Merge pull request #10208 from freqtrade/ruff

Add ruff formatting
This commit is contained in:
Matthias
2024-05-14 06:25:06 +02:00
committed by GitHub
374 changed files with 44196 additions and 35573 deletions

View File

@@ -18,15 +18,22 @@
"editor.insertSpaces": true,
"files.trimTrailingWhitespace": true,
"[markdown]": {
"files.trimTrailingWhitespace": false,
"files.trimTrailingWhitespace": false
},
"python.pythonPath": "/usr/local/bin/python",
"[python]": {
"editor.codeActionsOnSave": {
"source.organizeImports": "explicit"
},
"editor.formatOnSave": true,
"editor.defaultFormatter": "charliermarsh.ruff"
}
},
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"ms-python.python",
"ms-python.vscode-pylance",
"ms-python.isort",
"charliermarsh.ruff",
"davidanson.vscode-markdownlint",
"ms-azuretools.vscode-docker",
"vscode-icons-team.vscode-icons",

View File

@@ -111,7 +111,11 @@ jobs:
- name: Run Ruff
run: |
ruff check --output-format=github .
ruff check --output-format=github
- name: Run Ruff format check
run: |
ruff format --check
- name: Mypy
run: |
@@ -230,7 +234,11 @@ jobs:
- name: Run Ruff
run: |
ruff check --output-format=github .
ruff check --output-format=github
- name: Run Ruff format check
run: |
ruff format --check
- name: Mypy
run: |
@@ -300,7 +308,11 @@ jobs:
- name: Run Ruff
run: |
ruff check --output-format=github .
ruff check --output-format=github
- name: Run Ruff format check
run: |
ruff format --check
- name: Mypy
run: |

11
.vscode/extensions.json vendored Normal file
View File

@@ -0,0 +1,11 @@
{
"recommendations": [
"ms-python.python",
"ms-python.vscode-pylance",
"charliermarsh.ruff",
"davidanson.vscode-markdownlint",
"ms-azuretools.vscode-docker",
"vscode-icons-team.vscode-icons",
"github.vscode-github-actions",
]
}

View File

@@ -72,12 +72,12 @@ you can manually run pre-commit with `pre-commit run -a`.
mypy freqtrade
```
### 4. Ensure all imports are correct
### 4. Ensure formatting is correct
#### Run isort
#### Run ruff
``` bash
isort .
ruff format .
```
## (Core)-Committer Guide

View File

@@ -6,21 +6,18 @@ from pathlib import Path
import ccxt
key = os.environ.get('FREQTRADE__EXCHANGE__KEY')
secret = os.environ.get('FREQTRADE__EXCHANGE__SECRET')
key = os.environ.get("FREQTRADE__EXCHANGE__KEY")
secret = os.environ.get("FREQTRADE__EXCHANGE__SECRET")
proxy = os.environ.get('CI_WEB_PROXY')
proxy = os.environ.get("CI_WEB_PROXY")
exchange = ccxt.binance({
'apiKey': key,
'secret': secret,
'httpsProxy': proxy,
'options': {'defaultType': 'swap'}
})
exchange = ccxt.binance(
{"apiKey": key, "secret": secret, "httpsProxy": proxy, "options": {"defaultType": "swap"}}
)
_ = exchange.load_markets()
lev_tiers = exchange.fetch_leverage_tiers()
# Assumes this is running in the root of the repository.
file = Path('freqtrade/exchange/binance_leverage_tiers.json')
json.dump(dict(sorted(lev_tiers.items())), file.open('w'), indent=2)
file = Path("freqtrade/exchange/binance_leverage_tiers.json")
json.dump(dict(sorted(lev_tiers.items())), file.open("w"), indent=2)

View File

@@ -1,18 +1,15 @@
#!/usr/bin/env python3
from freqtrade_client import __version__ as client_version
from freqtrade import __version__ as ft_version
from freqtrade_client import __version__ as client_version
def main():
if ft_version != client_version:
print(f"Versions do not match: \n"
f"ft: {ft_version} \n"
f"client: {client_version}")
print(f"Versions do not match: \nft: {ft_version} \nclient: {client_version}")
exit(1)
print(f"Versions match: ft: {ft_version}, client: {client_version}")
exit(0)
if __name__ == '__main__':
if __name__ == "__main__":
main()

View File

@@ -6,28 +6,30 @@ from pathlib import Path
import yaml
pre_commit_file = Path('.pre-commit-config.yaml')
require_dev = Path('requirements-dev.txt')
require = Path('requirements.txt')
pre_commit_file = Path(".pre-commit-config.yaml")
require_dev = Path("requirements-dev.txt")
require = Path("requirements.txt")
with require_dev.open('r') as rfile:
with require_dev.open("r") as rfile:
requirements = rfile.readlines()
with require.open('r') as rfile:
with require.open("r") as rfile:
requirements.extend(rfile.readlines())
# Extract types only
type_reqs = [r.strip('\n') for r in requirements if r.startswith(
'types-') or r.startswith('SQLAlchemy')]
type_reqs = [
r.strip("\n") for r in requirements if r.startswith("types-") or r.startswith("SQLAlchemy")
]
with pre_commit_file.open('r') as file:
with pre_commit_file.open("r") as file:
f = yaml.load(file, Loader=yaml.SafeLoader)
mypy_repo = [repo for repo in f['repos'] if repo['repo']
== 'https://github.com/pre-commit/mirrors-mypy']
mypy_repo = [
repo for repo in f["repos"] if repo["repo"] == "https://github.com/pre-commit/mirrors-mypy"
]
hooks = mypy_repo[0]['hooks'][0]['additional_dependencies']
hooks = mypy_repo[0]["hooks"][0]["additional_dependencies"]
errors = []
for hook in hooks:

View File

@@ -1,21 +1,33 @@
""" Freqtrade bot """
__version__ = '2024.5-dev'
"""Freqtrade bot"""
if 'dev' in __version__:
__version__ = "2024.5-dev"
if "dev" in __version__:
from pathlib import Path
try:
import subprocess
freqtrade_basedir = Path(__file__).parent
__version__ = __version__ + '-' + subprocess.check_output(
['git', 'log', '--format="%h"', '-n 1'],
stderr=subprocess.DEVNULL, cwd=freqtrade_basedir).decode("utf-8").rstrip().strip('"')
__version__ = (
__version__
+ "-"
+ subprocess.check_output(
["git", "log", '--format="%h"', "-n 1"],
stderr=subprocess.DEVNULL,
cwd=freqtrade_basedir,
)
.decode("utf-8")
.rstrip()
.strip('"')
)
except Exception: # pragma: no cover
# git not available, ignore
try:
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
versionfile = Path('./freqtrade_commit')
versionfile = Path("./freqtrade_commit")
if versionfile.is_file():
__version__ = f"docker-{__version__}-{versionfile.read_text()[:8]}"
except Exception:

View File

@@ -9,5 +9,5 @@ To launch Freqtrade as a module
from freqtrade import main
if __name__ == '__main__':
if __name__ == "__main__":
main.main()

View File

@@ -6,22 +6,39 @@ Contains all start-commands, subcommands and CLI Interface creation.
Note: Be careful with file-scoped imports in these subfiles.
as they are parsed on startup, nothing containing optional modules should be loaded.
"""
from freqtrade.commands.analyze_commands import start_analysis_entries_exits
from freqtrade.commands.arguments import Arguments
from freqtrade.commands.build_config_commands import start_new_config, start_show_config
from freqtrade.commands.data_commands import (start_convert_data, start_convert_trades,
start_download_data, start_list_data)
from freqtrade.commands.data_commands import (
start_convert_data,
start_convert_trades,
start_download_data,
start_list_data,
)
from freqtrade.commands.db_commands import start_convert_db
from freqtrade.commands.deploy_commands import (start_create_userdir, start_install_ui,
start_new_strategy)
from freqtrade.commands.deploy_commands import (
start_create_userdir,
start_install_ui,
start_new_strategy,
)
from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hyperopt_show
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_freqAI_models,
start_list_markets, start_list_strategies,
start_list_timeframes, start_show_trades)
from freqtrade.commands.optimize_commands import (start_backtesting, start_backtesting_show,
start_edge, start_hyperopt,
start_lookahead_analysis,
start_recursive_analysis)
from freqtrade.commands.list_commands import (
start_list_exchanges,
start_list_freqAI_models,
start_list_markets,
start_list_strategies,
start_list_timeframes,
start_show_trades,
)
from freqtrade.commands.optimize_commands import (
start_backtesting,
start_backtesting_show,
start_edge,
start_hyperopt,
start_lookahead_analysis,
start_recursive_analysis,
)
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
from freqtrade.commands.strategy_utils_commands import start_strategy_update

View File

@@ -20,25 +20,25 @@ def setup_analyze_configuration(args: Dict[str, Any], method: RunMode) -> Dict[s
config = setup_utils_configuration(args, method)
no_unlimited_runmodes = {
RunMode.BACKTEST: 'backtesting',
RunMode.BACKTEST: "backtesting",
}
if method in no_unlimited_runmodes.keys():
from freqtrade.data.btanalysis import get_latest_backtest_filename
if 'exportfilename' in config:
if config['exportfilename'].is_dir():
btfile = Path(get_latest_backtest_filename(config['exportfilename']))
if "exportfilename" in config:
if config["exportfilename"].is_dir():
btfile = Path(get_latest_backtest_filename(config["exportfilename"]))
signals_file = f"{config['exportfilename']}/{btfile.stem}_signals.pkl"
else:
if config['exportfilename'].exists():
btfile = Path(config['exportfilename'])
if config["exportfilename"].exists():
btfile = Path(config["exportfilename"])
signals_file = f"{btfile.parent}/{btfile.stem}_signals.pkl"
else:
raise ConfigurationError(f"{config['exportfilename']} does not exist.")
else:
raise ConfigurationError('exportfilename not in config.')
raise ConfigurationError("exportfilename not in config.")
if (not Path(signals_file).exists()):
if not Path(signals_file).exists():
raise OperationalException(
f"Cannot find latest backtest signals file: {signals_file}."
"Run backtesting with `--export signals`."
@@ -58,6 +58,6 @@ def start_analysis_entries_exits(args: Dict[str, Any]) -> None:
# Initialize configuration
config = setup_analyze_configuration(args, RunMode.BACKTEST)
logger.info('Starting freqtrade in analysis mode')
logger.info("Starting freqtrade in analysis mode")
process_entry_exit_reasons(config)

View File

@@ -1,6 +1,7 @@
"""
This module contains the argument manager class
"""
import argparse
from functools import partial
from pathlib import Path
@@ -12,35 +13,72 @@ from freqtrade.constants import DEFAULT_CONFIG
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
ARGS_STRATEGY = ["strategy", "strategy_path", "recursive_strategy_search", "freqaimodel",
"freqaimodel_path"]
ARGS_STRATEGY = [
"strategy",
"strategy_path",
"recursive_strategy_search",
"freqaimodel",
"freqaimodel_path",
]
ARGS_TRADE = ["db_url", "sd_notify", "dry_run", "dry_run_wallet", "fee"]
ARGS_WEBSERVER: List[str] = []
ARGS_COMMON_OPTIMIZE = ["timeframe", "timerange", "dataformat_ohlcv",
"max_open_trades", "stake_amount", "fee", "pairs"]
ARGS_COMMON_OPTIMIZE = [
"timeframe",
"timerange",
"dataformat_ohlcv",
"max_open_trades",
"stake_amount",
"fee",
"pairs",
]
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
"enable_protections", "dry_run_wallet", "timeframe_detail",
"strategy_list", "export", "exportfilename",
"backtest_breakdown", "backtest_cache",
"freqai_backtest_live_models"]
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + [
"position_stacking",
"use_max_market_positions",
"enable_protections",
"dry_run_wallet",
"timeframe_detail",
"strategy_list",
"export",
"exportfilename",
"backtest_breakdown",
"backtest_cache",
"freqai_backtest_live_models",
]
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
"position_stacking", "use_max_market_positions",
"enable_protections", "dry_run_wallet", "timeframe_detail",
"epochs", "spaces", "print_all",
"print_colorized", "print_json", "hyperopt_jobs",
"hyperopt_random_state", "hyperopt_min_trades",
"hyperopt_loss", "disableparamexport",
"hyperopt_ignore_missing_space", "analyze_per_epoch"]
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + [
"hyperopt",
"hyperopt_path",
"position_stacking",
"use_max_market_positions",
"enable_protections",
"dry_run_wallet",
"timeframe_detail",
"epochs",
"spaces",
"print_all",
"print_colorized",
"print_json",
"hyperopt_jobs",
"hyperopt_random_state",
"hyperopt_min_trades",
"hyperopt_loss",
"disableparamexport",
"hyperopt_ignore_missing_space",
"analyze_per_epoch",
]
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized",
"recursive_strategy_search"]
ARGS_LIST_STRATEGIES = [
"strategy_path",
"print_one_column",
"print_colorized",
"recursive_strategy_search",
]
ARGS_LIST_FREQAIMODELS = ["freqaimodel_path", "print_one_column", "print_colorized"]
@@ -52,12 +90,27 @@ ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"]
ARGS_LIST_PAIRS = ["exchange", "print_list", "list_pairs_print_json", "print_one_column",
"print_csv", "base_currencies", "quote_currencies", "list_pairs_all",
"trading_mode"]
ARGS_LIST_PAIRS = [
"exchange",
"print_list",
"list_pairs_print_json",
"print_one_column",
"print_csv",
"base_currencies",
"quote_currencies",
"list_pairs_all",
"trading_mode",
]
ARGS_TEST_PAIRLIST = ["user_data_dir", "verbosity", "config", "quote_currencies",
"print_one_column", "list_pairs_print_json", "exchange"]
ARGS_TEST_PAIRLIST = [
"user_data_dir",
"verbosity",
"config",
"quote_currencies",
"print_one_column",
"list_pairs_print_json",
"exchange",
]
ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
@@ -70,22 +123,58 @@ ARGS_CONVERT_DATA_TRADES = ["pairs", "format_from_trades", "format_to", "erase",
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase", "exchange"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "trading_mode", "candle_types"]
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades",
"trading_mode"]
ARGS_CONVERT_TRADES = [
"pairs",
"timeframes",
"exchange",
"dataformat_ohlcv",
"dataformat_trades",
"trading_mode",
]
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs", "trading_mode", "show_timerange"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "new_pairs_days", "include_inactive",
"timerange", "download_trades", "exchange", "timeframes",
"erase", "dataformat_ohlcv", "dataformat_trades", "trading_mode",
"prepend_data"]
ARGS_DOWNLOAD_DATA = [
"pairs",
"pairs_file",
"days",
"new_pairs_days",
"include_inactive",
"timerange",
"download_trades",
"exchange",
"timeframes",
"erase",
"dataformat_ohlcv",
"dataformat_trades",
"trading_mode",
"prepend_data",
]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",
"timerange", "timeframe", "no_trades"]
ARGS_PLOT_DATAFRAME = [
"pairs",
"indicators1",
"indicators2",
"plot_limit",
"db_url",
"trade_source",
"export",
"exportfilename",
"timerange",
"timeframe",
"no_trades",
]
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "timeframe", "plot_auto_open", ]
ARGS_PLOT_PROFIT = [
"pairs",
"timerange",
"export",
"exportfilename",
"db_url",
"trade_source",
"timeframe",
"plot_auto_open",
]
ARGS_CONVERT_DB = ["db_url", "db_url_from"]
@@ -93,36 +182,76 @@ ARGS_INSTALL_UI = ["erase_ui_only", "ui_version"]
ARGS_SHOW_TRADES = ["db_url", "trade_ids", "print_json"]
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
"hyperopt_list_min_trades", "hyperopt_list_max_trades",
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
"hyperopt_list_min_avg_profit", "hyperopt_list_max_avg_profit",
"hyperopt_list_min_total_profit", "hyperopt_list_max_total_profit",
"hyperopt_list_min_objective", "hyperopt_list_max_objective",
"print_colorized", "print_json", "hyperopt_list_no_details",
"hyperoptexportfilename", "export_csv"]
ARGS_HYPEROPT_LIST = [
"hyperopt_list_best",
"hyperopt_list_profitable",
"hyperopt_list_min_trades",
"hyperopt_list_max_trades",
"hyperopt_list_min_avg_time",
"hyperopt_list_max_avg_time",
"hyperopt_list_min_avg_profit",
"hyperopt_list_max_avg_profit",
"hyperopt_list_min_total_profit",
"hyperopt_list_max_total_profit",
"hyperopt_list_min_objective",
"hyperopt_list_max_objective",
"print_colorized",
"print_json",
"hyperopt_list_no_details",
"hyperoptexportfilename",
"export_csv",
]
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperoptexportfilename", "hyperopt_show_no_header",
"disableparamexport", "backtest_breakdown"]
ARGS_HYPEROPT_SHOW = [
"hyperopt_list_best",
"hyperopt_list_profitable",
"hyperopt_show_index",
"print_json",
"hyperoptexportfilename",
"hyperopt_show_no_header",
"disableparamexport",
"backtest_breakdown",
]
ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason_list",
"exit_reason_list", "indicator_list", "timerange",
"analysis_rejected", "analysis_to_csv", "analysis_csv_path"]
ARGS_ANALYZE_ENTRIES_EXITS = [
"exportfilename",
"analysis_groups",
"enter_reason_list",
"exit_reason_list",
"indicator_list",
"timerange",
"analysis_rejected",
"analysis_to_csv",
"analysis_csv_path",
]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",
"list-data", "hyperopt-list", "hyperopt-show", "backtest-filter",
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv",
"strategy-updater"]
NO_CONF_REQURIED = [
"convert-data",
"convert-trade-data",
"download-data",
"list-timeframes",
"list-markets",
"list-pairs",
"list-strategies",
"list-freqaimodels",
"list-data",
"hyperopt-list",
"hyperopt-show",
"backtest-filter",
"plot-dataframe",
"plot-profit",
"show-trades",
"trades-to-ohlcv",
"strategy-updater",
]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
ARGS_STRATEGY_UPDATER = ["strategy_list", "strategy_path", "recursive_strategy_search"]
ARGS_LOOKAHEAD_ANALYSIS = [
a for a in ARGS_BACKTEST if a not in ("position_stacking", "use_max_market_positions", 'cache')
] + ["minimum_trade_amount", "targeted_trade_amount", "lookahead_analysis_exportfilename"]
a for a in ARGS_BACKTEST if a not in ("position_stacking", "use_max_market_positions", "cache")
] + ["minimum_trade_amount", "targeted_trade_amount", "lookahead_analysis_exportfilename"]
ARGS_RECURSIVE_ANALYSIS = ["timeframe", "timerange", "dataformat_ohlcv", "pairs", "startup_candle"]
@@ -156,14 +285,14 @@ class Arguments:
# Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399)
# Allow no-config for certain commands (like downloading / plotting)
if ('config' in parsed_arg and parsed_arg.config is None):
conf_required = ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED)
if "config" in parsed_arg and parsed_arg.config is None:
conf_required = "command" in parsed_arg and parsed_arg.command in NO_CONF_REQURIED
if 'user_data_dir' in parsed_arg and parsed_arg.user_data_dir is not None:
if "user_data_dir" in parsed_arg and parsed_arg.user_data_dir is not None:
user_dir = parsed_arg.user_data_dir
else:
# Default case
user_dir = 'user_data'
user_dir = "user_data"
# Try loading from "user_data/config.json"
cfgfile = Path(user_dir) / DEFAULT_CONFIG
if cfgfile.is_file():
@@ -177,7 +306,6 @@ class Arguments:
return parsed_arg
def _build_args(self, optionlist, parser):
for val in optionlist:
opt = AVAILABLE_CLI_OPTIONS[val]
parser.add_argument(*opt.cli, dest=val, **opt.kwargs)
@@ -198,43 +326,61 @@ class Arguments:
# Build main command
self.parser = argparse.ArgumentParser(
prog="freqtrade",
description='Free, open source crypto trading bot'
prog="freqtrade", description="Free, open source crypto trading bot"
)
self._build_args(optionlist=['version'], parser=self.parser)
self._build_args(optionlist=["version"], parser=self.parser)
from freqtrade.commands import (start_analysis_entries_exits, start_backtesting,
start_backtesting_show, start_convert_data,
start_convert_db, start_convert_trades,
start_create_userdir, start_download_data, start_edge,
start_hyperopt, start_hyperopt_list, start_hyperopt_show,
start_install_ui, start_list_data, start_list_exchanges,
start_list_freqAI_models, start_list_markets,
start_list_strategies, start_list_timeframes,
start_lookahead_analysis, start_new_config,
start_new_strategy, start_plot_dataframe, start_plot_profit,
start_recursive_analysis, start_show_config,
start_show_trades, start_strategy_update,
start_test_pairlist, start_trading, start_webserver)
from freqtrade.commands import (
start_analysis_entries_exits,
start_backtesting,
start_backtesting_show,
start_convert_data,
start_convert_db,
start_convert_trades,
start_create_userdir,
start_download_data,
start_edge,
start_hyperopt,
start_hyperopt_list,
start_hyperopt_show,
start_install_ui,
start_list_data,
start_list_exchanges,
start_list_freqAI_models,
start_list_markets,
start_list_strategies,
start_list_timeframes,
start_lookahead_analysis,
start_new_config,
start_new_strategy,
start_plot_dataframe,
start_plot_profit,
start_recursive_analysis,
start_show_config,
start_show_trades,
start_strategy_update,
start_test_pairlist,
start_trading,
start_webserver,
)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
# shown from `main.py`
# required=True
)
subparsers = self.parser.add_subparsers(
dest="command",
# Use custom message when no subhandler is added
# shown from `main.py`
# required=True
)
# Add trade subcommand
trade_cmd = subparsers.add_parser(
'trade',
help='Trade module.',
parents=[_common_parser, _strategy_parser]
"trade", help="Trade module.", parents=[_common_parser, _strategy_parser]
)
trade_cmd.set_defaults(func=start_trading)
self._build_args(optionlist=ARGS_TRADE, parser=trade_cmd)
# add create-userdir subcommand
create_userdir_cmd = subparsers.add_parser(
'create-userdir',
"create-userdir",
help="Create user-data directory.",
)
create_userdir_cmd.set_defaults(func=start_create_userdir)
@@ -242,7 +388,7 @@ class Arguments:
# add new-config subcommand
build_config_cmd = subparsers.add_parser(
'new-config',
"new-config",
help="Create new config",
)
build_config_cmd.set_defaults(func=start_new_config)
@@ -250,7 +396,7 @@ class Arguments:
# add show-config subcommand
show_config_cmd = subparsers.add_parser(
'show-config',
"show-config",
help="Show resolved config",
)
show_config_cmd.set_defaults(func=start_show_config)
@@ -258,7 +404,7 @@ class Arguments:
# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser(
'new-strategy',
"new-strategy",
help="Create new strategy",
)
build_strategy_cmd.set_defaults(func=start_new_strategy)
@@ -266,8 +412,8 @@ class Arguments:
# Add download-data subcommand
download_data_cmd = subparsers.add_parser(
'download-data',
help='Download backtesting data.',
"download-data",
help="Download backtesting data.",
parents=[_common_parser],
)
download_data_cmd.set_defaults(func=start_download_data)
@@ -275,8 +421,8 @@ class Arguments:
# Add convert-data subcommand
convert_data_cmd = subparsers.add_parser(
'convert-data',
help='Convert candle (OHLCV) data from one format to another.',
"convert-data",
help="Convert candle (OHLCV) data from one format to another.",
parents=[_common_parser],
)
convert_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=True))
@@ -284,8 +430,8 @@ class Arguments:
# Add convert-trade-data subcommand
convert_trade_data_cmd = subparsers.add_parser(
'convert-trade-data',
help='Convert trade data from one format to another.',
"convert-trade-data",
help="Convert trade data from one format to another.",
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
@@ -293,8 +439,8 @@ class Arguments:
# Add trades-to-ohlcv subcommand
convert_trade_data_cmd = subparsers.add_parser(
'trades-to-ohlcv',
help='Convert trade data to OHLCV data.',
"trades-to-ohlcv",
help="Convert trade data to OHLCV data.",
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=start_convert_trades)
@@ -302,8 +448,8 @@ class Arguments:
# Add list-data subcommand
list_data_cmd = subparsers.add_parser(
'list-data',
help='List downloaded data.',
"list-data",
help="List downloaded data.",
parents=[_common_parser],
)
list_data_cmd.set_defaults(func=start_list_data)
@@ -311,17 +457,15 @@ class Arguments:
# Add backtesting subcommand
backtesting_cmd = subparsers.add_parser(
'backtesting',
help='Backtesting module.',
parents=[_common_parser, _strategy_parser]
"backtesting", help="Backtesting module.", parents=[_common_parser, _strategy_parser]
)
backtesting_cmd.set_defaults(func=start_backtesting)
