Merge pull request #8955 from freqtrade/feat/bt_streaks

Backtesting - streak output
This commit is contained in:
Matthias
2023-07-25 18:06:11 +02:00
committed by GitHub
4 changed files with 59 additions and 3 deletions

View File

@@ -324,6 +324,7 @@ A backtesting result will look like that:
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
@@ -428,6 +429,7 @@ It contains some useful key metrics about performance of your strategy on backte
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
@@ -467,6 +469,7 @@ It contains some useful key metrics about performance of your strategy on backte
- `Best day` / `Worst day`: Best and worst day based on daily profit.
- `Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
- `Max Consecutive Wins / Loss`: Maximum consecutive wins/losses in a row.
- `Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
- `Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
- `Canceled Trade Entries`: Number of trades that have been canceled by user request via `adjust_entry_price`.

View File

@@ -270,6 +270,9 @@ def text_table_add_metrics(strat_results: Dict) -> str:
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
('Max Consecutive Wins / Loss',
f"{strat_results['max_consecutive_wins']} / {strat_results['max_consecutive_losses']}"
if 'max_consecutive_losses' in strat_results else 'N/A'),
('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')),
('Entry/Exit Timeouts',
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "

View File

@@ -1,9 +1,10 @@
import logging
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from typing import Any, Dict, List, Union
from typing import Any, Dict, List, Tuple, Union
from pandas import DataFrame, concat, to_datetime
import numpy as np
from pandas import DataFrame, Series, concat, to_datetime
from freqtrade.constants import BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, IntOrInf
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
@@ -252,6 +253,23 @@ def generate_all_periodic_breakdown_stats(trade_list: List) -> Dict[str, List]:
return result
def calc_streak(dataframe: DataFrame) -> Tuple[int, int]:
"""
Calculate consecutive win and loss streaks
:param dataframe: Dataframe containing the trades dataframe, with profit_ratio column
:return: Tuple containing consecutive wins and losses
"""
df = Series(np.where(dataframe['profit_ratio'] > 0, 'win', 'loss')).to_frame('result')
df['streaks'] = df['result'].ne(df['result'].shift()).cumsum().rename('streaks')
df['counter'] = df['streaks'].groupby(df['streaks']).cumcount() + 1
res = df.groupby(df['result']).max()
#
cons_wins = int(res.loc['win', 'counter']) if 'win' in res.index else 0
cons_losses = int(res.loc['loss', 'counter']) if 'loss' in res.index else 0
return cons_wins, cons_losses
def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
""" Generate overall trade statistics """
if len(results) == 0:
@@ -263,6 +281,8 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
'holding_avg': timedelta(),
'winner_holding_avg': timedelta(),
'loser_holding_avg': timedelta(),
'max_consecutive_wins': 0,
'max_consecutive_losses': 0,
}
winning_trades = results.loc[results['profit_ratio'] > 0]
@@ -275,6 +295,7 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
if not winning_trades.empty else timedelta())
loser_holding_avg = (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
if not losing_trades.empty else timedelta())
winstreak, loss_streak = calc_streak(results)
return {
'wins': len(winning_trades),
@@ -287,6 +308,8 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
'winner_holding_avg_s': winner_holding_avg.total_seconds(),
'loser_holding_avg': loser_holding_avg,
'loser_holding_avg_s': loser_holding_avg.total_seconds(),
'max_consecutive_wins': winstreak,
'max_consecutive_losses': loss_streak,
}

View File

@@ -23,7 +23,8 @@ from freqtrade.optimize.optimize_reports import (generate_backtest_stats, genera
store_backtest_analysis_results,
store_backtest_stats, text_table_bt_results,
text_table_exit_reason, text_table_strategy)
from freqtrade.optimize.optimize_reports.optimize_reports import _get_resample_from_period
from freqtrade.optimize.optimize_reports.optimize_reports import (_get_resample_from_period,
calc_streak)
from freqtrade.resolvers.strategy_resolver import StrategyResolver
from freqtrade.util import dt_ts
from freqtrade.util.datetime_helpers import dt_from_ts, dt_utc
@@ -348,6 +349,32 @@ def test_generate_trading_stats(testdatadir):
assert res['losses'] == 0
def test_calc_streak(testdatadir):
df = pd.DataFrame({
'profit_ratio': [0.05, -0.02, -0.03, -0.05, 0.01, 0.02, 0.03, 0.04, -0.02, -0.03],
})
# 4 consecutive wins, 3 consecutive losses
res = calc_streak(df)
assert res == (4, 3)
assert isinstance(res[0], int)
assert isinstance(res[1], int)
# invert situation
df1 = df.copy()
df1['profit_ratio'] = df1['profit_ratio'] * -1
assert calc_streak(df1) == (3, 4)
df_empty = pd.DataFrame({
'profit_ratio': [],
})
assert df_empty.empty
assert calc_streak(df_empty) == (0, 0)
filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename)
assert calc_streak(bt_data) == (7, 18)
def test_text_table_exit_reason():
results = pd.DataFrame(