rename({"pair": "open_trades"}, axis=1)
return df_final
def evaluate_result_multi(
trades: pd.DataFrame, timeframe: str, max_open_trades: IntOrInf
) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps
:param trades: Trades Dataframe - can be loaded from backtest, or created
via trade_list_to_dataframe
:param timeframe: Frequency used for the backtest
:param max_open_trades: parameter max_open_trades used during backtest run
:return: dataframe with open-counts per time-period in freq
"""
df_final = analyze_trade_parallelism(trades, timeframe)
return df_final[df_final["open_trades"] > max_open_trades]