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
# Add backtesting-show subcommand
backtesting_show_cmd = subparsers.add_parser(
'backtesting-show',
help='Show past Backtest results',
"backtesting-show",
help="Show past Backtest results",
parents=[_common_parser],
)
backtesting_show_cmd.set_defaults(func=start_backtesting_show)
@@ -329,26 +473,22 @@ class Arguments:
# Add backtesting analysis subcommand
analysis_cmd = subparsers.add_parser(
'backtesting-analysis',
help='Backtest Analysis module.',
parents=[_common_parser]
"backtesting-analysis", help="Backtest Analysis module.", parents=[_common_parser]
)
analysis_cmd.set_defaults(func=start_analysis_entries_exits)
self._build_args(optionlist=ARGS_ANALYZE_ENTRIES_EXITS, parser=analysis_cmd)
# Add edge subcommand
edge_cmd = subparsers.add_parser(
'edge',
help='Edge module.',
parents=[_common_parser, _strategy_parser]
"edge", help="Edge module.", parents=[_common_parser, _strategy_parser]
)
edge_cmd.set_defaults(func=start_edge)
self._build_args(optionlist=ARGS_EDGE, parser=edge_cmd)
# Add hyperopt subcommand
hyperopt_cmd = subparsers.add_parser(
'hyperopt',
help='Hyperopt module.',
"hyperopt",
help="Hyperopt module.",
parents=[_common_parser, _strategy_parser],
)
hyperopt_cmd.set_defaults(func=start_hyperopt)
@@ -356,8 +496,8 @@ class Arguments:
# Add hyperopt-list subcommand
hyperopt_list_cmd = subparsers.add_parser(
'hyperopt-list',
help='List Hyperopt results',
"hyperopt-list",
help="List Hyperopt results",
parents=[_common_parser],
)
hyperopt_list_cmd.set_defaults(func=start_hyperopt_list)
@@ -365,8 +505,8 @@ class Arguments:
# Add hyperopt-show subcommand
hyperopt_show_cmd = subparsers.add_parser(
'hyperopt-show',
help='Show details of Hyperopt results',
"hyperopt-show",
help="Show details of Hyperopt results",
parents=[_common_parser],
)
hyperopt_show_cmd.set_defaults(func=start_hyperopt_show)
@@ -374,8 +514,8 @@ class Arguments:
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
help='Print available exchanges.',
"list-exchanges",
help="Print available exchanges.",
parents=[_common_parser],
)
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
@@ -383,8 +523,8 @@ class Arguments:
# Add list-markets subcommand
list_markets_cmd = subparsers.add_parser(
'list-markets',
help='Print markets on exchange.',
"list-markets",
help="Print markets on exchange.",
parents=[_common_parser],
)
list_markets_cmd.set_defaults(func=partial(start_list_markets, pairs_only=False))
@@ -392,8 +532,8 @@ class Arguments:
# Add list-pairs subcommand
list_pairs_cmd = subparsers.add_parser(
'list-pairs',
help='Print pairs on exchange.',
"list-pairs",
help="Print pairs on exchange.",
parents=[_common_parser],
)
list_pairs_cmd.set_defaults(func=partial(start_list_markets, pairs_only=True))
@@ -401,8 +541,8 @@ class Arguments:
# Add list-strategies subcommand
list_strategies_cmd = subparsers.add_parser(
'list-strategies',
help='Print available strategies.',
"list-strategies",
help="Print available strategies.",
parents=[_common_parser],
)
list_strategies_cmd.set_defaults(func=start_list_strategies)
@@ -410,8 +550,8 @@ class Arguments:
# Add list-freqAI Models subcommand
list_freqaimodels_cmd = subparsers.add_parser(
'list-freqaimodels',
help='Print available freqAI models.',
"list-freqaimodels",
help="Print available freqAI models.",
parents=[_common_parser],
)
list_freqaimodels_cmd.set_defaults(func=start_list_freqAI_models)
@@ -419,8 +559,8 @@ class Arguments:
# Add list-timeframes subcommand
list_timeframes_cmd = subparsers.add_parser(
'list-timeframes',
help='Print available timeframes for the exchange.',
"list-timeframes",
help="Print available timeframes for the exchange.",
parents=[_common_parser],
)
list_timeframes_cmd.set_defaults(func=start_list_timeframes)
@@ -428,8 +568,8 @@ class Arguments:
# Add show-trades subcommand
show_trades = subparsers.add_parser(
'show-trades',
help='Show trades.',
"show-trades",
help="Show trades.",
parents=[_common_parser],
)
show_trades.set_defaults(func=start_show_trades)
@@ -437,8 +577,8 @@ class Arguments:
# Add test-pairlist subcommand
test_pairlist_cmd = subparsers.add_parser(
'test-pairlist',
help='Test your pairlist configuration.',
"test-pairlist",
help="Test your pairlist configuration.",
)
test_pairlist_cmd.set_defaults(func=start_test_pairlist)
self._build_args(optionlist=ARGS_TEST_PAIRLIST, parser=test_pairlist_cmd)
@@ -453,16 +593,16 @@ class Arguments:
# Add install-ui subcommand
install_ui_cmd = subparsers.add_parser(
'install-ui',
help='Install FreqUI',
"install-ui",
help="Install FreqUI",
)
install_ui_cmd.set_defaults(func=start_install_ui)
self._build_args(optionlist=ARGS_INSTALL_UI, parser=install_ui_cmd)
# Add Plotting subcommand
plot_dataframe_cmd = subparsers.add_parser(
'plot-dataframe',
help='Plot candles with indicators.',
"plot-dataframe",
help="Plot candles with indicators.",
parents=[_common_parser, _strategy_parser],
)
plot_dataframe_cmd.set_defaults(func=start_plot_dataframe)
@@ -470,8 +610,8 @@ class Arguments:
# Plot profit
plot_profit_cmd = subparsers.add_parser(
'plot-profit',
help='Generate plot showing profits.',
"plot-profit",
help="Generate plot showing profits.",
parents=[_common_parser, _strategy_parser],
)
plot_profit_cmd.set_defaults(func=start_plot_profit)
@@ -479,40 +619,36 @@ class Arguments:
# Add webserver subcommand
webserver_cmd = subparsers.add_parser(
'webserver',
help='Webserver module.',
parents=[_common_parser]
"webserver", help="Webserver module.", parents=[_common_parser]
)
webserver_cmd.set_defaults(func=start_webserver)
self._build_args(optionlist=ARGS_WEBSERVER, parser=webserver_cmd)
# Add strategy_updater subcommand
strategy_updater_cmd = subparsers.add_parser(
'strategy-updater',
help='updates outdated strategy files to the current version',
parents=[_common_parser]
"strategy-updater",
help="updates outdated strategy files to the current version",
parents=[_common_parser],
)
strategy_updater_cmd.set_defaults(func=start_strategy_update)
self._build_args(optionlist=ARGS_STRATEGY_UPDATER, parser=strategy_updater_cmd)
# Add lookahead_analysis subcommand
lookahead_analayis_cmd = subparsers.add_parser(
'lookahead-analysis',
"lookahead-analysis",
help="Check for potential look ahead bias.",
parents=[_common_parser, _strategy_parser]
parents=[_common_parser, _strategy_parser],
)
lookahead_analayis_cmd.set_defaults(func=start_lookahead_analysis)
self._build_args(optionlist=ARGS_LOOKAHEAD_ANALYSIS,
parser=lookahead_analayis_cmd)
self._build_args(optionlist=ARGS_LOOKAHEAD_ANALYSIS, parser=lookahead_analayis_cmd)
# Add recursive_analysis subcommand
recursive_analayis_cmd = subparsers.add_parser(
'recursive-analysis',
"recursive-analysis",
help="Check for potential recursive formula issue.",
parents=[_common_parser, _strategy_parser]
parents=[_common_parser, _strategy_parser],
)
recursive_analayis_cmd.set_defaults(func=start_recursive_analysis)
self._build_args(optionlist=ARGS_RECURSIVE_ANALYSIS,
parser=recursive_analayis_cmd)
self._build_args(optionlist=ARGS_RECURSIVE_ANALYSIS, parser=recursive_analayis_cmd)

View File

@@ -45,7 +45,7 @@ def ask_user_overwrite(config_path: Path) -> bool:
},
]
answers = prompt(questions)
return answers['overwrite']
return answers["overwrite"]
def ask_user_config() -> Dict[str, Any]:
@@ -65,7 +65,7 @@ def ask_user_config() -> Dict[str, Any]:
"type": "text",
"name": "stake_currency",
"message": "Please insert your stake currency:",
"default": 'USDT',
"default": "USDT",
},
{
"type": "text",
@@ -73,36 +73,35 @@ def ask_user_config() -> Dict[str, Any]:
"message": f"Please insert your stake amount (Number or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "unlimited",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
"filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"'
if val == UNLIMITED_STAKE_AMOUNT
else val
"filter": lambda val: (
'"' + UNLIMITED_STAKE_AMOUNT + '"' if val == UNLIMITED_STAKE_AMOUNT else val
),
},
{
"type": "text",
"name": "max_open_trades",
"message": "Please insert max_open_trades (Integer or -1 for unlimited open trades):",
"default": "3",
"validate": lambda val: validate_is_int(val)
"validate": lambda val: validate_is_int(val),
},
{
"type": "select",
"name": "timeframe_in_config",
"message": "Time",
"choices": ["Have the strategy define timeframe.", "Override in configuration."]
"choices": ["Have the strategy define timeframe.", "Override in configuration."],
},
{
"type": "text",
"name": "timeframe",
"message": "Please insert your desired timeframe (e.g. 5m):",
"default": "5m",
"when": lambda x: x["timeframe_in_config"] == 'Override in configuration.'
"when": lambda x: x["timeframe_in_config"] == "Override in configuration.",
},
{
"type": "text",
"name": "fiat_display_currency",
"message": "Please insert your display Currency (for reporting):",
"default": 'USD',
"default": "USD",
},
{
"type": "select",
@@ -125,33 +124,33 @@ def ask_user_config() -> Dict[str, Any]:
"name": "trading_mode",
"message": "Do you want to trade Perpetual Swaps (perpetual futures)?",
"default": False,
"filter": lambda val: 'futures' if val else 'spot',
"when": lambda x: x["exchange_name"] in ['binance', 'gate', 'okx'],
"filter": lambda val: "futures" if val else "spot",
"when": lambda x: x["exchange_name"] in ["binance", "gate", "okx"],
},
{
"type": "autocomplete",
"name": "exchange_name",
"message": "Type your exchange name (Must be supported by ccxt)",
"choices": available_exchanges(),
"when": lambda x: x["exchange_name"] == 'other'
"when": lambda x: x["exchange_name"] == "other",
},
{
"type": "password",
"name": "exchange_key",
"message": "Insert Exchange Key",
"when": lambda x: not x['dry_run']
"when": lambda x: not x["dry_run"],
},
{
"type": "password",
"name": "exchange_secret",
"message": "Insert Exchange Secret",
"when": lambda x: not x['dry_run']
"when": lambda x: not x["dry_run"],
},
{
"type": "password",
"name": "exchange_key_password",
"message": "Insert Exchange API Key password",
"when": lambda x: not x['dry_run'] and x['exchange_name'] in ('kucoin', 'okx')
"when": lambda x: not x["dry_run"] and x["exchange_name"] in ("kucoin", "okx"),
},
{
"type": "confirm",
@@ -163,13 +162,13 @@ def ask_user_config() -> Dict[str, Any]:
"type": "password",
"name": "telegram_token",
"message": "Insert Telegram token",
"when": lambda x: x['telegram']
"when": lambda x: x["telegram"],
},
{
"type": "password",
"name": "telegram_chat_id",
"message": "Insert Telegram chat id",
"when": lambda x: x['telegram']
"when": lambda x: x["telegram"],
},
{
"type": "confirm",
@@ -180,23 +179,25 @@ def ask_user_config() -> Dict[str, Any]:
{
"type": "text",
"name": "api_server_listen_addr",
"message": ("Insert Api server Listen Address (0.0.0.0 for docker, "
"otherwise best left untouched)"),
"message": (
"Insert Api server Listen Address (0.0.0.0 for docker, "
"otherwise best left untouched)"
),
"default": "127.0.0.1" if not running_in_docker() else "0.0.0.0",
"when": lambda x: x['api_server']
"when": lambda x: x["api_server"],
},
{
"type": "text",
"name": "api_server_username",
"message": "Insert api-server username",
"default": "freqtrader",
"when": lambda x: x['api_server']
"when": lambda x: x["api_server"],
},
{
"type": "password",
"name": "api_server_password",
"message": "Insert api-server password",
"when": lambda x: x['api_server']
"when": lambda x: x["api_server"],
},
]
answers = prompt(questions)
@@ -205,15 +206,11 @@ def ask_user_config() -> Dict[str, Any]:
# Interrupted questionary sessions return an empty dict.
raise OperationalException("User interrupted interactive questions.")
# Ensure default is set for non-futures exchanges
answers['trading_mode'] = answers.get('trading_mode', "spot")
answers['margin_mode'] = (
'isolated'
if answers.get('trading_mode') == 'futures'
else ''
)
answers["trading_mode"] = answers.get("trading_mode", "spot")
answers["margin_mode"] = "isolated" if answers.get("trading_mode") == "futures" else ""
# Force JWT token to be a random string
answers['api_server_jwt_key'] = secrets.token_hex()
answers['api_server_ws_token'] = secrets.token_urlsafe(25)
answers["api_server_jwt_key"] = secrets.token_hex()
answers["api_server_ws_token"] = secrets.token_urlsafe(25)
return answers
@@ -225,26 +222,26 @@ def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
:param selections: Dict containing selections taken by the user.
"""
from jinja2.exceptions import TemplateNotFound
try:
exchange_template = MAP_EXCHANGE_CHILDCLASS.get(
selections['exchange_name'], selections['exchange_name'])
selections["exchange_name"], selections["exchange_name"]
)
selections['exchange'] = render_template(
templatefile=f"subtemplates/exchange_{exchange_template}.j2",
arguments=selections
selections["exchange"] = render_template(
templatefile=f"subtemplates/exchange_{exchange_template}.j2", arguments=selections
)
except TemplateNotFound:
selections['exchange'] = render_template(
templatefile="subtemplates/exchange_generic.j2",
arguments=selections
selections["exchange"] = render_template(
templatefile="subtemplates/exchange_generic.j2", arguments=selections
)
config_text = render_template(templatefile='base_config.json.j2',
arguments=selections)
config_text = render_template(templatefile="base_config.json.j2", arguments=selections)
logger.info(f"Writing config to `{config_path}`.")
logger.info(
"Please make sure to check the configuration contents and adjust settings to your needs.")
"Please make sure to check the configuration contents and adjust settings to your needs."
)
config_path.write_text(config_text)
@@ -255,7 +252,7 @@ def start_new_config(args: Dict[str, Any]) -> None:
Asking the user questions to fill out the template accordingly.
"""
config_path = Path(args['config'][0])
config_path = Path(args["config"][0])
chown_user_directory(config_path.parent)
if config_path.exists():
overwrite = ask_user_overwrite(config_path)
@@ -264,22 +261,22 @@ def start_new_config(args: Dict[str, Any]) -> None:
else:
raise OperationalException(
f"Configuration file `{config_path}` already exists. "
"Please delete it or use a different configuration file name.")
"Please delete it or use a different configuration file name."
)
selections = ask_user_config()
deploy_new_config(config_path, selections)
def start_show_config(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE, set_dry=False)
# TODO: Sanitize from sensitive info before printing
print("Your combined configuration is:")
config_sanitized = sanitize_config(
config['original_config'],
show_sensitive=args.get('show_sensitive', False)
config["original_config"], show_sensitive=args.get("show_sensitive", False)
)
from rich import print_json
print_json(data=config_sanitized)

File diff suppressed because it is too large Load Diff

View File

@@ -5,8 +5,11 @@ from typing import Any, Dict
from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.constants import DATETIME_PRINT_FORMAT, DL_DATA_TIMEFRAMES, Config
from freqtrade.data.converter import (convert_ohlcv_format, convert_trades_format,
convert_trades_to_ohlcv)
from freqtrade.data.converter import (
convert_ohlcv_format,
convert_trades_format,
convert_trades_to_ohlcv,
)
from freqtrade.data.history import download_data_main
from freqtrade.enums import CandleType, RunMode, TradingMode
from freqtrade.exceptions import ConfigurationError
@@ -20,14 +23,17 @@ logger = logging.getLogger(__name__)
def _check_data_config_download_sanity(config: Config) -> None:
if 'days' in config and 'timerange' in config:
raise ConfigurationError("--days and --timerange are mutually exclusive. "
"You can only specify one or the other.")
if "days" in config and "timerange" in config:
raise ConfigurationError(
"--days and --timerange are mutually exclusive. "
"You can only specify one or the other."
)
if 'pairs' not in config:
if "pairs" not in config:
raise ConfigurationError(
"Downloading data requires a list of pairs. "
"Please check the documentation on how to configure this.")
"Please check the documentation on how to configure this."
)
def start_download_data(args: Dict[str, Any]) -> None:
@@ -46,38 +52,41 @@ def start_download_data(args: Dict[str, Any]) -> None:
def start_convert_trades(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
timerange = TimeRange()
# Remove stake-currency to skip checks which are not relevant for datadownload
config['stake_currency'] = ''
config["stake_currency"] = ""
if 'timeframes' not in config:
config['timeframes'] = DL_DATA_TIMEFRAMES
if "timeframes" not in config:
config["timeframes"] = DL_DATA_TIMEFRAMES
# Init exchange
exchange = ExchangeResolver.load_exchange(config, validate=False)
# Manual validations of relevant settings
for timeframe in config['timeframes']:
for timeframe in config["timeframes"]:
exchange.validate_timeframes(timeframe)
available_pairs = [
p for p in exchange.get_markets(
tradable_only=True, active_only=not config.get('include_inactive')
).keys()
p
for p in exchange.get_markets(
tradable_only=True, active_only=not config.get("include_inactive")
).keys()
]
expanded_pairs = dynamic_expand_pairlist(config, available_pairs)
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
candle_type=config.get('candle_type_def', CandleType.SPOT)
pairs=expanded_pairs,
timeframes=config["timeframes"],
datadir=config["datadir"],
timerange=timerange,
erase=bool(config.get("erase")),
data_format_ohlcv=config["dataformat_ohlcv"],
data_format_trades=config["dataformat_trades"],
candle_type=config.get("candle_type_def", CandleType.SPOT),
)
@@ -88,14 +97,19 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
migrate_data(config)
convert_ohlcv_format(config,
convert_from=args['format_from'],
convert_to=args['format_to'],
erase=args['erase'])
convert_ohlcv_format(
config,
convert_from=args["format_from"],
convert_to=args["format_to"],
erase=args["erase"],
)
else:
convert_trades_format(config,
convert_from=args['format_from_trades'], convert_to=args['format_to'],
erase=args['erase'])
convert_trades_format(
config,
convert_from=args["format_from_trades"],
convert_to=args["format_to"],
erase=args["erase"],
)
def start_list_data(args: Dict[str, Any]) -> None:
@@ -108,45 +122,59 @@ def start_list_data(args: Dict[str, Any]) -> None:
from tabulate import tabulate
from freqtrade.data.history import get_datahandler
dhc = get_datahandler(config['datadir'], config['dataformat_ohlcv'])
dhc = get_datahandler(config["datadir"], config["dataformat_ohlcv"])
paircombs = dhc.ohlcv_get_available_data(
config['datadir'],
config.get('trading_mode', TradingMode.SPOT)
)
config["datadir"], config.get("trading_mode", TradingMode.SPOT)
)
if args['pairs']:
paircombs = [comb for comb in paircombs if comb[0] in args['pairs']]
if args["pairs"]:
paircombs = [comb for comb in paircombs if comb[0] in args["pairs"]]
print(f"Found {len(paircombs)} pair / timeframe combinations.")
if not config.get('show_timerange'):
if not config.get("show_timerange"):
groupedpair = defaultdict(list)
for pair, timeframe, candle_type in sorted(
paircombs,
key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2])
paircombs, key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2])
):
groupedpair[(pair, candle_type)].append(timeframe)
if groupedpair:
print(tabulate([
(pair, ', '.join(timeframes), candle_type)
for (pair, candle_type), timeframes in groupedpair.items()
],
headers=("Pair", "Timeframe", "Type"),
tablefmt='psql', stralign='right'))
print(
tabulate(
[
(pair, ", ".join(timeframes), candle_type)
for (pair, candle_type), timeframes in groupedpair.items()
],
headers=("Pair", "Timeframe", "Type"),
tablefmt="psql",
stralign="right",
)
)
else:
paircombs1 = [(
pair, timeframe, candle_type,
*dhc.ohlcv_data_min_max(pair, timeframe, candle_type)
) for pair, timeframe, candle_type in paircombs]
paircombs1 = [
(pair, timeframe, candle_type, *dhc.ohlcv_data_min_max(pair, timeframe, candle_type))
for pair, timeframe, candle_type in paircombs
]
print(tabulate([
(pair, timeframe, candle_type,
start.strftime(DATETIME_PRINT_FORMAT),
end.strftime(DATETIME_PRINT_FORMAT), length)
for pair, timeframe, candle_type, start, end, length in sorted(
paircombs1,
key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2]))
],
headers=("Pair", "Timeframe", "Type", 'From', 'To', 'Candles'),
tablefmt='psql', stralign='right'))
print(
tabulate(
[
(
pair,
timeframe,
candle_type,
start.strftime(DATETIME_PRINT_FORMAT),
end.strftime(DATETIME_PRINT_FORMAT),
length,
)
for pair, timeframe, candle_type, start, end, length in sorted(
paircombs1, key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2])
)
],
headers=("Pair", "Timeframe", "Type", "From", "To", "Candles"),
tablefmt="psql",
stralign="right",
)
)

View File

@@ -19,9 +19,9 @@ def start_convert_db(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
init_db(config['db_url'])
init_db(config["db_url"])
session_target = Trade.session
init_db(config['db_url_from'])
init_db(config["db_url_from"])
logger.info("Starting db migration.")
trade_count = 0
@@ -47,9 +47,11 @@ def start_convert_db(args: Dict[str, Any]) -> None:
max_order_id = session_target.scalar(select(func.max(Order.id)))
max_pairlock_id = session_target.scalar(select(func.max(PairLock.id)))
set_sequence_ids(session_target.get_bind(),
trade_id=max_trade_id,
order_id=max_order_id,
pairlock_id=max_pairlock_id)
set_sequence_ids(
session_target.get_bind(),
trade_id=max_trade_id,
order_id=max_order_id,
pairlock_id=max_pairlock_id,
)
logger.info(f"Migrated {trade_count} Trades, and {pairlock_count} Pairlocks.")

View File

@@ -38,7 +38,7 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
"""
Deploy new strategy from template to strategy_path
"""
fallback = 'full'
fallback = "full"
attributes = render_template_with_fallback(
templatefile=f"strategy_subtemplates/strategy_attributes_{subtemplate}.j2",
templatefallbackfile=f"strategy_subtemplates/strategy_attributes_{fallback}.j2",
@@ -64,33 +64,35 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
templatefallbackfile="strategy_subtemplates/strategy_methods_empty.j2",
)
strategy_text = render_template(templatefile='base_strategy.py.j2',
arguments={"strategy": strategy_name,
"attributes": attributes,
"indicators": indicators,
"buy_trend": buy_trend,
"sell_trend": sell_trend,
"plot_config": plot_config,
"additional_methods": additional_methods,
})
strategy_text = render_template(
templatefile="base_strategy.py.j2",
arguments={
"strategy": strategy_name,
"attributes": attributes,
"indicators": indicators,
"buy_trend": buy_trend,
"sell_trend": sell_trend,
"plot_config": plot_config,
"additional_methods": additional_methods,
},
)
logger.info(f"Writing strategy to `{strategy_path}`.")
strategy_path.write_text(strategy_text)
def start_new_strategy(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "strategy" in args and args["strategy"]:
new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args['strategy'] + '.py')
new_path = config["user_data_dir"] / USERPATH_STRATEGIES / (args["strategy"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
raise OperationalException(
f"`{new_path}` already exists. Please choose another Strategy Name."
)
deploy_new_strategy(args['strategy'], new_path, args['template'])
deploy_new_strategy(args["strategy"], new_path, args["template"])
else:
raise ConfigurationError("`new-strategy` requires --strategy to be set.")
@@ -100,8 +102,8 @@ def clean_ui_subdir(directory: Path):
if directory.is_dir():
logger.info("Removing UI directory content.")
for p in reversed(list(directory.glob('**/*'))): # iterate contents from leaves to root
if p.name in ('.gitkeep', 'fallback_file.html'):
for p in reversed(list(directory.glob("**/*"))): # iterate contents from leaves to root
if p.name in (".gitkeep", "fallback_file.html"):
continue
if p.is_file():
p.unlink()
@@ -110,11 +112,11 @@ def clean_ui_subdir(directory: Path):
def read_ui_version(dest_folder: Path) -> Optional[str]:
file = dest_folder / '.uiversion'
file = dest_folder / ".uiversion"
if not file.is_file():
return None
with file.open('r') as f:
with file.open("r") as f:
return f.read()
@@ -133,12 +135,12 @@ def download_and_install_ui(dest_folder: Path, dl_url: str, version: str):
destfile.mkdir(exist_ok=True)
else:
destfile.write_bytes(x.read())
with (dest_folder / '.uiversion').open('w') as f:
with (dest_folder / ".uiversion").open("w") as f:
f.write(version)
def get_ui_download_url(version: Optional[str] = None) -> Tuple[str, str]:
base_url = 'https://api.github.com/repos/freqtrade/frequi/'
base_url = "https://api.github.com/repos/freqtrade/frequi/"
# Get base UI Repo path
resp = requests.get(f"{base_url}releases", timeout=req_timeout)
@@ -146,42 +148,41 @@ def get_ui_download_url(version: Optional[str] = None) -> Tuple[str, str]:
r = resp.json()
if version:
tmp = [x for x in r if x['name'] == version]
tmp = [x for x in r if x["name"] == version]
if tmp:
latest_version = tmp[0]['name']
assets = tmp[0].get('assets', [])
latest_version = tmp[0]["name"]
assets = tmp[0].get("assets", [])
else:
raise ValueError("UI-Version not found.")
else:
latest_version = r[0]['name']
assets = r[0].get('assets', [])
dl_url = ''
latest_version = r[0]["name"]
assets = r[0].get("assets", [])
dl_url = ""
if assets and len(assets) > 0:
dl_url = assets[0]['browser_download_url']
dl_url = assets[0]["browser_download_url"]
# URL not found - try assets url
if not dl_url:
assets = r[0]['assets_url']
assets = r[0]["assets_url"]
resp = requests.get(assets, timeout=req_timeout)
r = resp.json()
dl_url = r[0]['browser_download_url']
dl_url = r[0]["browser_download_url"]
return dl_url, latest_version
def start_install_ui(args: Dict[str, Any]) -> None:
dest_folder = Path(__file__).parents[1] / 'rpc/api_server/ui/installed/'
dest_folder = Path(__file__).parents[1] / "rpc/api_server/ui/installed/"
# First make sure the assets are removed.
dl_url, latest_version = get_ui_download_url(args.get('ui_version'))
dl_url, latest_version = get_ui_download_url(args.get("ui_version"))
curr_version = read_ui_version(dest_folder)
if curr_version == latest_version and not args.get('erase_ui_only'):
if curr_version == latest_version and not args.get("erase_ui_only"):
logger.info(f"UI already up-to-date, FreqUI Version {curr_version}.")
return
clean_ui_subdir(dest_folder)
if args.get('erase_ui_only'):
if args.get("erase_ui_only"):
logger.info("Erased UI directory content. Not downloading new version.")
else:
# Download a new version

View File

@@ -22,15 +22,15 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False)
export_csv = config.get('export_csv')
no_details = config.get('hyperopt_list_no_details', False)
print_colorized = config.get("print_colorized", False)
print_json = config.get("print_json", False)
export_csv = config.get("export_csv")
no_details = config.get("hyperopt_list_no_details", False)
no_header = False
results_file = get_latest_hyperopt_file(
config['user_data_dir'] / 'hyperopt_results',
config.get('hyperoptexportfilename'))
config["user_data_dir"] / "hyperopt_results", config.get("hyperoptexportfilename")
)
# Previous evaluations
epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config)
@@ -40,21 +40,26 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
if not export_csv:
try:
print(HyperoptTools.get_result_table(config, epochs, total_epochs,
not config.get('hyperopt_list_best', False),
print_colorized, 0))
print(
HyperoptTools.get_result_table(
config,
epochs,
total_epochs,
not config.get("hyperopt_list_best", False),
print_colorized,
0,
)
)
except KeyboardInterrupt:
print('User interrupted..')
print("User interrupted..")
if epochs and not no_details:
sorted_epochs = sorted(epochs, key=itemgetter('loss'))
sorted_epochs = sorted(epochs, key=itemgetter("loss"))
results = sorted_epochs[0]
HyperoptTools.show_epoch_details(results, total_epochs, print_json, no_header)
if epochs and export_csv:
HyperoptTools.export_csv_file(
config, epochs, export_csv
)
HyperoptTools.export_csv_file(config, epochs, export_csv)
def start_hyperopt_show(args: Dict[str, Any]) -> None:
@@ -65,13 +70,13 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
print_json = config.get('print_json', False)
no_header = config.get('hyperopt_show_no_header', False)
print_json = config.get("print_json", False)
no_header = config.get("hyperopt_show_no_header", False)
results_file = get_latest_hyperopt_file(
config['user_data_dir'] / 'hyperopt_results',
config.get('hyperoptexportfilename'))
config["user_data_dir"] / "hyperopt_results", config.get("hyperoptexportfilename")
)
n = config.get('hyperopt_show_index', -1)
n = config.get("hyperopt_show_index", -1)
# Previous evaluations
epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config)
@@ -80,10 +85,12 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
if n > filtered_epochs:
raise OperationalException(
f"The index of the epoch to show should be less than {filtered_epochs + 1}.")
f"The index of the epoch to show should be less than {filtered_epochs + 1}."
)
if n < -filtered_epochs:
raise OperationalException(
f"The index of the epoch to show should be greater than {-filtered_epochs - 1}.")
f"The index of the epoch to show should be greater than {-filtered_epochs - 1}."
)
# Translate epoch index from human-readable format to pythonic
if n > 0:
@@ -92,13 +99,18 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
if epochs:
val = epochs[n]
metrics = val['results_metrics']
if 'strategy_name' in metrics:
strategy_name = metrics['strategy_name']
show_backtest_result(strategy_name, metrics,
metrics['stake_currency'], config.get('backtest_breakdown', []))
metrics = val["results_metrics"]
if "strategy_name" in metrics:
strategy_name = metrics["strategy_name"]
show_backtest_result(
strategy_name,
metrics,
metrics["stake_currency"],
config.get("backtest_breakdown", []),
)
HyperoptTools.try_export_params(config, strategy_name, val)
HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
HyperoptTools.show_epoch_details(
val, total_epochs, print_json, no_header, header_str="Epoch details"
)

View File

@@ -26,42 +26,47 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
:param args: Cli args from Arguments()
:return: None
"""
exchanges = list_available_exchanges(args['list_exchanges_all'])
exchanges = list_available_exchanges(args["list_exchanges_all"])
if args['print_one_column']:
print('\n'.join([e['name'] for e in exchanges]))
if args["print_one_column"]:
print("\n".join([e["name"] for e in exchanges]))
else:
headers = {
'name': 'Exchange name',
'supported': 'Supported',
'trade_modes': 'Markets',
'comment': 'Reason',
}
headers.update({'valid': 'Valid'} if args['list_exchanges_all'] else {})
"name": "Exchange name",
"supported": "Supported",
"trade_modes": "Markets",
"comment": "Reason",
}
headers.update({"valid": "Valid"} if args["list_exchanges_all"] else {})
def build_entry(exchange: ValidExchangesType, valid: bool):
valid_entry = {'valid': exchange['valid']} if valid else {}
valid_entry = {"valid": exchange["valid"]} if valid else {}
result: Dict[str, Union[str, bool]] = {
'name': exchange['name'],
"name": exchange["name"],
**valid_entry,
'supported': 'Official' if exchange['supported'] else '',
'trade_modes': ', '.join(
(f"{a['margin_mode']} " if a['margin_mode'] else '') + a['trading_mode']
for a in exchange['trade_modes']
"supported": "Official" if exchange["supported"] else "",
"trade_modes": ", ".join(
(f"{a['margin_mode']} " if a["margin_mode"] else "") + a["trading_mode"]
for a in exchange["trade_modes"]
),
'comment': exchange['comment'],
"comment": exchange["comment"],
}
return result
if args['list_exchanges_all']:
if args["list_exchanges_all"]:
print("All exchanges supported by the ccxt library:")
exchanges = [build_entry(e, True) for e in exchanges]
else:
print("Exchanges available for Freqtrade:")
exchanges = [build_entry(e, False) for e in exchanges if e['valid'] is not False]
exchanges = [build_entry(e, False) for e in exchanges if e["valid"] is not False]
print(tabulate(exchanges, headers=headers, ))
print(
tabulate(
exchanges,
headers=headers,
)
)
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
@@ -71,26 +76,35 @@ def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
yellow = Fore.YELLOW
reset = Style.RESET_ALL
else:
red = ''
yellow = ''
reset = ''
red = ""
yellow = ""
reset = ""
names = [s['name'] for s in objs]
objs_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location_rel'],
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
} for s in objs]
names = [s["name"] for s in objs]
objs_to_print = [
{
"name": s["name"] if s["name"] else "--",
"location": s["location_rel"],
"status": (
red + "LOAD FAILED" + reset
if s["class"] is None
else "OK"
if names.count(s["name"]) == 1
else yellow + "DUPLICATE NAME" + reset
),
}
for s in objs
]
for idx, s in enumerate(objs):
if 'hyperoptable' in s:
objs_to_print[idx].update({
'hyperoptable': "Yes" if s['hyperoptable']['count'] > 0 else "No",
'buy-Params': len(s['hyperoptable'].get('buy', [])),
'sell-Params': len(s['hyperoptable'].get('sell', [])),
})
print(tabulate(objs_to_print, headers='keys', tablefmt='psql', stralign='right'))
if "hyperoptable" in s:
objs_to_print[idx].update(
{
"hyperoptable": "Yes" if s["hyperoptable"]["count"] > 0 else "No",
"buy-Params": len(s["hyperoptable"].get("buy", [])),
"sell-Params": len(s["hyperoptable"].get("sell", [])),
}
)
print(tabulate(objs_to_print, headers="keys", tablefmt="psql", stralign="right"))
def start_list_strategies(args: Dict[str, Any]) -> None:
@@ -100,19 +114,20 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
strategy_objs = StrategyResolver.search_all_objects(
config, not args['print_one_column'], config.get('recursive_strategy_search', False))
config, not args["print_one_column"], config.get("recursive_strategy_search", False)
)
# Sort alphabetically
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
strategy_objs = sorted(strategy_objs, key=lambda x: x["name"])
for obj in strategy_objs:
if obj['class']:
obj['hyperoptable'] = obj['class'].detect_all_parameters()
if obj["class"]:
obj["hyperoptable"] = obj["class"].detect_all_parameters()
else:
obj['hyperoptable'] = {'count': 0}
obj["hyperoptable"] = {"count": 0}
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategy_objs]))
if args["print_one_column"]:
print("\n".join([s["name"] for s in strategy_objs]))
else:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
_print_objs_tabular(strategy_objs, config.get("print_colorized", False))
def start_list_freqAI_models(args: Dict[str, Any]) -> None:
@@ -121,13 +136,14 @@ def start_list_freqAI_models(args: Dict[str, Any]) -> None:
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
model_objs = FreqaiModelResolver.search_all_objects(config, not args['print_one_column'])
model_objs = FreqaiModelResolver.search_all_objects(config, not args["print_one_column"])
# Sort alphabetically
model_objs = sorted(model_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in model_objs]))
model_objs = sorted(model_objs, key=lambda x: x["name"])
if args["print_one_column"]:
print("\n".join([s["name"] for s in model_objs]))
else:
_print_objs_tabular(model_objs, config.get('print_colorized', False))
_print_objs_tabular(model_objs, config.get("print_colorized", False))
def start_list_timeframes(args: Dict[str, Any]) -> None:
@@ -136,16 +152,18 @@ def start_list_timeframes(args: Dict[str, Any]) -> None:
"""
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
# Do not use timeframe set in the config
config['timeframe'] = None
config["timeframe"] = None
# Init exchange
exchange = ExchangeResolver.load_exchange(config, validate=False)
if args['print_one_column']:
print('\n'.join(exchange.timeframes))
if args["print_one_column"]:
print("\n".join(exchange.timeframes))
else:
print(f"Timeframes available for the exchange `{exchange.name}`: "
f"{', '.join(exchange.timeframes)}")
print(
f"Timeframes available for the exchange `{exchange.name}`: "
f"{', '.join(exchange.timeframes)}"
)
def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
@@ -161,51 +179,75 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
exchange = ExchangeResolver.load_exchange(config, validate=False)
# By default only active pairs/markets are to be shown
active_only = not args.get('list_pairs_all', False)
active_only = not args.get("list_pairs_all", False)
base_currencies = args.get('base_currencies', [])
quote_currencies = args.get('quote_currencies', [])
base_currencies = args.get("base_currencies", [])
quote_currencies = args.get("quote_currencies", [])
try:
pairs = exchange.get_markets(base_currencies=base_currencies,
quote_currencies=quote_currencies,
tradable_only=pairs_only,
active_only=active_only)
pairs = exchange.get_markets(
base_currencies=base_currencies,
quote_currencies=quote_currencies,
tradable_only=pairs_only,
active_only=active_only,
)
# Sort the pairs/markets by symbol
pairs = dict(sorted(pairs.items()))
except Exception as e:
raise OperationalException(f"Cannot get markets. Reason: {e}") from e
else:
summary_str = ((f"Exchange {exchange.name} has {len(pairs)} ") +
("active " if active_only else "") +
(plural(len(pairs), "pair" if pairs_only else "market")) +
(f" with {', '.join(base_currencies)} as base "
f"{plural(len(base_currencies), 'currency', 'currencies')}"
if base_currencies else "") +
(" and" if base_currencies and quote_currencies else "") +
(f" with {', '.join(quote_currencies)} as quote "
f"{plural(len(quote_currencies), 'currency', 'currencies')}"
if quote_currencies else ""))
summary_str = (
(f"Exchange {exchange.name} has {len(pairs)} ")
+ ("active " if active_only else "")
+ (plural(len(pairs), "pair" if pairs_only else "market"))
+ (
f" with {', '.join(base_currencies)} as base "
f"{plural(len(base_currencies), 'currency', 'currencies')}"
if base_currencies
else ""
)
+ (" and" if base_currencies and quote_currencies else "")
+ (
f" with {', '.join(quote_currencies)} as quote "
f"{plural(len(quote_currencies), 'currency', 'currencies')}"
if quote_currencies
else ""
)
)
headers = ["Id", "Symbol", "Base", "Quote", "Active",
"Spot", "Margin", "Future", "Leverage"]
headers = [
"Id",
"Symbol",
"Base",
"Quote",
"Active",
"Spot",
"Margin",
"Future",
"Leverage",
]
tabular_data = [{
'Id': v['id'],
'Symbol': v['symbol'],
'Base': v['base'],
'Quote': v['quote'],
'Active': market_is_active(v),
'Spot': 'Spot' if exchange.market_is_spot(v) else '',
'Margin': 'Margin' if exchange.market_is_margin(v) else '',
'Future': 'Future' if exchange.market_is_future(v) else '',
'Leverage': exchange.get_max_leverage(v['symbol'], 20)
} for _, v in pairs.items()]
tabular_data = [
{
"Id": v["id"],
"Symbol": v["symbol"],
"Base": v["base"],
"Quote": v["quote"],
"Active": market_is_active(v),
"Spot": "Spot" if exchange.market_is_spot(v) else "",
"Margin": "Margin" if exchange.market_is_margin(v) else "",
"Future": "Future" if exchange.market_is_future(v) else "",
"Leverage": exchange.get_max_leverage(v["symbol"], 20),
}
for _, v in pairs.items()
]
if (args.get('print_one_column', False) or
args.get('list_pairs_print_json', False) or
args.get('print_csv', False)):
if (
args.get("print_one_column", False)
or args.get("list_pairs_print_json", False)
or args.get("print_csv", False)
):
# Print summary string in the log in case of machine-readable
# regular formats.
logger.info(f"{summary_str}.")
@@ -215,24 +257,26 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
print()
if pairs:
if args.get('print_list', False):
if args.get("print_list", False):
# print data as a list, with human-readable summary
print(f"{summary_str}: {', '.join(pairs.keys())}.")
elif args.get('print_one_column', False):
print('\n'.join(pairs.keys()))
elif args.get('list_pairs_print_json', False):
elif args.get("print_one_column", False):
print("\n".join(pairs.keys()))
elif args.get("list_pairs_print_json", False):
print(rapidjson.dumps(list(pairs.keys()), default=str))
elif args.get('print_csv', False):
elif args.get("print_csv", False):
writer = csv.DictWriter(sys.stdout, fieldnames=headers)
writer.writeheader()
writer.writerows(tabular_data)
else:
# print data as a table, with the human-readable summary
print(f"{summary_str}:")
print(tabulate(tabular_data, headers='keys', tablefmt='psql', stralign='right'))
elif not (args.get('print_one_column', False) or
args.get('list_pairs_print_json', False) or
args.get('print_csv', False)):
print(tabulate(tabular_data, headers="keys", tablefmt="psql", stralign="right"))
elif not (
args.get("print_one_column", False)
or args.get("list_pairs_print_json", False)
or args.get("print_csv", False)
):
print(f"{summary_str}.")
@@ -243,21 +287,22 @@ def start_show_trades(args: Dict[str, Any]) -> None:
import json
from freqtrade.persistence import Trade, init_db
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if 'db_url' not in config:
if "db_url" not in config:
raise ConfigurationError("--db-url is required for this command.")
logger.info(f'Using DB: "{parse_db_uri_for_logging(config["db_url"])}"')
init_db(config['db_url'])
init_db(config["db_url"])
tfilter = []
if config.get('trade_ids'):
tfilter.append(Trade.id.in_(config['trade_ids']))
if config.get("trade_ids"):
tfilter.append(Trade.id.in_(config["trade_ids"]))
trades = Trade.get_trades(tfilter).all()
logger.info(f"Printing {len(trades)} Trades: ")
if config.get('print_json', False):
if config.get("print_json", False):
print(json.dumps([trade.to_json() for trade in trades], indent=4))
else:
for trade in trades:

View File

@@ -21,20 +21,22 @@ def setup_optimize_configuration(args: Dict[str, Any], method: RunMode) -> Dict[
config = setup_utils_configuration(args, method)
no_unlimited_runmodes = {
RunMode.BACKTEST: 'backtesting',
RunMode.HYPEROPT: 'hyperoptimization',
RunMode.BACKTEST: "backtesting",
RunMode.HYPEROPT: "hyperoptimization",
}
if method in no_unlimited_runmodes.keys():
wallet_size = config['dry_run_wallet'] * config['tradable_balance_ratio']
wallet_size = config["dry_run_wallet"] * config["tradable_balance_ratio"]
# tradable_balance_ratio
if (config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT
and config['stake_amount'] > wallet_size):
wallet = fmt_coin(wallet_size, config['stake_currency'])
stake = fmt_coin(config['stake_amount'], config['stake_currency'])
if (
config["stake_amount"] != constants.UNLIMITED_STAKE_AMOUNT
and config["stake_amount"] > wallet_size
):
wallet = fmt_coin(wallet_size, config["stake_currency"])
stake = fmt_coin(config["stake_amount"], config["stake_currency"])
raise ConfigurationError(
f"Starting balance ({wallet}) is smaller than stake_amount {stake}. "
f"Wallet is calculated as `dry_run_wallet * tradable_balance_ratio`."
)
)
return config
@@ -51,7 +53,7 @@ def start_backtesting(args: Dict[str, Any]) -> None:
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.BACKTEST)
logger.info('Starting freqtrade in Backtesting mode')
logger.info("Starting freqtrade in Backtesting mode")
# Initialize backtesting object
backtesting = Backtesting(config)
@@ -68,7 +70,7 @@ def start_backtesting_show(args: Dict[str, Any]) -> None:
from freqtrade.data.btanalysis import load_backtest_stats
from freqtrade.optimize.optimize_reports import show_backtest_results, show_sorted_pairlist
results = load_backtest_stats(config['exportfilename'])
results = load_backtest_stats(config["exportfilename"])
show_backtest_results(config, results)
show_sorted_pairlist(config, results)
@@ -87,20 +89,20 @@ def start_hyperopt(args: Dict[str, Any]) -> None:
from freqtrade.optimize.hyperopt import Hyperopt
except ImportError as e:
raise OperationalException(
f"{e}. Please ensure that the hyperopt dependencies are installed.") from e
f"{e}. Please ensure that the hyperopt dependencies are installed."
) from e
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
logger.info("Starting freqtrade in Hyperopt mode")
lock = FileLock(Hyperopt.get_lock_filename(config))
try:
with lock.acquire(timeout=1):
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
logging.getLogger('filelock').setLevel(logging.WARNING)
logging.getLogger("hyperopt.tpe").setLevel(logging.WARNING)
logging.getLogger("filelock").setLevel(logging.WARNING)
# Initialize backtesting object
hyperopt = Hyperopt(config)
@@ -108,9 +110,11 @@ def start_hyperopt(args: Dict[str, Any]) -> None:
except Timeout:
logger.info("Another running instance of freqtrade Hyperopt detected.")
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
"Hyperopt module is resource hungry. Please run your Hyperopt sequentially "
"or on separate machines.")
logger.info(
"Simultaneous execution of multiple Hyperopt commands is not supported. "
"Hyperopt module is resource hungry. Please run your Hyperopt sequentially "
"or on separate machines."
)
logger.info("Quitting now.")
# TODO: return False here in order to help freqtrade to exit
# with non-zero exit code...
@@ -127,7 +131,7 @@ def start_edge(args: Dict[str, Any]) -> None:
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.EDGE)
logger.info('Starting freqtrade in Edge mode')
logger.info("Starting freqtrade in Edge mode")
# Initialize Edge object
edge_cli = EdgeCli(config)

View File

@@ -17,28 +17,29 @@ def start_test_pairlist(args: Dict[str, Any]) -> None:
"""
from freqtrade.persistence import FtNoDBContext
from freqtrade.plugins.pairlistmanager import PairListManager
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
exchange = ExchangeResolver.load_exchange(config, validate=False)
quote_currencies = args.get('quote_currencies')
quote_currencies = args.get("quote_currencies")
if not quote_currencies:
quote_currencies = [config.get('stake_currency')]
quote_currencies = [config.get("stake_currency")]
results = {}
with FtNoDBContext():
for curr in quote_currencies:
config['stake_currency'] = curr
config["stake_currency"] = curr
pairlists = PairListManager(exchange, config)
pairlists.refresh_pairlist()
results[curr] = pairlists.whitelist
for curr, pairlist in results.items():
if not args.get('print_one_column', False) and not args.get('list_pairs_print_json', False):
if not args.get("print_one_column", False) and not args.get("list_pairs_print_json", False):
print(f"Pairs for {curr}: ")
if args.get('print_one_column', False):
print('\n'.join(pairlist))
elif args.get('list_pairs_print_json', False):
if args.get("print_one_column", False):
print("\n".join(pairlist))
elif args.get("list_pairs_print_json", False):
print(rapidjson.dumps(list(pairlist), default=str))
else:
print(pairlist)

View File

@@ -6,10 +6,11 @@ from freqtrade.exceptions import ConfigurationError
def validate_plot_args(args: Dict[str, Any]) -> None:
if not args.get('datadir') and not args.get('config'):
if not args.get("datadir") and not args.get("config"):
raise ConfigurationError(
"You need to specify either `--datadir` or `--config` "
"for plot-profit and plot-dataframe.")
"for plot-profit and plot-dataframe."
)
def start_plot_dataframe(args: Dict[str, Any]) -> None:
@@ -18,6 +19,7 @@ def start_plot_dataframe(args: Dict[str, Any]) -> None:
"""
# Import here to avoid errors if plot-dependencies are not installed.
from freqtrade.plot.plotting import load_and_plot_trades
validate_plot_args(args)
config = setup_utils_configuration(args, RunMode.PLOT)
@@ -30,6 +32,7 @@ def start_plot_profit(args: Dict[str, Any]) -> None:
"""
# Import here to avoid errors if plot-dependencies are not installed.
from freqtrade.plot.plotting import plot_profit
validate_plot_args(args)
config = setup_utils_configuration(args, RunMode.PLOT)

View File

@@ -26,13 +26,15 @@ def start_strategy_update(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
strategy_objs = StrategyResolver.search_all_objects(
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
config, enum_failed=False, recursive=config.get("recursive_strategy_search", False)
)
filtered_strategy_objs = []
if args['strategy_list']:
if args["strategy_list"]:
filtered_strategy_objs = [
strategy_obj for strategy_obj in strategy_objs
if strategy_obj['name'] in args['strategy_list']
strategy_obj
for strategy_obj in strategy_objs
if strategy_obj["name"] in args["strategy_list"]
]
else:
@@ -41,8 +43,8 @@ def start_strategy_update(args: Dict[str, Any]) -> None:
processed_locations = set()
for strategy_obj in filtered_strategy_objs:
if strategy_obj['location'] not in processed_locations:
processed_locations.add(strategy_obj['location'])
if strategy_obj["location"] not in processed_locations:
processed_locations.add(strategy_obj["location"])
start_conversion(strategy_obj, config)

View File

@@ -24,13 +24,13 @@ def sanitize_config(config: Config, *, show_sensitive: bool = False) -> Config:
]
config = deepcopy(config)
for key in keys_to_remove:
if '.' in key:
nested_keys = key.split('.')
if "." in key:
nested_keys = key.split(".")
nested_config = config
for nested_key in nested_keys[:-1]:
nested_config = nested_config.get(nested_key, {})
nested_config[nested_keys[-1]] = 'REDACTED'
nested_config[nested_keys[-1]] = "REDACTED"
else:
config[key] = 'REDACTED'
config[key] = "REDACTED"
return config

View File

@@ -11,7 +11,8 @@ logger = logging.getLogger(__name__)
def setup_utils_configuration(
args: Dict[str, Any], method: RunMode, *, set_dry: bool = True) -> Dict[str, Any]:
args: Dict[str, Any], method: RunMode, *, set_dry: bool = True
) -> Dict[str, Any]:
"""
Prepare the configuration for utils subcommands
:param args: Cli args from Arguments()
@@ -23,7 +24,7 @@ def setup_utils_configuration(
# Ensure these modes are using Dry-run
if set_dry:
config['dry_run'] = True
config["dry_run"] = True
validate_config_consistency(config, preliminary=True)
return config

View File

@@ -20,18 +20,16 @@ def _extend_validator(validator_class):
Extended validator for the Freqtrade configuration JSON Schema.
Currently it only handles defaults for subschemas.
"""
validate_properties = validator_class.VALIDATORS['properties']
validate_properties = validator_class.VALIDATORS["properties"]
def set_defaults(validator, properties, instance, schema):
for prop, subschema in properties.items():
if 'default' in subschema:
instance.setdefault(prop, subschema['default'])
if "default" in subschema:
instance.setdefault(prop, subschema["default"])
yield from validate_properties(validator, properties, instance, schema)
return validators.extend(
validator_class, {'properties': set_defaults}
)
return validators.extend(validator_class, {"properties": set_defaults})
FreqtradeValidator = _extend_validator(Draft4Validator)
@@ -44,27 +42,23 @@ def validate_config_schema(conf: Dict[str, Any], preliminary: bool = False) -> D
:return: Returns the config if valid, otherwise throw an exception
"""
conf_schema = deepcopy(constants.CONF_SCHEMA)
if conf.get('runmode', RunMode.OTHER) in (RunMode.DRY_RUN, RunMode.LIVE):
conf_schema['required'] = constants.SCHEMA_TRADE_REQUIRED
elif conf.get('runmode', RunMode.OTHER) in (RunMode.BACKTEST, RunMode.HYPEROPT):
if conf.get("runmode", RunMode.OTHER) in (RunMode.DRY_RUN, RunMode.LIVE):
conf_schema["required"] = constants.SCHEMA_TRADE_REQUIRED
elif conf.get("runmode", RunMode.OTHER) in (RunMode.BACKTEST, RunMode.HYPEROPT):
if preliminary:
conf_schema['required'] = constants.SCHEMA_BACKTEST_REQUIRED
conf_schema["required"] = constants.SCHEMA_BACKTEST_REQUIRED
else:
conf_schema['required'] = constants.SCHEMA_BACKTEST_REQUIRED_FINAL
elif conf.get('runmode', RunMode.OTHER) == RunMode.WEBSERVER:
conf_schema['required'] = constants.SCHEMA_MINIMAL_WEBSERVER
conf_schema["required"] = constants.SCHEMA_BACKTEST_REQUIRED_FINAL
elif conf.get("runmode", RunMode.OTHER) == RunMode.WEBSERVER:
conf_schema["required"] = constants.SCHEMA_MINIMAL_WEBSERVER
else:
conf_schema['required'] = constants.SCHEMA_MINIMAL_REQUIRED
conf_schema["required"] = constants.SCHEMA_MINIMAL_REQUIRED
try:
FreqtradeValidator(conf_schema).validate(conf)
return conf
except ValidationError as e:
logger.critical(
f"Invalid configuration. Reason: {e}"
)
raise ValidationError(
best_match(Draft4Validator(conf_schema).iter_errors(conf)).message
)
logger.critical(f"Invalid configuration. Reason: {e}")
raise ValidationError(best_match(Draft4Validator(conf_schema).iter_errors(conf)).message)
def validate_config_consistency(conf: Dict[str, Any], *, preliminary: bool = False) -> None:
@@ -91,7 +85,7 @@ def validate_config_consistency(conf: Dict[str, Any], *, preliminary: bool = Fal
validate_migrated_strategy_settings(conf)
# validate configuration before returning
logger.info('Validating configuration ...')
logger.info("Validating configuration ...")
validate_config_schema(conf, preliminary=preliminary)
@@ -100,9 +94,11 @@ def _validate_unlimited_amount(conf: Dict[str, Any]) -> None:
If edge is disabled, either max_open_trades or stake_amount need to be set.
:raise: ConfigurationError if config validation failed
"""
if (not conf.get('edge', {}).get('enabled')
and conf.get('max_open_trades') == float('inf')
and conf.get('stake_amount') == constants.UNLIMITED_STAKE_AMOUNT):
if (
not conf.get("edge", {}).get("enabled")
and conf.get("max_open_trades") == float("inf")
and conf.get("stake_amount") == constants.UNLIMITED_STAKE_AMOUNT
):
raise ConfigurationError("`max_open_trades` and `stake_amount` cannot both be unlimited.")
@@ -111,45 +107,47 @@ def _validate_price_config(conf: Dict[str, Any]) -> None:
When using market orders, price sides must be using the "other" side of the price
"""
# TODO: The below could be an enforced setting when using market orders
if (conf.get('order_types', {}).get('entry') == 'market'
and conf.get('entry_pricing', {}).get('price_side') not in ('ask', 'other')):
raise ConfigurationError(
'Market entry orders require entry_pricing.price_side = "other".')
if conf.get("order_types", {}).get("entry") == "market" and conf.get("entry_pricing", {}).get(
"price_side"
) not in ("ask", "other"):
raise ConfigurationError('Market entry orders require entry_pricing.price_side = "other".')
if (conf.get('order_types', {}).get('exit') == 'market'
and conf.get('exit_pricing', {}).get('price_side') not in ('bid', 'other')):
if conf.get("order_types", {}).get("exit") == "market" and conf.get("exit_pricing", {}).get(
"price_side"
) not in ("bid", "other"):
raise ConfigurationError('Market exit orders require exit_pricing.price_side = "other".')
def _validate_trailing_stoploss(conf: Dict[str, Any]) -> None:
if conf.get('stoploss') == 0.0:
if conf.get("stoploss") == 0.0:
raise ConfigurationError(
'The config stoploss needs to be different from 0 to avoid problems with sell orders.'
"The config stoploss needs to be different from 0 to avoid problems with sell orders."
)
# Skip if trailing stoploss is not activated
if not conf.get('trailing_stop', False):
if not conf.get("trailing_stop", False):
return
tsl_positive = float(conf.get('trailing_stop_positive', 0))
tsl_offset = float(conf.get('trailing_stop_positive_offset', 0))
tsl_only_offset = conf.get('trailing_only_offset_is_reached', False)
tsl_positive = float(conf.get("trailing_stop_positive", 0))
tsl_offset = float(conf.get("trailing_stop_positive_offset", 0))
tsl_only_offset = conf.get("trailing_only_offset_is_reached", False)
if tsl_only_offset:
if tsl_positive == 0.0:
raise ConfigurationError(
'The config trailing_only_offset_is_reached needs '
'trailing_stop_positive_offset to be more than 0 in your config.')
"The config trailing_only_offset_is_reached needs "
"trailing_stop_positive_offset to be more than 0 in your config."
)
if tsl_positive > 0 and 0 < tsl_offset <= tsl_positive:
raise ConfigurationError(
'The config trailing_stop_positive_offset needs '
'to be greater than trailing_stop_positive in your config.')
"The config trailing_stop_positive_offset needs "
"to be greater than trailing_stop_positive in your config."
)
# Fetch again without default
if 'trailing_stop_positive' in conf and float(conf['trailing_stop_positive']) == 0.0:
if "trailing_stop_positive" in conf and float(conf["trailing_stop_positive"]) == 0.0:
raise ConfigurationError(
'The config trailing_stop_positive needs to be different from 0 '
'to avoid problems with sell orders.'
"The config trailing_stop_positive needs to be different from 0 "
"to avoid problems with sell orders."
)
@@ -158,10 +156,10 @@ def _validate_edge(conf: Dict[str, Any]) -> None:
Edge and Dynamic whitelist should not both be enabled, since edge overrides dynamic whitelists.
"""
if not conf.get('edge', {}).get('enabled'):
if not conf.get("edge", {}).get("enabled"):
return
if not conf.get('use_exit_signal', True):
if not conf.get("use_exit_signal", True):
raise ConfigurationError(
"Edge requires `use_exit_signal` to be True, otherwise no sells will happen."
)
@@ -171,13 +169,20 @@ def _validate_whitelist(conf: Dict[str, Any]) -> None:
"""
Dynamic whitelist does not require pair_whitelist to be set - however StaticWhitelist does.
"""
if conf.get('runmode', RunMode.OTHER) in [RunMode.OTHER, RunMode.PLOT,
RunMode.UTIL_NO_EXCHANGE, RunMode.UTIL_EXCHANGE]:
if conf.get("runmode", RunMode.OTHER) in [
RunMode.OTHER,
RunMode.PLOT,
RunMode.UTIL_NO_EXCHANGE,
RunMode.UTIL_EXCHANGE,
]:
return
for pl in conf.get('pairlists', [{'method': 'StaticPairList'}]):
if (isinstance(pl, dict) and pl.get('method') == 'StaticPairList'
and not conf.get('exchange', {}).get('pair_whitelist')):
for pl in conf.get("pairlists", [{"method": "StaticPairList"}]):
if (
isinstance(pl, dict)
and pl.get("method") == "StaticPairList"
and not conf.get("exchange", {}).get("pair_whitelist")
):
raise ConfigurationError("StaticPairList requires pair_whitelist to be set.")
@@ -186,14 +191,14 @@ def _validate_protections(conf: Dict[str, Any]) -> None:
Validate protection configuration validity
"""
for prot in conf.get('protections', []):
if ('stop_duration' in prot and 'stop_duration_candles' in prot):
for prot in conf.get("protections", []):
if "stop_duration" in prot and "stop_duration_candles" in prot:
raise ConfigurationError(
"Protections must specify either `stop_duration` or `stop_duration_candles`.\n"
f"Please fix the protection {prot.get('method')}"
)
if ('lookback_period' in prot and 'lookback_period_candles' in prot):
if "lookback_period" in prot and "lookback_period_candles" in prot:
raise ConfigurationError(
"Protections must specify either `lookback_period` or `lookback_period_candles`.\n"
f"Please fix the protection {prot.get('method')}"
@@ -201,10 +206,10 @@ def _validate_protections(conf: Dict[str, Any]) -> None:
def _validate_ask_orderbook(conf: Dict[str, Any]) -> None:
ask_strategy = conf.get('exit_pricing', {})
ob_min = ask_strategy.get('order_book_min')
ob_max = ask_strategy.get('order_book_max')
if ob_min is not None and ob_max is not None and ask_strategy.get('use_order_book'):
ask_strategy = conf.get("exit_pricing", {})
ob_min = ask_strategy.get("order_book_min")
ob_max = ask_strategy.get("order_book_max")
if ob_min is not None and ob_max is not None and ask_strategy.get("use_order_book"):
if ob_min != ob_max:
raise ConfigurationError(
"Using order_book_max != order_book_min in exit_pricing is no longer supported."
@@ -212,7 +217,7 @@ def _validate_ask_orderbook(conf: Dict[str, Any]) -> None:
)
else:
# Move value to order_book_top
ask_strategy['order_book_top'] = ob_min
ask_strategy["order_book_top"] = ob_min
logger.warning(
"DEPRECATED: "
"Please use `order_book_top` instead of `order_book_min` and `order_book_max` "
@@ -221,7 +226,6 @@ def _validate_ask_orderbook(conf: Dict[str, Any]) -> None:
def validate_migrated_strategy_settings(conf: Dict[str, Any]) -> None:
_validate_time_in_force(conf)
_validate_order_types(conf)
_validate_unfilledtimeout(conf)
@@ -230,119 +234,129 @@ def validate_migrated_strategy_settings(conf: Dict[str, Any]) -> None:
def _validate_time_in_force(conf: Dict[str, Any]) -> None:
time_in_force = conf.get('order_time_in_force', {})
if 'buy' in time_in_force or 'sell' in time_in_force:
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
time_in_force = conf.get("order_time_in_force", {})
if "buy" in time_in_force or "sell" in time_in_force:
if conf.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT:
raise ConfigurationError(
"Please migrate your time_in_force settings to use 'entry' and 'exit'.")
"Please migrate your time_in_force settings to use 'entry' and 'exit'."
)
else:
logger.warning(
"DEPRECATED: Using 'buy' and 'sell' for time_in_force is deprecated."
"Please migrate your time_in_force settings to use 'entry' and 'exit'."
)
process_deprecated_setting(
conf, 'order_time_in_force', 'buy', 'order_time_in_force', 'entry')
conf, "order_time_in_force", "buy", "order_time_in_force", "entry"
)
process_deprecated_setting(
conf, 'order_time_in_force', 'sell', 'order_time_in_force', 'exit')
conf, "order_time_in_force", "sell", "order_time_in_force", "exit"
)
def _validate_order_types(conf: Dict[str, Any]) -> None:
order_types = conf.get('order_types', {})
old_order_types = ['buy', 'sell', 'emergencysell', 'forcebuy',
'forcesell', 'emergencyexit', 'forceexit', 'forceentry']
order_types = conf.get("order_types", {})
old_order_types = [
"buy",
"sell",
"emergencysell",
"forcebuy",
"forcesell",
"emergencyexit",
"forceexit",
"forceentry",
]
if any(x in order_types for x in old_order_types):
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
if conf.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT:
raise ConfigurationError(
"Please migrate your order_types settings to use the new wording.")
"Please migrate your order_types settings to use the new wording."
)
else:
logger.warning(
"DEPRECATED: Using 'buy' and 'sell' for order_types is deprecated."
"Please migrate your order_types settings to use 'entry' and 'exit' wording."
)
for o, n in [
('buy', 'entry'),
('sell', 'exit'),
('emergencysell', 'emergency_exit'),
('forcesell', 'force_exit'),
('forcebuy', 'force_entry'),
('emergencyexit', 'emergency_exit'),
('forceexit', 'force_exit'),
('forceentry', 'force_entry'),
("buy", "entry"),
("sell", "exit"),
("emergencysell", "emergency_exit"),
("forcesell", "force_exit"),
("forcebuy", "force_entry"),
("emergencyexit", "emergency_exit"),
("forceexit", "force_exit"),
("forceentry", "force_entry"),
]:
process_deprecated_setting(conf, 'order_types', o, 'order_types', n)
process_deprecated_setting(conf, "order_types", o, "order_types", n)
def _validate_unfilledtimeout(conf: Dict[str, Any]) -> None:
unfilledtimeout = conf.get('unfilledtimeout', {})
if any(x in unfilledtimeout for x in ['buy', 'sell']):
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
unfilledtimeout = conf.get("unfilledtimeout", {})
if any(x in unfilledtimeout for x in ["buy", "sell"]):
if conf.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT:
raise ConfigurationError(
"Please migrate your unfilledtimeout settings to use the new wording.")
"Please migrate your unfilledtimeout settings to use the new wording."
)
else:
logger.warning(
"DEPRECATED: Using 'buy' and 'sell' for unfilledtimeout is deprecated."
"Please migrate your unfilledtimeout settings to use 'entry' and 'exit' wording."
)
for o, n in [
('buy', 'entry'),
('sell', 'exit'),
("buy", "entry"),
("sell", "exit"),
]:
process_deprecated_setting(conf, 'unfilledtimeout', o, 'unfilledtimeout', n)
process_deprecated_setting(conf, "unfilledtimeout", o, "unfilledtimeout", n)
def _validate_pricing_rules(conf: Dict[str, Any]) -> None:
if conf.get('ask_strategy') or conf.get('bid_strategy'):
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
raise ConfigurationError(
"Please migrate your pricing settings to use the new wording.")
if conf.get("ask_strategy") or conf.get("bid_strategy"):
if conf.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT:
raise ConfigurationError("Please migrate your pricing settings to use the new wording.")
else:
logger.warning(
"DEPRECATED: Using 'ask_strategy' and 'bid_strategy' is deprecated."
"Please migrate your settings to use 'entry_pricing' and 'exit_pricing'."
)
conf['entry_pricing'] = {}
for obj in list(conf.get('bid_strategy', {}).keys()):
if obj == 'ask_last_balance':
process_deprecated_setting(conf, 'bid_strategy', obj,
'entry_pricing', 'price_last_balance')
conf["entry_pricing"] = {}
for obj in list(conf.get("bid_strategy", {}).keys()):
if obj == "ask_last_balance":
process_deprecated_setting(
conf, "bid_strategy", obj, "entry_pricing", "price_last_balance"
)
else:
process_deprecated_setting(conf, 'bid_strategy', obj, 'entry_pricing', obj)
del conf['bid_strategy']
process_deprecated_setting(conf, "bid_strategy", obj, "entry_pricing", obj)
del conf["bid_strategy"]
conf['exit_pricing'] = {}
for obj in list(conf.get('ask_strategy', {}).keys()):
if obj == 'bid_last_balance':
process_deprecated_setting(conf, 'ask_strategy', obj,
'exit_pricing', 'price_last_balance')
conf["exit_pricing"] = {}
for obj in list(conf.get("ask_strategy", {}).keys()):
if obj == "bid_last_balance":
process_deprecated_setting(
conf, "ask_strategy", obj, "exit_pricing", "price_last_balance"
)
else:
process_deprecated_setting(conf, 'ask_strategy', obj, 'exit_pricing', obj)
del conf['ask_strategy']
process_deprecated_setting(conf, "ask_strategy", obj, "exit_pricing", obj)
del conf["ask_strategy"]
def _validate_freqai_hyperopt(conf: Dict[str, Any]) -> None:
freqai_enabled = conf.get('freqai', {}).get('enabled', False)
analyze_per_epoch = conf.get('analyze_per_epoch', False)
freqai_enabled = conf.get("freqai", {}).get("enabled", False)
analyze_per_epoch = conf.get("analyze_per_epoch", False)
if analyze_per_epoch and freqai_enabled:
raise ConfigurationError(
'Using analyze-per-epoch parameter is not supported with a FreqAI strategy.')
"Using analyze-per-epoch parameter is not supported with a FreqAI strategy."
)
def _validate_freqai_include_timeframes(conf: Dict[str, Any], preliminary: bool) -> None:
freqai_enabled = conf.get('freqai', {}).get('enabled', False)
freqai_enabled = conf.get("freqai", {}).get("enabled", False)
if freqai_enabled:
main_tf = conf.get('timeframe', '5m')
freqai_include_timeframes = conf.get('freqai', {}).get('feature_parameters', {}
).get('include_timeframes', [])
main_tf = conf.get("timeframe", "5m")
freqai_include_timeframes = (
conf.get("freqai", {}).get("feature_parameters", {}).get("include_timeframes", [])
)
from freqtrade.exchange import timeframe_to_seconds
main_tf_s = timeframe_to_seconds(main_tf)
offending_lines = []
for tf in freqai_include_timeframes:
@@ -352,57 +366,65 @@ def _validate_freqai_include_timeframes(conf: Dict[str, Any], preliminary: bool)
if offending_lines:
raise ConfigurationError(
f"Main timeframe of {main_tf} must be smaller or equal to FreqAI "
f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}")
f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}"
)
# Ensure that the base timeframe is included in the include_timeframes list
if not preliminary and main_tf not in freqai_include_timeframes:
feature_parameters = conf.get('freqai', {}).get('feature_parameters', {})
feature_parameters = conf.get("freqai", {}).get("feature_parameters", {})
include_timeframes = [main_tf] + freqai_include_timeframes
conf.get('freqai', {}).get('feature_parameters', {}) \
.update({**feature_parameters, 'include_timeframes': include_timeframes})
conf.get("freqai", {}).get("feature_parameters", {}).update(
{**feature_parameters, "include_timeframes": include_timeframes}
)
def _validate_freqai_backtest(conf: Dict[str, Any]) -> None:
if conf.get('runmode', RunMode.OTHER) == RunMode.BACKTEST:
freqai_enabled = conf.get('freqai', {}).get('enabled', False)
timerange = conf.get('timerange')
freqai_backtest_live_models = conf.get('freqai_backtest_live_models', False)
if conf.get("runmode", RunMode.OTHER) == RunMode.BACKTEST:
freqai_enabled = conf.get("freqai", {}).get("enabled", False)
timerange = conf.get("timerange")
freqai_backtest_live_models = conf.get("freqai_backtest_live_models", False)
if freqai_backtest_live_models and freqai_enabled and timerange:
raise ConfigurationError(
'Using timerange parameter is not supported with '
'--freqai-backtest-live-models parameter.')
"Using timerange parameter is not supported with "
"--freqai-backtest-live-models parameter."
)
if freqai_backtest_live_models and not freqai_enabled:
raise ConfigurationError(
'Using --freqai-backtest-live-models parameter is only '
'supported with a FreqAI strategy.')
"Using --freqai-backtest-live-models parameter is only "
"supported with a FreqAI strategy."
)
if freqai_enabled and not freqai_backtest_live_models and not timerange:
raise ConfigurationError(
'Please pass --timerange if you intend to use FreqAI for backtesting.')
"Please pass --timerange if you intend to use FreqAI for backtesting."
)
def _validate_consumers(conf: Dict[str, Any]) -> None:
emc_conf = conf.get('external_message_consumer', {})
if emc_conf.get('enabled', False):
if len(emc_conf.get('producers', [])) < 1:
emc_conf = conf.get("external_message_consumer", {})
if emc_conf.get("enabled", False):
if len(emc_conf.get("producers", [])) < 1:
raise ConfigurationError("You must specify at least 1 Producer to connect to.")
producer_names = [p['name'] for p in emc_conf.get('producers', [])]
producer_names = [p["name"] for p in emc_conf.get("producers", [])]
duplicates = [item for item, count in Counter(producer_names).items() if count > 1]
if duplicates:
raise ConfigurationError(
f"Producer names must be unique. Duplicate: {', '.join(duplicates)}")
if conf.get('process_only_new_candles', True):
f"Producer names must be unique. Duplicate: {', '.join(duplicates)}"
)
if conf.get("process_only_new_candles", True):
# Warning here or require it?
logger.warning("To receive best performance with external data, "
"please set `process_only_new_candles` to False")
logger.warning(
"To receive best performance with external data, "
"please set `process_only_new_candles` to False"
)
def _strategy_settings(conf: Dict[str, Any]) -> None:
process_deprecated_setting(conf, None, 'use_sell_signal', None, 'use_exit_signal')
process_deprecated_setting(conf, None, 'sell_profit_only', None, 'exit_profit_only')
process_deprecated_setting(conf, None, 'sell_profit_offset', None, 'exit_profit_offset')
process_deprecated_setting(conf, None, 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')
process_deprecated_setting(conf, None, "use_sell_signal", None, "use_exit_signal")
process_deprecated_setting(conf, None, "sell_profit_only", None, "exit_profit_only")
process_deprecated_setting(conf, None, "sell_profit_offset", None, "exit_profit_offset")
process_deprecated_setting(
conf, None, "ignore_roi_if_buy_signal", None, "ignore_roi_if_entry_signal"
)

View File

@@ -1,6 +1,7 @@
"""
This module contains the configuration class
"""
import logging
import warnings
from copy import deepcopy
@@ -56,7 +57,7 @@ class Configuration:
:return: configuration dictionary
"""
# Keep this method as staticmethod, so it can be used from interactive environments
c = Configuration({'config': files}, RunMode.OTHER)
c = Configuration({"config": files}, RunMode.OTHER)
return c.get_config()
def load_config(self) -> Dict[str, Any]:
@@ -69,19 +70,20 @@ class Configuration:
# Load environment variables
from freqtrade.commands.arguments import NO_CONF_ALLOWED
if self.args.get('command') not in NO_CONF_ALLOWED:
if self.args.get("command") not in NO_CONF_ALLOWED:
env_data = enironment_vars_to_dict()
config = deep_merge_dicts(env_data, config)
# Normalize config
if 'internals' not in config:
config['internals'] = {}
if "internals" not in config:
config["internals"] = {}
if 'pairlists' not in config:
config['pairlists'] = []
if "pairlists" not in config:
config["pairlists"] = []
# Keep a copy of the original configuration file
config['original_config'] = deepcopy(config)
config["original_config"] = deepcopy(config)
self._process_logging_options(config)
@@ -105,7 +107,7 @@ class Configuration:
from freqtrade.exchange.check_exchange import check_exchange
# Check if the exchange set by the user is supported
check_exchange(config, config.get('experimental', {}).get('block_bad_exchanges', True))
check_exchange(config, config.get("experimental", {}).get("block_bad_exchanges", True))
self._resolve_pairs_list(config)
@@ -119,52 +121,56 @@ class Configuration:
the -v/--verbose, --logfile options
"""
# Log level
config.update({'verbosity': self.args.get('verbosity', 0)})
config.update({"verbosity": self.args.get("verbosity", 0)})
if 'logfile' in self.args and self.args['logfile']:
config.update({'logfile': self.args['logfile']})
if "logfile" in self.args and self.args["logfile"]:
config.update({"logfile": self.args["logfile"]})
setup_logging(config)
def _process_trading_options(self, config: Config) -> None:
if config['runmode'] not in TRADE_MODES:
if config["runmode"] not in TRADE_MODES:
return
if config.get('dry_run', False):
logger.info('Dry run is enabled')
if config.get('db_url') in [None, constants.DEFAULT_DB_PROD_URL]:
if config.get("dry_run", False):
logger.info("Dry run is enabled")
if config.get("db_url") in [None, constants.DEFAULT_DB_PROD_URL]:
# Default to in-memory db for dry_run if not specified
config['db_url'] = constants.DEFAULT_DB_DRYRUN_URL
config["db_url"] = constants.DEFAULT_DB_DRYRUN_URL
else:
if not config.get('db_url'):
config['db_url'] = constants.DEFAULT_DB_PROD_URL
logger.info('Dry run is disabled')
if not config.get("db_url"):
config["db_url"] = constants.DEFAULT_DB_PROD_URL
logger.info("Dry run is disabled")
logger.info(f'Using DB: "{parse_db_uri_for_logging(config["db_url"])}"')
def _process_common_options(self, config: Config) -> None:
# Set strategy if not specified in config and or if it's non default
if self.args.get('strategy') or not config.get('strategy'):
config.update({'strategy': self.args.get('strategy')})
if self.args.get("strategy") or not config.get("strategy"):
config.update({"strategy": self.args.get("strategy")})
self._args_to_config(config, argname='strategy_path',
logstring='Using additional Strategy lookup path: {}')
self._args_to_config(
config, argname="strategy_path", logstring="Using additional Strategy lookup path: {}"
)
if ('db_url' in self.args and self.args['db_url'] and
self.args['db_url'] != constants.DEFAULT_DB_PROD_URL):
config.update({'db_url': self.args['db_url']})
logger.info('Parameter --db-url detected ...')
if (
"db_url" in self.args
and self.args["db_url"]
and self.args["db_url"] != constants.DEFAULT_DB_PROD_URL
):
config.update({"db_url": self.args["db_url"]})
logger.info("Parameter --db-url detected ...")
self._args_to_config(config, argname='db_url_from',
logstring='Parameter --db-url-from detected ...')
self._args_to_config(
config, argname="db_url_from", logstring="Parameter --db-url-from detected ..."
)
if config.get('force_entry_enable', False):
logger.warning('`force_entry_enable` RPC message enabled.')
if config.get("force_entry_enable", False):
logger.warning("`force_entry_enable` RPC message enabled.")
# Support for sd_notify
if 'sd_notify' in self.args and self.args['sd_notify']:
config['internals'].update({'sd_notify': True})
if "sd_notify" in self.args and self.args["sd_notify"]:
config["internals"].update({"sd_notify": True})
def _process_datadir_options(self, config: Config) -> None:
"""
@@ -172,245 +178,274 @@ class Configuration:
--user-data, --datadir
"""
# Check exchange parameter here - otherwise `datadir` might be wrong.
if 'exchange' in self.args and self.args['exchange']:
config['exchange']['name'] = self.args['exchange']
if "exchange" in self.args and self.args["exchange"]:
config["exchange"]["name"] = self.args["exchange"]
logger.info(f"Using exchange {config['exchange']['name']}")
if 'pair_whitelist' not in config['exchange']:
config['exchange']['pair_whitelist'] = []
if "pair_whitelist" not in config["exchange"]:
config["exchange"]["pair_whitelist"] = []
if 'user_data_dir' in self.args and self.args['user_data_dir']:
config.update({'user_data_dir': self.args['user_data_dir']})
elif 'user_data_dir' not in config:
if "user_data_dir" in self.args and self.args["user_data_dir"]:
config.update({"user_data_dir": self.args["user_data_dir"]})
elif "user_data_dir" not in config:
# Default to cwd/user_data (legacy option ...)
config.update({'user_data_dir': str(Path.cwd() / 'user_data')})
config.update({"user_data_dir": str(Path.cwd() / "user_data")})
# reset to user_data_dir so this contains the absolute path.
config['user_data_dir'] = create_userdata_dir(config['user_data_dir'], create_dir=False)
logger.info('Using user-data directory: %s ...', config['user_data_dir'])
config["user_data_dir"] = create_userdata_dir(config["user_data_dir"], create_dir=False)
logger.info("Using user-data directory: %s ...", config["user_data_dir"])
config.update({'datadir': create_datadir(config, self.args.get('datadir'))})
logger.info('Using data directory: %s ...', config.get('datadir'))
config.update({"datadir": create_datadir(config, self.args.get("datadir"))})
logger.info("Using data directory: %s ...", config.get("datadir"))
if self.args.get('exportfilename'):
self._args_to_config(config, argname='exportfilename',
logstring='Storing backtest results to {} ...')
config['exportfilename'] = Path(config['exportfilename'])
if self.args.get("exportfilename"):
self._args_to_config(
config, argname="exportfilename", logstring="Storing backtest results to {} ..."
)
config["exportfilename"] = Path(config["exportfilename"])
else:
config['exportfilename'] = (config['user_data_dir']
/ 'backtest_results')
config["exportfilename"] = config["user_data_dir"] / "backtest_results"
if self.args.get('show_sensitive'):
if self.args.get("show_sensitive"):
logger.warning(
"Sensitive information will be shown in the upcoming output. "
"Please make sure to never share this output without redacting "
"the information yourself.")
"the information yourself."
)
def _process_optimize_options(self, config: Config) -> None:
# This will override the strategy configuration
self._args_to_config(config, argname='timeframe',
logstring='Parameter -i/--timeframe detected ... '
'Using timeframe: {} ...')
self._args_to_config(config, argname='position_stacking',
logstring='Parameter --enable-position-stacking detected ...')
self._args_to_config(
config,
argname="timeframe",
logstring="Parameter -i/--timeframe detected ... Using timeframe: {} ...",
)
self._args_to_config(
config, argname='enable_protections',
logstring='Parameter --enable-protections detected, enabling Protections. ...')
config,
argname="position_stacking",
logstring="Parameter --enable-position-stacking detected ...",
)
if 'use_max_market_positions' in self.args and not self.args["use_max_market_positions"]:
config.update({'use_max_market_positions': False})
logger.info('Parameter --disable-max-market-positions detected ...')
logger.info('max_open_trades set to unlimited ...')
elif 'max_open_trades' in self.args and self.args['max_open_trades']:
config.update({'max_open_trades': self.args['max_open_trades']})
logger.info('Parameter --max-open-trades detected, '
'overriding max_open_trades to: %s ...', config.get('max_open_trades'))
elif config['runmode'] in NON_UTIL_MODES:
logger.info('Using max_open_trades: %s ...', config.get('max_open_trades'))
self._args_to_config(
config,
argname="enable_protections",
logstring="Parameter --enable-protections detected, enabling Protections. ...",
)
if "use_max_market_positions" in self.args and not self.args["use_max_market_positions"]:
config.update({"use_max_market_positions": False})
logger.info("Parameter --disable-max-market-positions detected ...")
logger.info("max_open_trades set to unlimited ...")
elif "max_open_trades" in self.args and self.args["max_open_trades"]:
config.update({"max_open_trades": self.args["max_open_trades"]})
logger.info(
"Parameter --max-open-trades detected, overriding max_open_trades to: %s ...",
config.get("max_open_trades"),
)
elif config["runmode"] in NON_UTIL_MODES:
logger.info("Using max_open_trades: %s ...", config.get("max_open_trades"))
# Setting max_open_trades to infinite if -1
if config.get('max_open_trades') == -1:
config['max_open_trades'] = float('inf')
if config.get("max_open_trades") == -1:
config["max_open_trades"] = float("inf")
if self.args.get('stake_amount'):
if self.args.get("stake_amount"):
# Convert explicitly to float to support CLI argument for both unlimited and value
try:
self.args['stake_amount'] = float(self.args['stake_amount'])
self.args["stake_amount"] = float(self.args["stake_amount"])
except ValueError:
pass
configurations = [
('timeframe_detail',
'Parameter --timeframe-detail detected, using {} for intra-candle backtesting ...'),
('backtest_show_pair_list', 'Parameter --show-pair-list detected.'),
('stake_amount',
'Parameter --stake-amount detected, overriding stake_amount to: {} ...'),
('dry_run_wallet',
'Parameter --dry-run-wallet detected, overriding dry_run_wallet to: {} ...'),
('fee', 'Parameter --fee detected, setting fee to: {} ...'),
('timerange', 'Parameter --timerange detected: {} ...'),
]
(
"timeframe_detail",
"Parameter --timeframe-detail detected, using {} for intra-candle backtesting ...",
),
("backtest_show_pair_list", "Parameter --show-pair-list detected."),
(
"stake_amount",
"Parameter --stake-amount detected, overriding stake_amount to: {} ...",
),
(
"dry_run_wallet",
"Parameter --dry-run-wallet detected, overriding dry_run_wallet to: {} ...",
),
("fee", "Parameter --fee detected, setting fee to: {} ..."),
("timerange", "Parameter --timerange detected: {} ..."),
]
self._args_to_config_loop(config, configurations)
self._process_datadir_options(config)
self._args_to_config(config, argname='strategy_list',
logstring='Using strategy list of {} strategies', logfun=len)
self._args_to_config(
config,
argname="strategy_list",
logstring="Using strategy list of {} strategies",
logfun=len,
)
configurations = [
('recursive_strategy_search',
'Recursively searching for a strategy in the strategies folder.'),
('timeframe', 'Overriding timeframe with Command line argument'),
('export', 'Parameter --export detected: {} ...'),
('backtest_breakdown', 'Parameter --breakdown detected ...'),
('backtest_cache', 'Parameter --cache={} detected ...'),
('disableparamexport', 'Parameter --disableparamexport detected: {} ...'),
('freqai_backtest_live_models',
'Parameter --freqai-backtest-live-models detected ...'),
(
"recursive_strategy_search",
"Recursively searching for a strategy in the strategies folder.",
),
("timeframe", "Overriding timeframe with Command line argument"),
("export", "Parameter --export detected: {} ..."),
("backtest_breakdown", "Parameter --breakdown detected ..."),
("backtest_cache", "Parameter --cache={} detected ..."),
("disableparamexport", "Parameter --disableparamexport detected: {} ..."),
("freqai_backtest_live_models", "Parameter --freqai-backtest-live-models detected ..."),
]
self._args_to_config_loop(config, configurations)
# Edge section:
if 'stoploss_range' in self.args and self.args["stoploss_range"]:
if "stoploss_range" in self.args and self.args["stoploss_range"]:
txt_range = eval(self.args["stoploss_range"])
config['edge'].update({'stoploss_range_min': txt_range[0]})
config['edge'].update({'stoploss_range_max': txt_range[1]})
config['edge'].update({'stoploss_range_step': txt_range[2]})
logger.info('Parameter --stoplosses detected: %s ...', self.args["stoploss_range"])
config["edge"].update({"stoploss_range_min": txt_range[0]})
config["edge"].update({"stoploss_range_max": txt_range[1]})
config["edge"].update({"stoploss_range_step": txt_range[2]})
logger.info("Parameter --stoplosses detected: %s ...", self.args["stoploss_range"])
# Hyperopt section
configurations = [
('hyperopt', 'Using Hyperopt class name: {}'),
('hyperopt_path', 'Using additional Hyperopt lookup path: {}'),
('hyperoptexportfilename', 'Using hyperopt file: {}'),
('lookahead_analysis_exportfilename', 'Saving lookahead analysis results into {} ...'),
('epochs', 'Parameter --epochs detected ... Will run Hyperopt with for {} epochs ...'),
('spaces', 'Parameter -s/--spaces detected: {}'),
('analyze_per_epoch', 'Parameter --analyze-per-epoch detected.'),
('print_all', 'Parameter --print-all detected ...'),
("hyperopt", "Using Hyperopt class name: {}"),
("hyperopt_path", "Using additional Hyperopt lookup path: {}"),
("hyperoptexportfilename", "Using hyperopt file: {}"),
("lookahead_analysis_exportfilename", "Saving lookahead analysis results into {} ..."),
("epochs", "Parameter --epochs detected ... Will run Hyperopt with for {} epochs ..."),
("spaces", "Parameter -s/--spaces detected: {}"),
("analyze_per_epoch", "Parameter --analyze-per-epoch detected."),
("print_all", "Parameter --print-all detected ..."),
]
self._args_to_config_loop(config, configurations)
if 'print_colorized' in self.args and not self.args["print_colorized"]:
logger.info('Parameter --no-color detected ...')
config.update({'print_colorized': False})
if "print_colorized" in self.args and not self.args["print_colorized"]:
logger.info("Parameter --no-color detected ...")
config.update({"print_colorized": False})
else:
config.update({'print_colorized': True})
config.update({"print_colorized": True})
configurations = [
('print_json', 'Parameter --print-json detected ...'),
('export_csv', 'Parameter --export-csv detected: {}'),
('hyperopt_jobs', 'Parameter -j/--job-workers detected: {}'),
('hyperopt_random_state', 'Parameter --random-state detected: {}'),
('hyperopt_min_trades', 'Parameter --min-trades detected: {}'),
('hyperopt_loss', 'Using Hyperopt loss class name: {}'),
('hyperopt_show_index', 'Parameter -n/--index detected: {}'),
('hyperopt_list_best', 'Parameter --best detected: {}'),
('hyperopt_list_profitable', 'Parameter --profitable detected: {}'),
('hyperopt_list_min_trades', 'Parameter --min-trades detected: {}'),
('hyperopt_list_max_trades', 'Parameter --max-trades detected: {}'),
('hyperopt_list_min_avg_time', 'Parameter --min-avg-time detected: {}'),
('hyperopt_list_max_avg_time', 'Parameter --max-avg-time detected: {}'),
('hyperopt_list_min_avg_profit', 'Parameter --min-avg-profit detected: {}'),
('hyperopt_list_max_avg_profit', 'Parameter --max-avg-profit detected: {}'),
('hyperopt_list_min_total_profit', 'Parameter --min-total-profit detected: {}'),
('hyperopt_list_max_total_profit', 'Parameter --max-total-profit detected: {}'),
('hyperopt_list_min_objective', 'Parameter --min-objective detected: {}'),
('hyperopt_list_max_objective', 'Parameter --max-objective detected: {}'),
('hyperopt_list_no_details', 'Parameter --no-details detected: {}'),
('hyperopt_show_no_header', 'Parameter --no-header detected: {}'),
('hyperopt_ignore_missing_space', 'Paramter --ignore-missing-space detected: {}'),
("print_json", "Parameter --print-json detected ..."),
("export_csv", "Parameter --export-csv detected: {}"),
("hyperopt_jobs", "Parameter -j/--job-workers detected: {}"),
("hyperopt_random_state", "Parameter --random-state detected: {}"),
("hyperopt_min_trades", "Parameter --min-trades detected: {}"),
("hyperopt_loss", "Using Hyperopt loss class name: {}"),
("hyperopt_show_index", "Parameter -n/--index detected: {}"),
("hyperopt_list_best", "Parameter --best detected: {}"),
("hyperopt_list_profitable", "Parameter --profitable detected: {}"),
("hyperopt_list_min_trades", "Parameter --min-trades detected: {}"),
("hyperopt_list_max_trades", "Parameter --max-trades detected: {}"),
("hyperopt_list_min_avg_time", "Parameter --min-avg-time detected: {}"),
("hyperopt_list_max_avg_time", "Parameter --max-avg-time detected: {}"),
("hyperopt_list_min_avg_profit", "Parameter --min-avg-profit detected: {}"),
("hyperopt_list_max_avg_profit", "Parameter --max-avg-profit detected: {}"),
("hyperopt_list_min_total_profit", "Parameter --min-total-profit detected: {}"),
("hyperopt_list_max_total_profit", "Parameter --max-total-profit detected: {}"),
("hyperopt_list_min_objective", "Parameter --min-objective detected: {}"),
("hyperopt_list_max_objective", "Parameter --max-objective detected: {}"),
("hyperopt_list_no_details", "Parameter --no-details detected: {}"),
("hyperopt_show_no_header", "Parameter --no-header detected: {}"),
("hyperopt_ignore_missing_space", "Parameter --ignore-missing-space detected: {}"),
]
self._args_to_config_loop(config, configurations)
def _process_plot_options(self, config: Config) -> None:
configurations = [
('pairs', 'Using pairs {}'),
('indicators1', 'Using indicators1: {}'),
('indicators2', 'Using indicators2: {}'),
('trade_ids', 'Filtering on trade_ids: {}'),
('plot_limit', 'Limiting plot to: {}'),
('plot_auto_open', 'Parameter --auto-open detected.'),
('trade_source', 'Using trades from: {}'),
('prepend_data', 'Prepend detected. Allowing data prepending.'),
('erase', 'Erase detected. Deleting existing data.'),
('no_trades', 'Parameter --no-trades detected.'),
('timeframes', 'timeframes --timeframes: {}'),
('days', 'Detected --days: {}'),
('include_inactive', 'Detected --include-inactive-pairs: {}'),
('download_trades', 'Detected --dl-trades: {}'),
('dataformat_ohlcv', 'Using "{}" to store OHLCV data.'),
('dataformat_trades', 'Using "{}" to store trades data.'),
('show_timerange', 'Detected --show-timerange'),
("pairs", "Using pairs {}"),
("indicators1", "Using indicators1: {}"),
("indicators2", "Using indicators2: {}"),
("trade_ids", "Filtering on trade_ids: {}"),
("plot_limit", "Limiting plot to: {}"),
("plot_auto_open", "Parameter --auto-open detected."),
("trade_source", "Using trades from: {}"),
("prepend_data", "Prepend detected. Allowing data prepending."),
("erase", "Erase detected. Deleting existing data."),
("no_trades", "Parameter --no-trades detected."),
("timeframes", "timeframes --timeframes: {}"),
("days", "Detected --days: {}"),
("include_inactive", "Detected --include-inactive-pairs: {}"),
("download_trades", "Detected --dl-trades: {}"),
("dataformat_ohlcv", 'Using "{}" to store OHLCV data.'),
("dataformat_trades", 'Using "{}" to store trades data.'),
("show_timerange", "Detected --show-timerange"),
]
self._args_to_config_loop(config, configurations)
def _process_data_options(self, config: Config) -> None:
self._args_to_config(config, argname='new_pairs_days',
logstring='Detected --new-pairs-days: {}')
self._args_to_config(config, argname='trading_mode',
logstring='Detected --trading-mode: {}')
config['candle_type_def'] = CandleType.get_default(
config.get('trading_mode', 'spot') or 'spot')
config['trading_mode'] = TradingMode(config.get('trading_mode', 'spot') or 'spot')
self._args_to_config(config, argname='candle_types',
logstring='Detected --candle-types: {}')
self._args_to_config(
config, argname="new_pairs_days", logstring="Detected --new-pairs-days: {}"
)
self._args_to_config(
config, argname="trading_mode", logstring="Detected --trading-mode: {}"
)
config["candle_type_def"] = CandleType.get_default(
config.get("trading_mode", "spot") or "spot"
)
config["trading_mode"] = TradingMode(config.get("trading_mode", "spot") or "spot")
self._args_to_config(
config, argname="candle_types", logstring="Detected --candle-types: {}"
)
def _process_analyze_options(self, config: Config) -> None:
configurations = [
('analysis_groups', 'Analysis reason groups: {}'),
('enter_reason_list', 'Analysis enter tag list: {}'),
('exit_reason_list', 'Analysis exit tag list: {}'),
('indicator_list', 'Analysis indicator list: {}'),
('timerange', 'Filter trades by timerange: {}'),
('analysis_rejected', 'Analyse rejected signals: {}'),
('analysis_to_csv', 'Store analysis tables to CSV: {}'),
('analysis_csv_path', 'Path to store analysis CSVs: {}'),
("analysis_groups", "Analysis reason groups: {}"),
("enter_reason_list", "Analysis enter tag list: {}"),
("exit_reason_list", "Analysis exit tag list: {}"),
("indicator_list", "Analysis indicator list: {}"),
("timerange", "Filter trades by timerange: {}"),
("analysis_rejected", "Analyse rejected signals: {}"),
("analysis_to_csv", "Store analysis tables to CSV: {}"),
("analysis_csv_path", "Path to store analysis CSVs: {}"),
# Lookahead analysis results
('targeted_trade_amount', 'Targeted Trade amount: {}'),
('minimum_trade_amount', 'Minimum Trade amount: {}'),
('lookahead_analysis_exportfilename', 'Path to store lookahead-analysis-results: {}'),
('startup_candle', 'Startup candle to be used on recursive analysis: {}'),
("targeted_trade_amount", "Targeted Trade amount: {}"),
("minimum_trade_amount", "Minimum Trade amount: {}"),
("lookahead_analysis_exportfilename", "Path to store lookahead-analysis-results: {}"),
("startup_candle", "Startup candle to be used on recursive analysis: {}"),
]
self._args_to_config_loop(config, configurations)
def _args_to_config_loop(self, config, configurations: List[Tuple[str, str]]) -> None:
for argname, logstring in configurations:
self._args_to_config(config, argname=argname, logstring=logstring)
def _process_runmode(self, config: Config) -> None:
self._args_to_config(config, argname='dry_run',
logstring='Parameter --dry-run detected, '
'overriding dry_run to: {} ...')
self._args_to_config(
config,
argname="dry_run",
logstring="Parameter --dry-run detected, overriding dry_run to: {} ...",
)
if not self.runmode:
# Handle real mode, infer dry/live from config
self.runmode = RunMode.DRY_RUN if config.get('dry_run', True) else RunMode.LIVE
self.runmode = RunMode.DRY_RUN if config.get("dry_run", True) else RunMode.LIVE
logger.info(f"Runmode set to {self.runmode.value}.")
config.update({'runmode': self.runmode})
config.update({"runmode": self.runmode})
def _process_freqai_options(self, config: Config) -> None:
self._args_to_config(
config, argname="freqaimodel", logstring="Using freqaimodel class name: {}"
)
self._args_to_config(config, argname='freqaimodel',
logstring='Using freqaimodel class name: {}')
self._args_to_config(config, argname='freqaimodel_path',
logstring='Using freqaimodel path: {}')
self._args_to_config(
config, argname="freqaimodel_path", logstring="Using freqaimodel path: {}"
)
return
def _args_to_config(self, config: Config, argname: str,
logstring: str, logfun: Optional[Callable] = None,
deprecated_msg: Optional[str] = None) -> None:
def _args_to_config(
self,
config: Config,
argname: str,
logstring: str,
logfun: Optional[Callable] = None,
deprecated_msg: Optional[str] = None,
) -> None:
"""
:param config: Configuration dictionary
:param argname: Argumentname in self.args - will be copied to config dict.
@@ -420,9 +455,11 @@ class Configuration:
sample: logfun=len (prints the length of the found
configuration instead of the content)
"""
if (argname in self.args and self.args[argname] is not None
and self.args[argname] is not False):
if (
argname in self.args
and self.args[argname] is not None
and self.args[argname] is not False
):
config.update({argname: self.args[argname]})
if logfun:
logger.info(logstring.format(logfun(config[argname])))
@@ -441,7 +478,7 @@ class Configuration:
"""
if "pairs" in config:
config['exchange']['pair_whitelist'] = config['pairs']
config["exchange"]["pair_whitelist"] = config["pairs"]
return
if "pairs_file" in self.args and self.args["pairs_file"]:
@@ -451,19 +488,19 @@ class Configuration:
# or if pairs file is specified explicitly
if not pairs_file.exists():
raise OperationalException(f'No pairs file found with path "{pairs_file}".')
config['pairs'] = load_file(pairs_file)
if isinstance(config['pairs'], list):
config['pairs'].sort()
config["pairs"] = load_file(pairs_file)
if isinstance(config["pairs"], list):
config["pairs"].sort()
return
if 'config' in self.args and self.args['config']:
if "config" in self.args and self.args["config"]:
logger.info("Using pairlist from configuration.")
config['pairs'] = config.get('exchange', {}).get('pair_whitelist')
config["pairs"] = config.get("exchange", {}).get("pair_whitelist")
else:
# Fall back to /dl_path/pairs.json
pairs_file = config['datadir'] / 'pairs.json'
pairs_file = config["datadir"] / "pairs.json"
if pairs_file.exists():
logger.info(f'Reading pairs file "{pairs_file}".')
config['pairs'] = load_file(pairs_file)
if 'pairs' in config and isinstance(config['pairs'], list):
config['pairs'].sort()
config["pairs"] = load_file(pairs_file)
if "pairs" in config and isinstance(config["pairs"], list):
config["pairs"].sort()

View File

@@ -12,9 +12,13 @@ from freqtrade.exceptions import ConfigurationError, OperationalException
logger = logging.getLogger(__name__)
def check_conflicting_settings(config: Config,
section_old: Optional[str], name_old: str,
section_new: Optional[str], name_new: str) -> None:
def check_conflicting_settings(
config: Config,
section_old: Optional[str],
name_old: str,
section_new: Optional[str],
name_new: str,
) -> None:
section_new_config = config.get(section_new, {}) if section_new else config
section_old_config = config.get(section_old, {}) if section_old else config
if name_new in section_new_config and name_old in section_old_config:
@@ -29,9 +33,9 @@ def check_conflicting_settings(config: Config,
)
def process_removed_setting(config: Config,
section1: str, name1: str,
section2: Optional[str], name2: str) -> None:
def process_removed_setting(
config: Config, section1: str, name1: str, section2: Optional[str], name2: str
) -> None:
"""
:param section1: Removed section
:param name1: Removed setting name
@@ -48,10 +52,13 @@ def process_removed_setting(config: Config,
)
def process_deprecated_setting(config: Config,
section_old: Optional[str], name_old: str,
section_new: Optional[str], name_new: str
) -> None:
def process_deprecated_setting(
config: Config,
section_old: Optional[str],
name_old: str,
section_new: Optional[str],
name_new: str,
) -> None:
check_conflicting_settings(config, section_old, name_old, section_new, name_new)
section_old_config = config.get(section_old, {}) if section_old else config
@@ -71,57 +78,91 @@ def process_deprecated_setting(config: Config,
def process_temporary_deprecated_settings(config: Config) -> None:
# Kept for future deprecated / moved settings
# check_conflicting_settings(config, 'ask_strategy', 'use_sell_signal',
# 'experimental', 'use_sell_signal')
process_deprecated_setting(config, 'ask_strategy', 'ignore_buying_expired_candle_after',
None, 'ignore_buying_expired_candle_after')
process_deprecated_setting(
config,
"ask_strategy",
"ignore_buying_expired_candle_after",
None,
"ignore_buying_expired_candle_after",
)
process_deprecated_setting(config, None, 'forcebuy_enable', None, 'force_entry_enable')
process_deprecated_setting(config, None, "forcebuy_enable", None, "force_entry_enable")
# New settings
if config.get('telegram'):
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell',
'notification_settings', 'exit')
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell_fill',
'notification_settings', 'exit_fill')
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell_cancel',
'notification_settings', 'exit_cancel')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy',
'notification_settings', 'entry')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy_fill',
'notification_settings', 'entry_fill')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy_cancel',
'notification_settings', 'entry_cancel')
if config.get('webhook'):
process_deprecated_setting(config, 'webhook', 'webhookbuy', 'webhook', 'webhookentry')
process_deprecated_setting(config, 'webhook', 'webhookbuycancel',
'webhook', 'webhookentrycancel')
process_deprecated_setting(config, 'webhook', 'webhookbuyfill',
'webhook', 'webhookentryfill')
process_deprecated_setting(config, 'webhook', 'webhooksell', 'webhook', 'webhookexit')
process_deprecated_setting(config, 'webhook', 'webhooksellcancel',
'webhook', 'webhookexitcancel')
process_deprecated_setting(config, 'webhook', 'webhooksellfill',
'webhook', 'webhookexitfill')
if config.get("telegram"):
process_deprecated_setting(
config["telegram"], "notification_settings", "sell", "notification_settings", "exit"
)
process_deprecated_setting(
config["telegram"],
"notification_settings",
"sell_fill",
"notification_settings",
"exit_fill",
)
process_deprecated_setting(
config["telegram"],
"notification_settings",
"sell_cancel",
"notification_settings",
"exit_cancel",
)
process_deprecated_setting(
config["telegram"], "notification_settings", "buy", "notification_settings", "entry"
)
process_deprecated_setting(
config["telegram"],
"notification_settings",
"buy_fill",
"notification_settings",
"entry_fill",
)
process_deprecated_setting(
config["telegram"],
"notification_settings",
"buy_cancel",
"notification_settings",
"entry_cancel",
)
if config.get("webhook"):
process_deprecated_setting(config, "webhook", "webhookbuy", "webhook", "webhookentry")
process_deprecated_setting(
config, "webhook", "webhookbuycancel", "webhook", "webhookentrycancel"
)
process_deprecated_setting(
config, "webhook", "webhookbuyfill", "webhook", "webhookentryfill"
)
process_deprecated_setting(config, "webhook", "webhooksell", "webhook", "webhookexit")
process_deprecated_setting(
config, "webhook", "webhooksellcancel", "webhook", "webhookexitcancel"
)
process_deprecated_setting(
config, "webhook", "webhooksellfill", "webhook", "webhookexitfill"
)
# Legacy way - having them in experimental ...
process_removed_setting(config, 'experimental', 'use_sell_signal', None, 'use_exit_signal')
process_removed_setting(config, 'experimental', 'sell_profit_only', None, 'exit_profit_only')
process_removed_setting(config, 'experimental', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')
process_removed_setting(config, "experimental", "use_sell_signal", None, "use_exit_signal")
process_removed_setting(config, "experimental", "sell_profit_only", None, "exit_profit_only")
process_removed_setting(
config, "experimental", "ignore_roi_if_buy_signal", None, "ignore_roi_if_entry_signal"
)
process_removed_setting(config, 'ask_strategy', 'use_sell_signal', None, 'use_exit_signal')
process_removed_setting(config, 'ask_strategy', 'sell_profit_only', None, 'exit_profit_only')
process_removed_setting(config, 'ask_strategy', 'sell_profit_offset',
None, 'exit_profit_offset')
process_removed_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')
if (config.get('edge', {}).get('enabled', False)
and 'capital_available_percentage' in config.get('edge', {})):
process_removed_setting(config, "ask_strategy", "use_sell_signal", None, "use_exit_signal")
process_removed_setting(config, "ask_strategy", "sell_profit_only", None, "exit_profit_only")
process_removed_setting(
config, "ask_strategy", "sell_profit_offset", None, "exit_profit_offset"
)
process_removed_setting(
config, "ask_strategy", "ignore_roi_if_buy_signal", None, "ignore_roi_if_entry_signal"
)
if config.get("edge", {}).get(
"enabled", False
) and "capital_available_percentage" in config.get("edge", {}):
raise ConfigurationError(
"DEPRECATED: "
"Using 'edge.capital_available_percentage' has been deprecated in favor of "
@@ -129,12 +170,11 @@ def process_temporary_deprecated_settings(config: Config) -> None:
"'tradable_balance_ratio' and remove 'capital_available_percentage' "
"from the edge configuration."
)
if 'ticker_interval' in config:
if "ticker_interval" in config:
raise ConfigurationError(
"DEPRECATED: 'ticker_interval' detected. "
"Please use 'timeframe' instead of 'ticker_interval."
)
if 'protections' in config:
if "protections" in config:
logger.warning("DEPRECATED: Setting 'protections' in the configuration is deprecated.")

View File

@@ -5,4 +5,4 @@ def running_in_docker() -> bool:
"""
Check if we are running in a docker container
"""
return os.environ.get('FT_APP_ENV') == 'docker'
return os.environ.get("FT_APP_ENV") == "docker"

View File

@@ -4,8 +4,14 @@ from pathlib import Path
from typing import Optional
from freqtrade.configuration.detect_environment import running_in_docker
from freqtrade.constants import (USER_DATA_FILES, USERPATH_FREQAIMODELS, USERPATH_HYPEROPTS,
USERPATH_NOTEBOOKS, USERPATH_STRATEGIES, Config)
from freqtrade.constants import (
USER_DATA_FILES,
USERPATH_FREQAIMODELS,
USERPATH_HYPEROPTS,
USERPATH_NOTEBOOKS,
USERPATH_STRATEGIES,
Config,
)
from freqtrade.exceptions import OperationalException
@@ -13,16 +19,15 @@ logger = logging.getLogger(__name__)
def create_datadir(config: Config, datadir: Optional[str] = None) -> Path:
folder = Path(datadir) if datadir else Path(f"{config['user_data_dir']}/data")
if not datadir:
# set datadir
exchange_name = config.get('exchange', {}).get('name', '').lower()
exchange_name = config.get("exchange", {}).get("name", "").lower()
folder = folder.joinpath(exchange_name)
if not folder.is_dir():
folder.mkdir(parents=True)
logger.info(f'Created data directory: {datadir}')
logger.info(f"Created data directory: {datadir}")
return folder
@@ -34,8 +39,8 @@ def chown_user_directory(directory: Path) -> None:
if running_in_docker():
try:
import subprocess
subprocess.check_output(
['sudo', 'chown', '-R', 'ftuser:', str(directory.resolve())])
subprocess.check_output(["sudo", "chown", "-R", "ftuser:", str(directory.resolve())])
except Exception:
logger.warning(f"Could not chown {directory}")
@@ -50,18 +55,28 @@ def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
:param create_dir: Create directory if it does not exist.
:return: Path object containing the directory
"""
sub_dirs = ["backtest_results", "data", USERPATH_HYPEROPTS, "hyperopt_results", "logs",
USERPATH_NOTEBOOKS, "plot", USERPATH_STRATEGIES, USERPATH_FREQAIMODELS]
sub_dirs = [
"backtest_results",
"data",
USERPATH_HYPEROPTS,
"hyperopt_results",
"logs",
USERPATH_NOTEBOOKS,
"plot",
USERPATH_STRATEGIES,
USERPATH_FREQAIMODELS,
]
folder = Path(directory)
chown_user_directory(folder)
if not folder.is_dir():
if create_dir:
folder.mkdir(parents=True)
logger.info(f'Created user-data directory: {folder}')
logger.info(f"Created user-data directory: {folder}")
else:
raise OperationalException(
f"Directory `{folder}` does not exist. "
"Please use `freqtrade create-userdir` to create a user directory")
"Please use `freqtrade create-userdir` to create a user directory"
)
# Create required subdirectories
for f in sub_dirs:

View File

@@ -16,9 +16,9 @@ def _get_var_typed(val):
try:
return float(val)
except ValueError:
if val.lower() in ('t', 'true'):
if val.lower() in ("t", "true"):
return True
elif val.lower() in ('f', 'false'):
elif val.lower() in ("f", "false"):
return False
# keep as string
return val
@@ -32,16 +32,21 @@ def _flat_vars_to_nested_dict(env_dict: Dict[str, Any], prefix: str) -> Dict[str
:param prefix: Prefix to consider (usually FREQTRADE__)
:return: Nested dict based on available and relevant variables.
"""
no_convert = ['CHAT_ID', 'PASSWORD']
no_convert = ["CHAT_ID", "PASSWORD"]
relevant_vars: Dict[str, Any] = {}
for env_var, val in sorted(env_dict.items()):
if env_var.startswith(prefix):
logger.info(f"Loading variable '{env_var}'")
key = env_var.replace(prefix, '')
for k in reversed(key.split('__')):
val = {k.lower(): _get_var_typed(val)
if not isinstance(val, dict) and k not in no_convert else val}
key = env_var.replace(prefix, "")
for k in reversed(key.split("__")):
val = {
k.lower(): (
_get_var_typed(val)
if not isinstance(val, dict) and k not in no_convert
else val
)
}
relevant_vars = deep_merge_dicts(val, relevant_vars)
return relevant_vars

View File

@@ -1,6 +1,7 @@
"""
This module contain functions to load the configuration file
"""
import logging
import re
import sys
@@ -25,25 +26,25 @@ def log_config_error_range(path: str, errmsg: str) -> str:
"""
Parses configuration file and prints range around error
"""
if path != '-':
offsetlist = re.findall(r'(?<=Parse\serror\sat\soffset\s)\d+', errmsg)
if path != "-":
offsetlist = re.findall(r"(?<=Parse\serror\sat\soffset\s)\d+", errmsg)
if offsetlist:
offset = int(offsetlist[0])
text = Path(path).read_text()
# Fetch an offset of 80 characters around the error line
subtext = text[offset - min(80, offset):offset + 80]
segments = subtext.split('\n')
subtext = text[offset - min(80, offset) : offset + 80]
segments = subtext.split("\n")
if len(segments) > 3:
# Remove first and last lines, to avoid odd truncations
return '\n'.join(segments[1:-1])
return "\n".join(segments[1:-1])
else:
return subtext
return ''
return ""
def load_file(path: Path) -> Dict[str, Any]:
try:
with path.open('r') as file:
with path.open("r") as file:
config = rapidjson.load(file, parse_mode=CONFIG_PARSE_MODE)
except FileNotFoundError:
raise OperationalException(f'File "{path}" not found!') from None
@@ -58,25 +59,27 @@ def load_config_file(path: str) -> Dict[str, Any]:
"""
try:
# Read config from stdin if requested in the options
with Path(path).open() if path != '-' else sys.stdin as file:
with Path(path).open() if path != "-" else sys.stdin as file:
config = rapidjson.load(file, parse_mode=CONFIG_PARSE_MODE)
except FileNotFoundError:
raise OperationalException(
f'Config file "{path}" not found!'
' Please create a config file or check whether it exists.') from None
" Please create a config file or check whether it exists."
) from None
except rapidjson.JSONDecodeError as e:
err_range = log_config_error_range(path, str(e))
raise ConfigurationError(
f'{e}\n'
f'Please verify the following segment of your configuration:\n{err_range}'
if err_range else 'Please verify your configuration file for syntax errors.'
f"{e}\nPlease verify the following segment of your configuration:\n{err_range}"
if err_range
else "Please verify your configuration file for syntax errors."
)
return config
def load_from_files(
files: List[str], base_path: Optional[Path] = None, level: int = 0) -> Dict[str, Any]:
files: List[str], base_path: Optional[Path] = None, level: int = 0
) -> Dict[str, Any]:
"""
Recursively load configuration files if specified.
Sub-files are assumed to be relative to the initial config.
@@ -90,8 +93,8 @@ def load_from_files(
files_loaded = []
# We expect here a list of config filenames
for filename in files:
logger.info(f'Using config: {filename} ...')
if filename == '-':
logger.info(f"Using config: {filename} ...")
if filename == "-":
# Immediately load stdin and return
return load_config_file(filename)
file = Path(filename)
@@ -100,10 +103,11 @@ def load_from_files(
file = base_path / file
config_tmp = load_config_file(str(file))
if 'add_config_files' in config_tmp:
if "add_config_files" in config_tmp:
config_sub = load_from_files(
config_tmp['add_config_files'], file.resolve().parent, level + 1)
files_loaded.extend(config_sub.get('config_files', []))
config_tmp["add_config_files"], file.resolve().parent, level + 1
)
files_loaded.extend(config_sub.get("config_files", []))
config_tmp = deep_merge_dicts(config_tmp, config_sub)
files_loaded.insert(0, str(file))
@@ -111,6 +115,6 @@ def load_from_files(
# Merge config options, overwriting prior values
config = deep_merge_dicts(config_tmp, config)
config['config_files'] = files_loaded
config["config_files"] = files_loaded
return config

View File

@@ -1,6 +1,7 @@
"""
This module contains the argument manager class
"""
import logging
import re
from datetime import datetime, timezone
@@ -22,9 +23,13 @@ class TimeRange:
if *type is None, don't use corresponding startvalue.
"""
def __init__(self, starttype: Optional[str] = None, stoptype: Optional[str] = None,
startts: int = 0, stopts: int = 0):
def __init__(
self,
starttype: Optional[str] = None,
stoptype: Optional[str] = None,
startts: int = 0,
stopts: int = 0,
):
self.starttype: Optional[str] = starttype
self.stoptype: Optional[str] = stoptype
self.startts: int = startts
@@ -48,12 +53,12 @@ class TimeRange:
Returns a string representation of the timerange as used by parse_timerange.
Follows the format yyyymmdd-yyyymmdd - leaving out the parts that are not set.
"""
start = ''
stop = ''
start = ""
stop = ""
if startdt := self.startdt:
start = startdt.strftime('%Y%m%d')
start = startdt.strftime("%Y%m%d")
if stopdt := self.stopdt:
stop = stopdt.strftime('%Y%m%d')
stop = stopdt.strftime("%Y%m%d")
return f"{start}-{stop}"
@property
@@ -61,7 +66,7 @@ class TimeRange:
"""
Returns a string representation of the start date
"""
val = 'unbounded'
val = "unbounded"
if (startdt := self.startdt) is not None:
val = startdt.strftime(DATETIME_PRINT_FORMAT)
return val
@@ -71,15 +76,19 @@ class TimeRange:
"""
Returns a string representation of the stop date
"""
val = 'unbounded'
val = "unbounded"
if (stopdt := self.stopdt) is not None:
val = stopdt.strftime(DATETIME_PRINT_FORMAT)
return val
def __eq__(self, other):
"""Override the default Equals behavior"""
return (self.starttype == other.starttype and self.stoptype == other.stoptype
and self.startts == other.startts and self.stopts == other.stopts)
return (
self.starttype == other.starttype
and self.stoptype == other.stoptype
and self.startts == other.startts
and self.stopts == other.stopts
)
def subtract_start(self, seconds: int) -> None:
"""
@@ -90,8 +99,9 @@ class TimeRange:
if self.startts:
self.startts = self.startts - seconds
def adjust_start_if_necessary(self, timeframe_secs: int, startup_candles: int,
min_date: datetime) -> None:
def adjust_start_if_necessary(
self, timeframe_secs: int, startup_candles: int, min_date: datetime
) -> None:
"""
Adjust startts by <startup_candles> candles.
Applies only if no startup-candles have been available.
@@ -101,13 +111,13 @@ class TimeRange:
has to be moved
:return: None (Modifies the object in place)
"""
if (not self.starttype or (startup_candles
and min_date.timestamp() >= self.startts)):
if not self.starttype or (startup_candles and min_date.timestamp() >= self.startts):
# If no startts was defined, or backtest-data starts at the defined backtest-date
logger.warning("Moving start-date by %s candles to account for startup time.",
startup_candles)
logger.warning(
"Moving start-date by %s candles to account for startup time.", startup_candles
)
self.startts = int(min_date.timestamp() + timeframe_secs * startup_candles)
self.starttype = 'date'
self.starttype = "date"
@classmethod
def parse_timerange(cls, text: Optional[str]) -> Self:
@@ -118,16 +128,17 @@ class TimeRange:
"""
if not text:
return cls(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
(r'^-(\d{10})$', (None, 'date')),
(r'^(\d{10})-$', ('date', None)),
(r'^(\d{10})-(\d{10})$', ('date', 'date')),
(r'^-(\d{13})$', (None, 'date')),
(r'^(\d{13})-$', ('date', None)),
(r'^(\d{13})-(\d{13})$', ('date', 'date')),
]
syntax = [
(r"^-(\d{8})$", (None, "date")),
(r"^(\d{8})-$", ("date", None)),
(r"^(\d{8})-(\d{8})$", ("date", "date")),
(r"^-(\d{10})$", (None, "date")),
(r"^(\d{10})-$", ("date", None)),
(r"^(\d{10})-(\d{10})$", ("date", "date")),
(r"^-(\d{13})$", (None, "date")),
(r"^(\d{13})-$", ("date", None)),
(r"^(\d{13})-(\d{13})$", ("date", "date")),
]
for rex, stype in syntax:
# Apply the regular expression to text
match = re.match(rex, text)
@@ -138,9 +149,12 @@ class TimeRange:
stop: int = 0
if stype[0]:
starts = rvals[index]
if stype[0] == 'date' and len(starts) == 8:
start = int(datetime.strptime(starts, '%Y%m%d').replace(
tzinfo=timezone.utc).timestamp())
if stype[0] == "date" and len(starts) == 8:
start = int(
datetime.strptime(starts, "%Y%m%d")
.replace(tzinfo=timezone.utc)
.timestamp()
)
elif len(starts) == 13:
start = int(starts) // 1000
else:
@@ -148,15 +162,19 @@ class TimeRange:
index += 1
if stype[1]:
stops = rvals[index]
if stype[1] == 'date' and len(stops) == 8:
stop = int(datetime.strptime(stops, '%Y%m%d').replace(
tzinfo=timezone.utc).timestamp())
if stype[1] == "date" and len(stops) == 8:
stop = int(
datetime.strptime(stops, "%Y%m%d")
.replace(tzinfo=timezone.utc)
.timestamp()
)
elif len(stops) == 13:
stop = int(stops) // 1000
else:
stop = int(stops)
if start > stop > 0:
raise ConfigurationError(
f'Start date is after stop date for timerange "{text}"')
f'Start date is after stop date for timerange "{text}"'
)
return cls(stype[0], stype[1], start, stop)
raise ConfigurationError(f'Incorrect syntax for timerange "{text}"')

File diff suppressed because it is too large Load Diff

View File

@@ -3,6 +3,4 @@ Module to handle data operations for freqtrade
"""
# limit what's imported when using `from freqtrade.data import *`
__all__ = [
'converter'
]
__all__ = ["converter"]

View File

@@ -1,6 +1,7 @@
"""
Helpers when analyzing backtest data
"""
import logging
from copy import copy
from datetime import datetime, timezone
@@ -21,14 +22,35 @@ from freqtrade.types import BacktestHistoryEntryType, BacktestResultType
logger = logging.getLogger(__name__)
# Newest format
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'max_stake_amount', 'amount',
'open_date', 'close_date', 'open_rate', 'close_rate',
'fee_open', 'fee_close', 'trade_duration',
'profit_ratio', 'profit_abs', 'exit_reason',
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', 'enter_tag',
'leverage', 'is_short', 'open_timestamp', 'close_timestamp', 'orders'
]
BT_DATA_COLUMNS = [
"pair",
"stake_amount",
"max_stake_amount",
"amount",
"open_date",
"close_date",
"open_rate",
"close_rate",
"fee_open",
"fee_close",
"trade_duration",
"profit_ratio",
"profit_abs",
"exit_reason",
"initial_stop_loss_abs",
"initial_stop_loss_ratio",
"stop_loss_abs",
"stop_loss_ratio",
"min_rate",
"max_rate",
"is_open",
"enter_tag",
"leverage",
"is_short",
"open_timestamp",
"close_timestamp",
"orders",
]
def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> str:
@@ -50,15 +72,16 @@ def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> s
if not filename.is_file():
raise ValueError(
f"Directory '{directory}' does not seem to contain backtest statistics yet.")
f"Directory '{directory}' does not seem to contain backtest statistics yet."
)
with filename.open() as file:
data = json_load(file)
if f'latest_{variant}' not in data:
if f"latest_{variant}" not in data:
raise ValueError(f"Invalid '{LAST_BT_RESULT_FN}' format.")
return data[f'latest_{variant}']
return data[f"latest_{variant}"]
def get_latest_backtest_filename(directory: Union[Path, str]) -> str:
@@ -71,7 +94,7 @@ def get_latest_backtest_filename(directory: Union[Path, str]) -> str:
* `directory/.last_result.json` does not exist
* `directory/.last_result.json` has the wrong content
"""
return get_latest_optimize_filename(directory, 'backtest')
return get_latest_optimize_filename(directory, "backtest")
def get_latest_hyperopt_filename(directory: Union[Path, str]) -> str:
@@ -85,14 +108,15 @@ def get_latest_hyperopt_filename(directory: Union[Path, str]) -> str:
* `directory/.last_result.json` has the wrong content
"""
try:
return get_latest_optimize_filename(directory, 'hyperopt')
return get_latest_optimize_filename(directory, "hyperopt")
except ValueError:
# Return default (legacy) pickle filename
return 'hyperopt_results.pickle'
return "hyperopt_results.pickle"
def get_latest_hyperopt_file(
directory: Union[Path, str], predef_filename: Optional[str] = None) -> Path:
directory: Union[Path, str], predef_filename: Optional[str] = None
) -> Path:
"""
Get latest hyperopt export based on '.last_result.json'.
:param directory: Directory to search for last result
@@ -107,7 +131,8 @@ def get_latest_hyperopt_file(
if predef_filename:
if Path(predef_filename).is_absolute():
raise ConfigurationError(
"--hyperopt-filename expects only the filename, not an absolute path.")
"--hyperopt-filename expects only the filename, not an absolute path."
)
return directory / predef_filename
return directory / get_latest_hyperopt_filename(directory)
@@ -126,7 +151,7 @@ def load_backtest_metadata(filename: Union[Path, str]) -> Dict[str, Any]:
except FileNotFoundError:
return {}
except Exception as e:
raise OperationalException('Unexpected error while loading backtest metadata.') from e
raise OperationalException("Unexpected error while loading backtest metadata.") from e
def load_backtest_stats(filename: Union[Path, str]) -> BacktestResultType:
@@ -147,7 +172,7 @@ def load_backtest_stats(filename: Union[Path, str]) -> BacktestResultType:
# Legacy list format does not contain metadata.
if isinstance(data, dict):
data['metadata'] = load_backtest_metadata(filename)
data["metadata"] = load_backtest_metadata(filename)
return data
@@ -159,38 +184,39 @@ def load_and_merge_backtest_result(strategy_name: str, filename: Path, results:
:param results: dict to merge the result to.
"""
bt_data = load_backtest_stats(filename)
k: Literal['metadata', 'strategy']
for k in ('metadata', 'strategy'): # type: ignore
k: Literal["metadata", "strategy"]
for k in ("metadata", "strategy"): # type: ignore
results[k][strategy_name] = bt_data[k][strategy_name]
results['metadata'][strategy_name]['filename'] = filename.stem
comparison = bt_data['strategy_comparison']
results["metadata"][strategy_name]["filename"] = filename.stem
comparison = bt_data["strategy_comparison"]
for i in range(len(comparison)):
if comparison[i]['key'] == strategy_name:
results['strategy_comparison'].append(comparison[i])
if comparison[i]["key"] == strategy_name:
results["strategy_comparison"].append(comparison[i])
break
def _get_backtest_files(dirname: Path) -> List[Path]:
# Weird glob expression here avoids including .meta.json files.
return list(reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))))
return list(reversed(sorted(dirname.glob("backtest-result-*-[0-9][0-9].json"))))
def _extract_backtest_result(filename: Path) -> List[BacktestHistoryEntryType]:
metadata = load_backtest_metadata(filename)
return [
{
'filename': filename.stem,
'strategy': s,
'run_id': v['run_id'],
'notes': v.get('notes', ''),
"filename": filename.stem,
"strategy": s,
"run_id": v["run_id"],
"notes": v.get("notes", ""),
# Backtest "run" time
'backtest_start_time': v['backtest_start_time'],
"backtest_start_time": v["backtest_start_time"],
# Backtest timerange
'backtest_start_ts': v.get('backtest_start_ts', None),
'backtest_end_ts': v.get('backtest_end_ts', None),
'timeframe': v.get('timeframe', None),
'timeframe_detail': v.get('timeframe_detail', None),
} for s, v in metadata.items()
"backtest_start_ts": v.get("backtest_start_ts", None),
"backtest_end_ts": v.get("backtest_end_ts", None),
"timeframe": v.get("timeframe", None),
"timeframe_detail": v.get("timeframe_detail", None),
}
for s, v in metadata.items()
]
@@ -218,7 +244,7 @@ def delete_backtest_result(file_abs: Path):
"""
# *.meta.json
logger.info(f"Deleting backtest result file: {file_abs.name}")
file_abs_meta = file_abs.with_suffix('.meta.json')
file_abs_meta = file_abs.with_suffix(".meta.json")
file_abs.unlink()
file_abs_meta.unlink()
@@ -244,12 +270,13 @@ def get_backtest_market_change(filename: Path, include_ts: bool = True) -> pd.Da
"""
df = pd.read_feather(filename)
if include_ts:
df.loc[:, '__date_ts'] = df.loc[:, 'date'].astype(np.int64) // 1000 // 1000
df.loc[:, "__date_ts"] = df.loc[:, "date"].astype(np.int64) // 1000 // 1000
return df
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
min_backtest_date: Optional[datetime] = None) -> Dict[str, Any]:
def find_existing_backtest_stats(
dirname: Union[Path, str], run_ids: Dict[str, str], min_backtest_date: Optional[datetime] = None
) -> Dict[str, Any]:
"""
Find existing backtest stats that match specified run IDs and load them.
:param dirname: pathlib.Path object, or string pointing to the file.
@@ -261,9 +288,9 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
run_ids = copy(run_ids)
dirname = Path(dirname)
results: Dict[str, Any] = {
'metadata': {},
'strategy': {},
'strategy_comparison': [],
"metadata": {},
"strategy": {},
"strategy_comparison": [],
}
for filename in _get_backtest_files(dirname):
@@ -280,14 +307,14 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
continue
if min_backtest_date is not None:
backtest_date = strategy_metadata['backtest_start_time']
backtest_date = strategy_metadata["backtest_start_time"]
backtest_date = datetime.fromtimestamp(backtest_date, tz=timezone.utc)
if backtest_date < min_backtest_date:
# Do not use a cached result for this strategy as first result is too old.
del run_ids[strategy_name]
continue
if strategy_metadata['run_id'] == run_id:
if strategy_metadata["run_id"] == run_id:
del run_ids[strategy_name]
load_and_merge_backtest_result(strategy_name, filename, results)
@@ -300,20 +327,20 @@ def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
"""
Compatibility support for older backtest data.
"""
df['open_date'] = pd.to_datetime(df['open_date'], utc=True)
df['close_date'] = pd.to_datetime(df['close_date'], utc=True)
df["open_date"] = pd.to_datetime(df["open_date"], utc=True)
df["close_date"] = pd.to_datetime(df["close_date"], utc=True)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = False
if 'leverage' not in df.columns:
df['leverage'] = 1.0
if 'enter_tag' not in df.columns:
df['enter_tag'] = df['buy_tag']
df = df.drop(['buy_tag'], axis=1)
if 'max_stake_amount' not in df.columns:
df['max_stake_amount'] = df['stake_amount']
if 'orders' not in df.columns:
df['orders'] = None
if "is_short" not in df.columns:
df["is_short"] = False
if "leverage" not in df.columns:
df["leverage"] = 1.0
if "enter_tag" not in df.columns:
df["enter_tag"] = df["buy_tag"]
df = df.drop(["buy_tag"], axis=1)
if "max_stake_amount" not in df.columns:
df["max_stake_amount"] = df["stake_amount"]
if "orders" not in df.columns:
df["orders"] = None
return df
@@ -329,23 +356,25 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
data = load_backtest_stats(filename)
if not isinstance(data, list):
# new, nested format
if 'strategy' not in data:
if "strategy" not in data:
raise ValueError("Unknown dataformat.")
if not strategy:
if len(data['strategy']) == 1:
strategy = list(data['strategy'].keys())[0]
if len(data["strategy"]) == 1:
strategy = list(data["strategy"].keys())[0]
else:
raise ValueError("Detected backtest result with more than one strategy. "
"Please specify a strategy.")
raise ValueError(
"Detected backtest result with more than one strategy. "
"Please specify a strategy."
)
if strategy not in data['strategy']:
if strategy not in data["strategy"]:
raise ValueError(
f"Strategy {strategy} not available in the backtest result. "
f"Available strategies are '{','.join(data['strategy'].keys())}'"
)
)
data = data['strategy'][strategy]['trades']
data = data["strategy"][strategy]["trades"]
df = pd.DataFrame(data)
if not df.empty:
df = _load_backtest_data_df_compatibility(df)
@@ -353,7 +382,8 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
else:
# old format - only with lists.
raise OperationalException(
"Backtest-results with only trades data are no longer supported.")
"Backtest-results with only trades data are no longer supported."
)
if not df.empty:
df = df.sort_values("open_date").reset_index(drop=True)
return df
@@ -368,23 +398,26 @@ def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataF
:return: dataframe with open-counts per time-period in timeframe
"""
from freqtrade.exchange import timeframe_to_resample_freq
timeframe_freq = timeframe_to_resample_freq(timeframe)
dates = [pd.Series(pd.date_range(row[1]['open_date'], row[1]['close_date'],
freq=timeframe_freq))
for row in results[['open_date', 'close_date']].iterrows()]
dates = [
pd.Series(pd.date_range(row[1]["open_date"], row[1]["close_date"], freq=timeframe_freq))
for row in results[["open_date", "close_date"]].iterrows()
]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name='date')
dates = pd.Series(pd.concat(dates).values, name="date")
df2 = pd.DataFrame(np.repeat(results.values, deltas, axis=0), columns=results.columns)
df2 = pd.concat([dates, df2], axis=1)
df2 = df2.set_index('date')
df_final = df2.resample(timeframe_freq)[['pair']].count()
df_final = df_final.rename({'pair': 'open_trades'}, axis=1)
df2 = df2.set_index("date")
df_final = df2.resample(timeframe_freq)[["pair"]].count()
df_final = df_final.rename({"pair": "open_trades"}, axis=1)
return df_final
def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
max_open_trades: IntOrInf) -> pd.DataFrame:
def evaluate_result_multi(
results: pd.DataFrame, timeframe: str, max_open_trades: IntOrInf
) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps
@@ -394,7 +427,7 @@ def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
:return: dataframe with open-counts per time-period in freq
"""
df_final = analyze_trade_parallelism(results, timeframe)
return df_final[df_final['open_trades'] > max_open_trades]
return df_final[df_final["open_trades"] > max_open_trades]
def trade_list_to_dataframe(trades: Union[List[Trade], List[LocalTrade]]) -> pd.DataFrame:
@@ -405,9 +438,9 @@ def trade_list_to_dataframe(trades: Union[List[Trade], List[LocalTrade]]) -> pd.
"""
df = pd.DataFrame.from_records([t.to_json(True) for t in trades], columns=BT_DATA_COLUMNS)
if len(df) > 0:
df['close_date'] = pd.to_datetime(df['close_date'], utc=True)
df['open_date'] = pd.to_datetime(df['open_date'], utc=True)
df['close_rate'] = df['close_rate'].astype('float64')
df["close_date"] = pd.to_datetime(df["close_date"], utc=True)
df["open_date"] = pd.to_datetime(df["open_date"], utc=True)
df["close_rate"] = df["close_rate"].astype("float64")
return df
@@ -429,8 +462,13 @@ def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataF
return trades
def load_trades(source: str, db_url: str, exportfilename: Path,
no_trades: bool = False, strategy: Optional[str] = None) -> pd.DataFrame:
def load_trades(
source: str,
db_url: str,
exportfilename: Path,
no_trades: bool = False,
strategy: Optional[str] = None,
) -> pd.DataFrame:
"""
Based on configuration option 'trade_source':
* loads data from DB (using `db_url`)
@@ -451,8 +489,9 @@ def load_trades(source: str, db_url: str, exportfilename: Path,
return load_backtest_data(exportfilename, strategy)
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
date_index=False) -> pd.DataFrame:
def extract_trades_of_period(
dataframe: pd.DataFrame, trades: pd.DataFrame, date_index=False
) -> pd.DataFrame:
"""
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
@@ -461,8 +500,9 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
trades_start = dataframe.index[0]
trades_stop = dataframe.index[-1]
else:
trades_start = dataframe.iloc[0]['date']
trades_stop = dataframe.iloc[-1]['date']
trades = trades.loc[(trades['open_date'] >= trades_start) &
(trades['close_date'] <= trades_stop)]
trades_start = dataframe.iloc[0]["date"]
trades_stop = dataframe.iloc[-1]["date"]
trades = trades.loc[
(trades["open_date"] >= trades_start) & (trades["close_date"] <= trades_stop)
]
return trades

View File

@@ -1,28 +1,38 @@
from freqtrade.data.converter.converter import (clean_ohlcv_dataframe, convert_ohlcv_format,
ohlcv_fill_up_missing_data, ohlcv_to_dataframe,
order_book_to_dataframe, reduce_dataframe_footprint,
trim_dataframe, trim_dataframes)
from freqtrade.data.converter.trade_converter import (convert_trades_format,
convert_trades_to_ohlcv, trades_convert_types,
trades_df_remove_duplicates,
trades_dict_to_list, trades_list_to_df,
trades_to_ohlcv)
from freqtrade.data.converter.converter import (
clean_ohlcv_dataframe,
convert_ohlcv_format,
ohlcv_fill_up_missing_data,
ohlcv_to_dataframe,
order_book_to_dataframe,
reduce_dataframe_footprint,
trim_dataframe,
trim_dataframes,
)
from freqtrade.data.converter.trade_converter import (
convert_trades_format,
convert_trades_to_ohlcv,
trades_convert_types,
trades_df_remove_duplicates,
trades_dict_to_list,
trades_list_to_df,
trades_to_ohlcv,
)
__all__ = [
'clean_ohlcv_dataframe',
'convert_ohlcv_format',
'ohlcv_fill_up_missing_data',
'ohlcv_to_dataframe',
'order_book_to_dataframe',
'reduce_dataframe_footprint',
'trim_dataframe',
'trim_dataframes',
'convert_trades_format',
'convert_trades_to_ohlcv',
'trades_convert_types',
'trades_df_remove_duplicates',
'trades_dict_to_list',
'trades_list_to_df',
'trades_to_ohlcv',
"clean_ohlcv_dataframe",
"convert_ohlcv_format",
"ohlcv_fill_up_missing_data",
"ohlcv_to_dataframe",
"order_book_to_dataframe",
"reduce_dataframe_footprint",
"trim_dataframe",
"trim_dataframes",
"convert_trades_format",
"convert_trades_to_ohlcv",
"trades_convert_types",
"trades_df_remove_duplicates",
"trades_dict_to_list",
"trades_list_to_df",
"trades_to_ohlcv",
]

View File

@@ -1,6 +1,7 @@
"""
Functions to convert data from one format to another
"""
import logging
from typing import Dict
@@ -15,8 +16,14 @@ from freqtrade.enums import CandleType, TradingMode
logger = logging.getLogger(__name__)
def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
fill_missing: bool = True, drop_incomplete: bool = True) -> DataFrame:
def ohlcv_to_dataframe(
ohlcv: list,
timeframe: str,
pair: str,
*,
fill_missing: bool = True,
drop_incomplete: bool = True,
) -> DataFrame:
"""
Converts a list with candle (OHLCV) data (in format returned by ccxt.fetch_ohlcv)
to a Dataframe
@@ -32,20 +39,28 @@ def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
cols = DEFAULT_DATAFRAME_COLUMNS
df = DataFrame(ohlcv, columns=cols)
df['date'] = to_datetime(df['date'], unit='ms', utc=True)
df["date"] = to_datetime(df["date"], unit="ms", utc=True)
# Some exchanges return int values for Volume and even for OHLC.
# Convert them since TA-LIB indicators used in the strategy assume floats
# and fail with exception...
df = df.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(df, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
df = df.astype(
dtype={
"open": "float",
"high": "float",
"low": "float",
"close": "float",
"volume": "float",
}
)
return clean_ohlcv_dataframe(
df, timeframe, pair, fill_missing=fill_missing, drop_incomplete=drop_incomplete
)
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool, drop_incomplete: bool) -> DataFrame:
def clean_ohlcv_dataframe(
data: DataFrame, timeframe: str, pair: str, *, fill_missing: bool, drop_incomplete: bool
) -> DataFrame:
"""
Cleanse a OHLCV dataframe by
* Grouping it by date (removes duplicate tics)
@@ -60,17 +75,19 @@ def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks
data = data.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'max',
})
data = data.groupby(by="date", as_index=False, sort=True).agg(
{
"open": "first",
"high": "max",
"low": "min",
"close": "last",
"volume": "max",
}
)
# eliminate partial candle
if drop_incomplete:
data.drop(data.tail(1).index, inplace=True)
logger.debug('Dropping last candle')
logger.debug("Dropping last candle")
if fill_missing:
return ohlcv_fill_up_missing_data(data, timeframe, pair)
@@ -81,37 +98,35 @@ def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
"""
Fills up missing data with 0 volume rows,
using the previous close as price for "open", "high" "low" and "close", volume is set to 0
using the previous close as price for "open", "high", "low" and "close", volume is set to 0
"""
from freqtrade.exchange import timeframe_to_resample_freq
ohlcv_dict = {
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}
ohlcv_dict = {"open": "first", "high": "max", "low": "min", "close": "last", "volume": "sum"}
resample_interval = timeframe_to_resample_freq(timeframe)
# Resample to create "NAN" values
df = dataframe.resample(resample_interval, on='date').agg(ohlcv_dict)
df = dataframe.resample(resample_interval, on="date").agg(ohlcv_dict)
# Forwardfill close for missing columns
df['close'] = df['close'].ffill()
df["close"] = df["close"].ffill()
# Use close for "open, high, low"
df.loc[:, ['open', 'high', 'low']] = df[['open', 'high', 'low']].fillna(
value={'open': df['close'],
'high': df['close'],
'low': df['close'],
})
df.loc[:, ["open", "high", "low"]] = df[["open", "high", "low"]].fillna(
value={
"open": df["close"],
"high": df["close"],
"low": df["close"],
}
)
df.reset_index(inplace=True)
len_before = len(dataframe)
len_after = len(df)
pct_missing = (len_after - len_before) / len_before if len_before > 0 else 0
if len_before != len_after:
message = (f"Missing data fillup for {pair}, {timeframe}: "
f"before: {len_before} - after: {len_after} - {pct_missing:.2%}")
message = (
f"Missing data fillup for {pair}, {timeframe}: "
f"before: {len_before} - after: {len_after} - {pct_missing:.2%}"
)
if pct_missing > 0.01:
logger.info(message)
else:
@@ -120,8 +135,9 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
return df
def trim_dataframe(df: DataFrame, timerange, *, df_date_col: str = 'date',
startup_candles: int = 0) -> DataFrame:
def trim_dataframe(
df: DataFrame, timerange, *, df_date_col: str = "date", startup_candles: int = 0
) -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
@@ -134,15 +150,16 @@ def trim_dataframe(df: DataFrame, timerange, *, df_date_col: str = 'date',
# Trim candles instead of timeframe in case of given startup_candle count
df = df.iloc[startup_candles:, :]
else:
if timerange.starttype == 'date':
if timerange.starttype == "date":
df = df.loc[df[df_date_col] >= timerange.startdt, :]
if timerange.stoptype == 'date':
if timerange.stoptype == "date":
df = df.loc[df[df_date_col] <= timerange.stopdt, :]
return df
def trim_dataframes(preprocessed: Dict[str, DataFrame], timerange,
startup_candles: int) -> Dict[str, DataFrame]:
def trim_dataframes(
preprocessed: Dict[str, DataFrame], timerange, startup_candles: int
) -> Dict[str, DataFrame]:
"""
Trim startup period from analyzed dataframes
:param preprocessed: Dict of pair: dataframe
@@ -157,8 +174,9 @@ def trim_dataframes(preprocessed: Dict[str, DataFrame], timerange,
if not trimed_df.empty:
processed[pair] = trimed_df
else:
logger.warning(f'{pair} has no data left after adjusting for startup candles, '
f'skipping.')
logger.warning(
f"{pair} has no data left after adjusting for startup candles, skipping."
)
return processed
@@ -170,19 +188,28 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
b_sum b_size bids asks a_size a_sum
-------------------------------------------------------------------
"""
cols = ['bids', 'b_size']
cols = ["bids", "b_size"]
bids_frame = DataFrame(bids, columns=cols)
# add cumulative sum column
bids_frame['b_sum'] = bids_frame['b_size'].cumsum()
cols2 = ['asks', 'a_size']
bids_frame["b_sum"] = bids_frame["b_size"].cumsum()
cols2 = ["asks", "a_size"]
asks_frame = DataFrame(asks, columns=cols2)
# add cumulative sum column
asks_frame['a_sum'] = asks_frame['a_size'].cumsum()
asks_frame["a_sum"] = asks_frame["a_size"].cumsum()
frame = pd.concat([bids_frame['b_sum'], bids_frame['b_size'], bids_frame['bids'],
asks_frame['asks'], asks_frame['a_size'], asks_frame['a_sum']], axis=1,
keys=['b_sum', 'b_size', 'bids', 'asks', 'a_size', 'a_sum'])
frame = pd.concat(
[
bids_frame["b_sum"],
bids_frame["b_size"],
bids_frame["bids"],
asks_frame["asks"],
asks_frame["a_size"],
asks_frame["a_sum"],
],
axis=1,
keys=["b_sum", "b_size", "bids", "asks", "a_size", "a_sum"],
)
# logger.info('order book %s', frame )
return frame
@@ -201,47 +228,51 @@ def convert_ohlcv_format(
:param erase: Erase source data (does not apply if source and target format are identical)
"""
from freqtrade.data.history import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('timeframe')])
src = get_datahandler(config["datadir"], convert_from)
trg = get_datahandler(config["datadir"], convert_to)
timeframes = config.get("timeframes", [config.get("timeframe")])
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', [
c.value for c in CandleType])]
candle_types = [
CandleType.from_string(ct)
for ct in config.get("candle_types", [c.value for c in CandleType])
]
logger.info(candle_types)
paircombs = src.ohlcv_get_available_data(config['datadir'], TradingMode.SPOT)
paircombs.extend(src.ohlcv_get_available_data(config['datadir'], TradingMode.FUTURES))
paircombs = src.ohlcv_get_available_data(config["datadir"], TradingMode.SPOT)
paircombs.extend(src.ohlcv_get_available_data(config["datadir"], TradingMode.FUTURES))
if 'pairs' in config:
if "pairs" in config:
# Filter pairs
paircombs = [comb for comb in paircombs if comb[0] in config['pairs']]
paircombs = [comb for comb in paircombs if comb[0] in config["pairs"]]
if 'timeframes' in config:
paircombs = [comb for comb in paircombs if comb[1] in config['timeframes']]
if "timeframes" in config:
paircombs = [comb for comb in paircombs if comb[1] in config["timeframes"]]
paircombs = [comb for comb in paircombs if comb[2] in candle_types]
paircombs = sorted(paircombs, key=lambda x: (x[0], x[1], x[2].value))
formatted_paircombs = '\n'.join([f"{pair}, {timeframe}, {candle_type}"
for pair, timeframe, candle_type in paircombs])
formatted_paircombs = "\n".join(
[f"{pair}, {timeframe}, {candle_type}" for pair, timeframe, candle_type in paircombs]
)
logger.info(f"Converting candle (OHLCV) data for the following pair combinations:\n"
f"{formatted_paircombs}")
logger.info(
f"Converting candle (OHLCV) data for the following pair combinations:\n"
f"{formatted_paircombs}"
)
for pair, timeframe, candle_type in paircombs:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0,
candle_type=candle_type)
data = src.ohlcv_load(
pair=pair,
timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0,
candle_type=candle_type,
)
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
if len(data) > 0:
trg.ohlcv_store(
pair=pair,
timeframe=timeframe,
data=data,
candle_type=candle_type
)
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data, candle_type=candle_type)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
@@ -254,12 +285,11 @@ def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
:return: Dataframe converted to float/int 32s
"""
logger.debug(f"Memory usage of dataframe is "
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
logger.debug(f"Memory usage of dataframe is {df.memory_usage().sum() / 1024**2:.2f} MB")
df_dtypes = df.dtypes
for column, dtype in df_dtypes.items():
if column in ['open', 'high', 'low', 'close', 'volume']:
if column in ["open", "high", "low", "close", "volume"]:
continue
if dtype == np.float64:
df_dtypes[column] = np.float32
@@ -267,7 +297,6 @@ def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
df_dtypes[column] = np.int32
df = df.astype(df_dtypes)
logger.debug(f"Memory usage after optimization is: "
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
logger.debug(f"Memory usage after optimization is: {df.memory_usage().sum() / 1024**2:.2f} MB")
return df

View File

@@ -1,6 +1,7 @@
"""
Functions to convert data from one format to another
"""
import logging
from pathlib import Path
from typing import Dict, List
@@ -9,8 +10,13 @@ import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.configuration import TimeRange
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TRADES_DTYPES,
Config, TradeList)
from freqtrade.constants import (
DEFAULT_DATAFRAME_COLUMNS,
DEFAULT_TRADES_COLUMNS,
TRADES_DTYPES,
Config,
TradeList,
)
from freqtrade.enums import CandleType, TradingMode
from freqtrade.exceptions import OperationalException
@@ -25,7 +31,7 @@ def trades_df_remove_duplicates(trades: pd.DataFrame) -> pd.DataFrame:
:param trades: DataFrame with the columns constants.DEFAULT_TRADES_COLUMNS
:return: DataFrame with duplicates removed based on the 'timestamp' column
"""
return trades.drop_duplicates(subset=['timestamp', 'id'])
return trades.drop_duplicates(subset=["timestamp", "id"])
def trades_dict_to_list(trades: List[Dict]) -> TradeList:
@@ -42,7 +48,7 @@ def trades_convert_types(trades: DataFrame) -> DataFrame:
Convert Trades dtypes and add 'date' column
"""
trades = trades.astype(TRADES_DTYPES)
trades['date'] = to_datetime(trades['timestamp'], unit='ms', utc=True)
trades["date"] = to_datetime(trades["timestamp"], unit="ms", utc=True)
return trades
@@ -71,13 +77,14 @@ def trades_to_ohlcv(trades: DataFrame, timeframe: str) -> DataFrame:
:raises: ValueError if no trades are provided
"""
from freqtrade.exchange import timeframe_to_resample_freq
if trades.empty:
raise ValueError('Trade-list empty.')
df = trades.set_index('date', drop=True)
raise ValueError("Trade-list empty.")
df = trades.set_index("date", drop=True)
resample_interval = timeframe_to_resample_freq(timeframe)
df_new = df['price'].resample(resample_interval).ohlc()
df_new['volume'] = df['amount'].resample(resample_interval).sum()
df_new['date'] = df_new.index
df_new = df["price"].resample(resample_interval).ohlc()
df_new["volume"] = df["amount"].resample(resample_interval).sum()
df_new["date"] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS]
@@ -97,24 +104,27 @@ def convert_trades_to_ohlcv(
Convert stored trades data to ohlcv data
"""
from freqtrade.data.history import get_datahandler
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
logger.info(f"About to convert pairs: '{', '.join(pairs)}', "
f"intervals: '{', '.join(timeframes)}' to {datadir}")
logger.info(
f"About to convert pairs: '{', '.join(pairs)}', "
f"intervals: '{', '.join(timeframes)}' to {datadir}"
)
trading_mode = TradingMode.FUTURES if candle_type != CandleType.SPOT else TradingMode.SPOT
for pair in pairs:
trades = data_handler_trades.trades_load(pair, trading_mode)
for timeframe in timeframes:
if erase:
if data_handler_ohlcv.ohlcv_purge(pair, timeframe, candle_type=candle_type):
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
logger.info(f"Deleting existing data for pair {pair}, interval {timeframe}.")
try:
ohlcv = trades_to_ohlcv(trades, timeframe)
# Store ohlcv
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv, candle_type=candle_type)
except ValueError:
logger.warning(f'Could not convert {pair} to OHLCV.')
logger.warning(f"Could not convert {pair} to OHLCV.")
def convert_trades_format(config: Config, convert_from: str, convert_to: str, erase: bool):
@@ -125,25 +135,27 @@ def convert_trades_format(config: Config, convert_from: str, convert_to: str, er
:param convert_to: Target format
:param erase: Erase source data (does not apply if source and target format are identical)
"""
if convert_from == 'kraken_csv':
if config['exchange']['name'] != 'kraken':
if convert_from == "kraken_csv":
if config["exchange"]["name"] != "kraken":
raise OperationalException(
'Converting from csv is only supported for kraken.'
'Please refer to the documentation for details about this special mode.'
"Converting from csv is only supported for kraken."
"Please refer to the documentation for details about this special mode."
)
from freqtrade.data.converter.trade_converter_kraken import import_kraken_trades_from_csv
import_kraken_trades_from_csv(config, convert_to)
return
from freqtrade.data.history import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
if 'pairs' not in config:
config['pairs'] = src.trades_get_pairs(config['datadir'])
src = get_datahandler(config["datadir"], convert_from)
trg = get_datahandler(config["datadir"], convert_to)
if "pairs" not in config:
config["pairs"] = src.trades_get_pairs(config["datadir"])
logger.info(f"Converting trades for {config['pairs']}")
trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
for pair in config['pairs']:
trading_mode: TradingMode = config.get("trading_mode", TradingMode.SPOT)
for pair in config["pairs"]:
data = src.trades_load(pair, trading_mode)
logger.info(f"Converting {len(data)} trades for {pair}")
trg.trades_store(pair, data, trading_mode)

View File

@@ -4,8 +4,10 @@ from pathlib import Path
import pandas as pd
from freqtrade.constants import DATETIME_PRINT_FORMAT, DEFAULT_TRADES_COLUMNS, Config
from freqtrade.data.converter.trade_converter import (trades_convert_types,
trades_df_remove_duplicates)
from freqtrade.data.converter.trade_converter import (
trades_convert_types,
trades_df_remove_duplicates,
)
from freqtrade.data.history import get_datahandler
from freqtrade.enums import TradingMode
from freqtrade.exceptions import OperationalException
@@ -15,32 +17,33 @@ from freqtrade.resolvers import ExchangeResolver
logger = logging.getLogger(__name__)
KRAKEN_CSV_TRADE_COLUMNS = ['timestamp', 'price', 'amount']
KRAKEN_CSV_TRADE_COLUMNS = ["timestamp", "price", "amount"]
def import_kraken_trades_from_csv(config: Config, convert_to: str):
"""
Import kraken trades from csv
"""
if config['exchange']['name'] != 'kraken':
raise OperationalException('This function is only for the kraken exchange.')
if config["exchange"]["name"] != "kraken":
raise OperationalException("This function is only for the kraken exchange.")
datadir: Path = config['datadir']
datadir: Path = config["datadir"]
data_handler = get_datahandler(datadir, data_format=convert_to)
tradesdir: Path = config['datadir'] / 'trades_csv'
tradesdir: Path = config["datadir"] / "trades_csv"
exchange = ExchangeResolver.load_exchange(config, validate=False)
# iterate through directories in this directory
data_symbols = {p.stem for p in tradesdir.rglob('*.csv')}
data_symbols = {p.stem for p in tradesdir.rglob("*.csv")}
# create pair/filename mapping
markets = {
(m['symbol'], m['altname']) for m in exchange.markets.values()
if m.get('altname') in data_symbols
(m["symbol"], m["altname"])
for m in exchange.markets.values()
if m.get("altname") in data_symbols
}
logger.info(f"Found csv files for {', '.join(data_symbols)}.")
if pairs_raw := config.get('pairs'):
if pairs_raw := config.get("pairs"):
pairs = expand_pairlist(pairs_raw, [m[0] for m in markets])
markets = {m for m in markets if m[0] in pairs}
if not markets:
@@ -66,18 +69,20 @@ def import_kraken_trades_from_csv(config: Config, convert_to: str):
trades = pd.concat(dfs, ignore_index=True)
del dfs
trades.loc[:, 'timestamp'] = trades['timestamp'] * 1e3
trades.loc[:, 'cost'] = trades['price'] * trades['amount']
trades.loc[:, "timestamp"] = trades["timestamp"] * 1e3
trades.loc[:, "cost"] = trades["price"] * trades["amount"]
for col in DEFAULT_TRADES_COLUMNS:
if col not in trades.columns:
trades.loc[:, col] = ''
trades.loc[:, col] = ""
trades = trades[DEFAULT_TRADES_COLUMNS]
trades = trades_convert_types(trades)
trades_df = trades_df_remove_duplicates(trades)
del trades
logger.info(f"{pair}: {len(trades_df)} trades, from "
f"{trades_df['date'].min():{DATETIME_PRINT_FORMAT}} to "
f"{trades_df['date'].max():{DATETIME_PRINT_FORMAT}}")
logger.info(
f"{pair}: {len(trades_df)} trades, from "
f"{trades_df['date'].min():{DATETIME_PRINT_FORMAT}} to "
f"{trades_df['date'].max():{DATETIME_PRINT_FORMAT}}"
)
data_handler.trades_store(pair, trades_df, TradingMode.SPOT)

View File

@@ -4,6 +4,7 @@ Responsible to provide data to the bot
including ticker and orderbook data, live and historical candle (OHLCV) data
Common Interface for bot and strategy to access data.
"""
import logging
from collections import deque
from datetime import datetime, timezone
@@ -12,8 +13,12 @@ from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame, Timedelta, Timestamp, to_timedelta
from freqtrade.configuration import TimeRange
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
PairWithTimeframe)
from freqtrade.constants import (
FULL_DATAFRAME_THRESHOLD,
Config,
ListPairsWithTimeframes,
PairWithTimeframe,
)
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType, RPCMessageType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
@@ -27,18 +32,17 @@ from freqtrade.util import PeriodicCache
logger = logging.getLogger(__name__)
NO_EXCHANGE_EXCEPTION = 'Exchange is not available to DataProvider.'
NO_EXCHANGE_EXCEPTION = "Exchange is not available to DataProvider."
MAX_DATAFRAME_CANDLES = 1000
class DataProvider:
def __init__(
self,
config: Config,
exchange: Optional[Exchange],
pairlists=None,
rpc: Optional[RPCManager] = None
rpc: Optional[RPCManager] = None,
) -> None:
self._config = config
self._exchange = exchange
@@ -49,18 +53,20 @@ class DataProvider:
self.__slice_date: Optional[datetime] = None
self.__cached_pairs_backtesting: Dict[PairWithTimeframe, DataFrame] = {}
self.__producer_pairs_df: Dict[str,
Dict[PairWithTimeframe, Tuple[DataFrame, datetime]]] = {}
self.__producer_pairs_df: Dict[
str, Dict[PairWithTimeframe, Tuple[DataFrame, datetime]]
] = {}
self.__producer_pairs: Dict[str, List[str]] = {}
self._msg_queue: deque = deque()
self._default_candle_type = self._config.get('candle_type_def', CandleType.SPOT)
self._default_timeframe = self._config.get('timeframe', '1h')
self._default_candle_type = self._config.get("candle_type_def", CandleType.SPOT)
self._default_timeframe = self._config.get("timeframe", "1h")
self.__msg_cache = PeriodicCache(
maxsize=1000, ttl=timeframe_to_seconds(self._default_timeframe))
maxsize=1000, ttl=timeframe_to_seconds(self._default_timeframe)
)
self.producers = self._config.get('external_message_consumer', {}).get('producers', [])
self.producers = self._config.get("external_message_consumer", {}).get("producers", [])
self.external_data_enabled = len(self.producers) > 0
def _set_dataframe_max_index(self, limit_index: int):
@@ -80,11 +86,7 @@ class DataProvider:
self.__slice_date = limit_date
def _set_cached_df(
self,
pair: str,
timeframe: str,
dataframe: DataFrame,
candle_type: CandleType
self, pair: str, timeframe: str, dataframe: DataFrame, candle_type: CandleType
) -> None:
"""
Store cached Dataframe.
@@ -96,8 +98,7 @@ class DataProvider:
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
pair_key = (pair, timeframe, candle_type)
self.__cached_pairs[pair_key] = (
dataframe, datetime.now(timezone.utc))
self.__cached_pairs[pair_key] = (dataframe, datetime.now(timezone.utc))
# For multiple producers we will want to merge the pairlists instead of overwriting
def _set_producer_pairs(self, pairlist: List[str], producer_name: str = "default"):
@@ -116,12 +117,7 @@ class DataProvider:
"""
return self.__producer_pairs.get(producer_name, []).copy()
def _emit_df(
self,
pair_key: PairWithTimeframe,
dataframe: DataFrame,
new_candle: bool
) -> None:
def _emit_df(self, pair_key: PairWithTimeframe, dataframe: DataFrame, new_candle: bool) -> None:
"""
Send this dataframe as an ANALYZED_DF message to RPC
@@ -131,19 +127,21 @@ class DataProvider:
"""
if self.__rpc:
msg: RPCAnalyzedDFMsg = {
'type': RPCMessageType.ANALYZED_DF,
'data': {
'key': pair_key,
'df': dataframe.tail(1),
'la': datetime.now(timezone.utc)
}
}
"type": RPCMessageType.ANALYZED_DF,
"data": {
"key": pair_key,
"df": dataframe.tail(1),
"la": datetime.now(timezone.utc),
},
}
self.__rpc.send_msg(msg)
if new_candle:
self.__rpc.send_msg({
'type': RPCMessageType.NEW_CANDLE,
'data': pair_key,
})
self.__rpc.send_msg(
{
"type": RPCMessageType.NEW_CANDLE,
"data": pair_key,
}
)
def _replace_external_df(
self,
@@ -152,7 +150,7 @@ class DataProvider:
last_analyzed: datetime,
timeframe: str,
candle_type: CandleType,
producer_name: str = "default"
producer_name: str = "default",
) -> None:
"""
Add the pair data to this class from an external source.
@@ -178,7 +176,7 @@ class DataProvider:
last_analyzed: datetime,
timeframe: str,
candle_type: CandleType,
producer_name: str = "default"
producer_name: str = "default",
) -> Tuple[bool, int]:
"""
Append a candle to the existing external dataframe. The incoming dataframe
@@ -204,12 +202,14 @@ class DataProvider:
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
producer_name=producer_name,
)
return (True, 0)
if (producer_name not in self.__producer_pairs_df
or pair_key not in self.__producer_pairs_df[producer_name]):
if (
producer_name not in self.__producer_pairs_df
or pair_key not in self.__producer_pairs_df[producer_name]
):
# We don't have data from this producer yet,
# or we don't have data for this pair_key
# return False and 1000 for the full df
@@ -220,12 +220,12 @@ class DataProvider:
# CHECK FOR MISSING CANDLES
# Convert the timeframe to a timedelta for pandas
timeframe_delta: Timedelta = to_timedelta(timeframe)
local_last: Timestamp = existing_df.iloc[-1]['date'] # We want the last date from our copy
local_last: Timestamp = existing_df.iloc[-1]["date"] # We want the last date from our copy
# We want the first date from the incoming
incoming_first: Timestamp = dataframe.iloc[0]['date']
incoming_first: Timestamp = dataframe.iloc[0]["date"]
# Remove existing candles that are newer than the incoming first candle
existing_df1 = existing_df[existing_df['date'] < incoming_first]
existing_df1 = existing_df[existing_df["date"] < incoming_first]
candle_difference = (incoming_first - local_last) / timeframe_delta
@@ -243,13 +243,13 @@ class DataProvider:
# Everything is good, we appended
self._replace_external_df(
pair,
appended_df,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
)
pair,
appended_df,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name,
)
return (True, 0)
def get_producer_df(
@@ -257,7 +257,7 @@ class DataProvider:
pair: str,
timeframe: Optional[str] = None,
candle_type: Optional[CandleType] = None,
producer_name: str = "default"
producer_name: str = "default",
) -> Tuple[DataFrame, datetime]:
"""
Get the pair data from producers.
@@ -292,64 +292,64 @@ class DataProvider:
"""
self._pairlists = pairlists
def historic_ohlcv(
self,
pair: str,
timeframe: str,
candle_type: str = ''
) -> DataFrame:
def historic_ohlcv(self, pair: str, timeframe: str, candle_type: str = "") -> DataFrame:
"""
Get stored historical candle (OHLCV) data
:param pair: pair to get the data for
:param timeframe: timeframe to get data for
:param candle_type: '', mark, index, premiumIndex, or funding_rate
"""
_candle_type = CandleType.from_string(
candle_type) if candle_type != '' else self._config['candle_type_def']
_candle_type = (
CandleType.from_string(candle_type)
if candle_type != ""
else self._config["candle_type_def"]
)
saved_pair: PairWithTimeframe = (pair, str(timeframe), _candle_type)
if saved_pair not in self.__cached_pairs_backtesting:
timerange = TimeRange.parse_timerange(None if self._config.get(
'timerange') is None else str(self._config.get('timerange')))
timerange = TimeRange.parse_timerange(
None
if self._config.get("timerange") is None
else str(self._config.get("timerange"))
)
startup_candles = self.get_required_startup(str(timeframe))
tf_seconds = timeframe_to_seconds(str(timeframe))
timerange.subtract_start(tf_seconds * startup_candles)
logger.info(f"Loading data for {pair} {timeframe} "
f"from {timerange.start_fmt} to {timerange.stop_fmt}")
logger.info(
f"Loading data for {pair} {timeframe} "
f"from {timerange.start_fmt} to {timerange.stop_fmt}"
)
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
pair=pair,
timeframe=timeframe,
datadir=self._config['datadir'],
datadir=self._config["datadir"],
timerange=timerange,
data_format=self._config['dataformat_ohlcv'],
data_format=self._config["dataformat_ohlcv"],
candle_type=_candle_type,
)
return self.__cached_pairs_backtesting[saved_pair].copy()
def get_required_startup(self, timeframe: str) -> int:
freqai_config = self._config.get('freqai', {})
if not freqai_config.get('enabled', False):
return self._config.get('startup_candle_count', 0)
freqai_config = self._config.get("freqai", {})
if not freqai_config.get("enabled", False):
return self._config.get("startup_candle_count", 0)
else:
startup_candles = self._config.get('startup_candle_count', 0)
indicator_periods = freqai_config['feature_parameters']['indicator_periods_candles']
startup_candles = self._config.get("startup_candle_count", 0)
indicator_periods = freqai_config["feature_parameters"]["indicator_periods_candles"]
# make sure the startupcandles is at least the set maximum indicator periods
self._config['startup_candle_count'] = max(startup_candles, max(indicator_periods))
self._config["startup_candle_count"] = max(startup_candles, max(indicator_periods))
tf_seconds = timeframe_to_seconds(timeframe)
train_candles = freqai_config['train_period_days'] * 86400 / tf_seconds
total_candles = int(self._config['startup_candle_count'] + train_candles)
train_candles = freqai_config["train_period_days"] * 86400 / tf_seconds
total_candles = int(self._config["startup_candle_count"] + train_candles)
logger.info(
f'Increasing startup_candle_count for freqai on {timeframe} to {total_candles}')
f"Increasing startup_candle_count for freqai on {timeframe} to {total_candles}"
)
return total_candles
def get_pair_dataframe(
self,
pair: str,
timeframe: Optional[str] = None,
candle_type: str = ''
self, pair: str, timeframe: Optional[str] = None, candle_type: str = ""
) -> DataFrame:
"""
Return pair candle (OHLCV) data, either live or cached historical -- depending
@@ -366,13 +366,13 @@ class DataProvider:
data = self.ohlcv(pair=pair, timeframe=timeframe, candle_type=candle_type)
else:
# Get historical OHLCV data (cached on disk).
timeframe = timeframe or self._config['timeframe']
timeframe = timeframe or self._config["timeframe"]
data = self.historic_ohlcv(pair=pair, timeframe=timeframe, candle_type=candle_type)
# Cut date to timeframe-specific date.
# This is necessary to prevent lookahead bias in callbacks through informative pairs.
if self.__slice_date:
cutoff_date = timeframe_to_prev_date(timeframe, self.__slice_date)
data = data.loc[data['date'] < cutoff_date]
data = data.loc[data["date"] < cutoff_date]
if len(data) == 0:
logger.warning(f"No data found for ({pair}, {timeframe}, {candle_type}).")
return data
@@ -387,7 +387,7 @@ class DataProvider:
combination.
Returns empty dataframe and Epoch 0 (1970-01-01) if no dataframe was cached.
"""
pair_key = (pair, timeframe, self._config.get('candle_type_def', CandleType.SPOT))
pair_key = (pair, timeframe, self._config.get("candle_type_def", CandleType.SPOT))
if pair_key in self.__cached_pairs:
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
df, date = self.__cached_pairs[pair_key]
@@ -395,7 +395,7 @@ class DataProvider:
df, date = self.__cached_pairs[pair_key]
if self.__slice_index is not None:
max_index = self.__slice_index
df = df.iloc[max(0, max_index - MAX_DATAFRAME_CANDLES):max_index]
df = df.iloc[max(0, max_index - MAX_DATAFRAME_CANDLES) : max_index]
return df, date
else:
return (DataFrame(), datetime.fromtimestamp(0, tz=timezone.utc))
@@ -406,7 +406,7 @@ class DataProvider:
Get runmode of the bot
can be "live", "dry-run", "backtest", "edgecli", "hyperopt" or "other".
"""
return RunMode(self._config.get('runmode', RunMode.OTHER))
return RunMode(self._config.get("runmode", RunMode.OTHER))
def current_whitelist(self) -> List[str]:
"""
@@ -434,9 +434,11 @@ class DataProvider:
# Exchange functions
def refresh(self,
pairlist: ListPairsWithTimeframes,
helping_pairs: Optional[ListPairsWithTimeframes] = None) -> None:
def refresh(
self,
pairlist: ListPairsWithTimeframes,
helping_pairs: Optional[ListPairsWithTimeframes] = None,
) -> None:
"""
Refresh data, called with each cycle
"""
@@ -456,11 +458,7 @@ class DataProvider:
return list(self._exchange._klines.keys())
def ohlcv(
self,
pair: str,
timeframe: Optional[str] = None,
copy: bool = True,
candle_type: str = ''
self, pair: str, timeframe: Optional[str] = None, copy: bool = True, candle_type: str = ""
) -> DataFrame:
"""
Get candle (OHLCV) data for the given pair as DataFrame
@@ -474,11 +472,13 @@ class DataProvider:
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
_candle_type = CandleType.from_string(
candle_type) if candle_type != '' else self._config['candle_type_def']
_candle_type = (
CandleType.from_string(candle_type)
if candle_type != ""
else self._config["candle_type_def"]
)
return self._exchange.klines(
(pair, timeframe or self._config['timeframe'], _candle_type),
copy=copy
(pair, timeframe or self._config["timeframe"], _candle_type), copy=copy
)
else:
return DataFrame()

View File

@@ -8,8 +8,11 @@ from tabulate import tabulate
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
load_backtest_stats)
from freqtrade.data.btanalysis import (
get_latest_backtest_filename,
load_backtest_data,
load_backtest_stats,
)
from freqtrade.exceptions import OperationalException
@@ -18,9 +21,10 @@ logger = logging.getLogger(__name__)
def _load_backtest_analysis_data(backtest_dir: Path, name: str):
if backtest_dir.is_dir():
scpf = Path(backtest_dir,
Path(get_latest_backtest_filename(backtest_dir)).stem + "_" + name + ".pkl"
)
scpf = Path(
backtest_dir,
Path(get_latest_backtest_filename(backtest_dir)).stem + "_" + name + ".pkl",
)
else:
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_{name}.pkl")
@@ -53,7 +57,8 @@ def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_cand
for pair in pairlist:
if pair in signal_candles[strategy_name]:
analysed_trades_dict[strategy_name][pair] = _analyze_candles_and_indicators(
pair, trades, signal_candles[strategy_name][pair])
pair, trades, signal_candles[strategy_name][pair]
)
except Exception as e:
print(f"Cannot process entry/exit reasons for {strategy_name}: ", e)
@@ -64,28 +69,28 @@ def _analyze_candles_and_indicators(pair, trades: pd.DataFrame, signal_candles:
buyf = signal_candles
if len(buyf) > 0:
buyf = buyf.set_index('date', drop=False)
trades_red = trades.loc[trades['pair'] == pair].copy()
buyf = buyf.set_index("date", drop=False)
trades_red = trades.loc[trades["pair"] == pair].copy()
trades_inds = pd.DataFrame()
if trades_red.shape[0] > 0 and buyf.shape[0] > 0:
for t, v in trades_red.open_date.items():
allinds = buyf.loc[(buyf['date'] < v)]
allinds = buyf.loc[(buyf["date"] < v)]
if allinds.shape[0] > 0:
tmp_inds = allinds.iloc[[-1]]
trades_red.loc[t, 'signal_date'] = tmp_inds['date'].values[0]
trades_red.loc[t, 'enter_reason'] = trades_red.loc[t, 'enter_tag']
tmp_inds.index.rename('signal_date', inplace=True)
trades_red.loc[t, "signal_date"] = tmp_inds["date"].values[0]
trades_red.loc[t, "enter_reason"] = trades_red.loc[t, "enter_tag"]
tmp_inds.index.rename("signal_date", inplace=True)
trades_inds = pd.concat([trades_inds, tmp_inds])
if 'signal_date' in trades_red:
trades_red['signal_date'] = pd.to_datetime(trades_red['signal_date'], utc=True)
trades_red.set_index('signal_date', inplace=True)
if "signal_date" in trades_red:
trades_red["signal_date"] = pd.to_datetime(trades_red["signal_date"], utc=True)
trades_red.set_index("signal_date", inplace=True)
try:
trades_red = pd.merge(trades_red, trades_inds, on='signal_date', how='outer')
trades_red = pd.merge(trades_red, trades_inds, on="signal_date", how="outer")
except Exception as e:
raise e
return trades_red
@@ -93,138 +98,166 @@ def _analyze_candles_and_indicators(pair, trades: pd.DataFrame, signal_candles:
return pd.DataFrame()
def _do_group_table_output(bigdf, glist, csv_path: Path, to_csv=False, ):
def _do_group_table_output(
bigdf,
glist,
csv_path: Path,
to_csv=False,
):
for g in glist:
# 0: summary wins/losses grouped by enter tag
if g == "0":
group_mask = ['enter_reason']
wins = bigdf.loc[bigdf['profit_abs'] >= 0] \
.groupby(group_mask) \
.agg({'profit_abs': ['sum']})
group_mask = ["enter_reason"]
wins = (
bigdf.loc[bigdf["profit_abs"] >= 0].groupby(group_mask).agg({"profit_abs": ["sum"]})
)
wins.columns = ['profit_abs_wins']
loss = bigdf.loc[bigdf['profit_abs'] < 0] \
.groupby(group_mask) \
.agg({'profit_abs': ['sum']})
loss.columns = ['profit_abs_loss']
wins.columns = ["profit_abs_wins"]
loss = (
bigdf.loc[bigdf["profit_abs"] < 0].groupby(group_mask).agg({"profit_abs": ["sum"]})
)
loss.columns = ["profit_abs_loss"]
new = bigdf.groupby(group_mask).agg({'profit_abs': [
'count',
lambda x: sum(x > 0),
lambda x: sum(x <= 0)]})
new = bigdf.groupby(group_mask).agg(
{"profit_abs": ["count", lambda x: sum(x > 0), lambda x: sum(x <= 0)]}
)
new = pd.concat([new, wins, loss], axis=1).fillna(0)
new['profit_tot'] = new['profit_abs_wins'] - abs(new['profit_abs_loss'])
new['wl_ratio_pct'] = (new.iloc[:, 1] / new.iloc[:, 0] * 100).fillna(0)
new['avg_win'] = (new['profit_abs_wins'] / new.iloc[:, 1]).fillna(0)
new['avg_loss'] = (new['profit_abs_loss'] / new.iloc[:, 2]).fillna(0)
new["profit_tot"] = new["profit_abs_wins"] - abs(new["profit_abs_loss"])
new["wl_ratio_pct"] = (new.iloc[:, 1] / new.iloc[:, 0] * 100).fillna(0)
new["avg_win"] = (new["profit_abs_wins"] / new.iloc[:, 1]).fillna(0)
new["avg_loss"] = (new["profit_abs_loss"] / new.iloc[:, 2]).fillna(0)
new['exp_ratio'] = (
(
(1 + (new['avg_win'] / abs(new['avg_loss']))) * (new['wl_ratio_pct'] / 100)
) - 1).fillna(0)
new["exp_ratio"] = (
((1 + (new["avg_win"] / abs(new["avg_loss"]))) * (new["wl_ratio_pct"] / 100)) - 1
).fillna(0)
new.columns = ['total_num_buys', 'wins', 'losses',
'profit_abs_wins', 'profit_abs_loss',
'profit_tot', 'wl_ratio_pct',
'avg_win', 'avg_loss', 'exp_ratio']
new.columns = [
"total_num_buys",
"wins",
"losses",
"profit_abs_wins",
"profit_abs_loss",
"profit_tot",
"wl_ratio_pct",
"avg_win",
"avg_loss",
"exp_ratio",
]
sortcols = ['total_num_buys']
sortcols = ["total_num_buys"]
_print_table(new, sortcols, show_index=True, name="Group 0:",
to_csv=to_csv, csv_path=csv_path)
_print_table(
new, sortcols, show_index=True, name="Group 0:", to_csv=to_csv, csv_path=csv_path
)
else:
agg_mask = {'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['median', 'mean', 'sum']}
agg_cols = ['num_buys', 'profit_abs_sum', 'profit_abs_median',
'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct',
'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
agg_mask = {
"profit_abs": ["count", "sum", "median", "mean"],
"profit_ratio": ["median", "mean", "sum"],
}
agg_cols = [
"num_buys",
"profit_abs_sum",
"profit_abs_median",
"profit_abs_mean",
"median_profit_pct",
"mean_profit_pct",
"total_profit_pct",
]
sortcols = ["profit_abs_sum", "enter_reason"]
# 1: profit summaries grouped by enter_tag
if g == "1":
group_mask = ['enter_reason']
group_mask = ["enter_reason"]
# 2: profit summaries grouped by enter_tag and exit_tag
if g == "2":
group_mask = ['enter_reason', 'exit_reason']
group_mask = ["enter_reason", "exit_reason"]
# 3: profit summaries grouped by pair and enter_tag
if g == "3":
group_mask = ['pair', 'enter_reason']
group_mask = ["pair", "enter_reason"]
# 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
if g == "4":
group_mask = ['pair', 'enter_reason', 'exit_reason']
group_mask = ["pair", "enter_reason", "exit_reason"]
# 5: profit summaries grouped by exit_tag
if g == "5":
group_mask = ['exit_reason']
sortcols = ['exit_reason']
group_mask = ["exit_reason"]
sortcols = ["exit_reason"]
if group_mask:
new = bigdf.groupby(group_mask).agg(agg_mask).reset_index()
new.columns = group_mask + agg_cols
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
new["median_profit_pct"] = new["median_profit_pct"] * 100
new["mean_profit_pct"] = new["mean_profit_pct"] * 100
new["total_profit_pct"] = new["total_profit_pct"] * 100
_print_table(new, sortcols, name=f"Group {g}:",
to_csv=to_csv, csv_path=csv_path)
_print_table(new, sortcols, name=f"Group {g}:", to_csv=to_csv, csv_path=csv_path)
else:
logger.warning("Invalid group mask specified.")
def _do_rejected_signals_output(rejected_signals_df: pd.DataFrame,
to_csv: bool = False, csv_path=None) -> None:
cols = ['pair', 'date', 'enter_tag']
sortcols = ['date', 'pair', 'enter_tag']
_print_table(rejected_signals_df[cols],
sortcols,
show_index=False,
name="Rejected Signals:",
to_csv=to_csv,
csv_path=csv_path)
def _do_rejected_signals_output(
rejected_signals_df: pd.DataFrame, to_csv: bool = False, csv_path=None
) -> None:
cols = ["pair", "date", "enter_tag"]
sortcols = ["date", "pair", "enter_tag"]
_print_table(
rejected_signals_df[cols],
sortcols,
show_index=False,
name="Rejected Signals:",
to_csv=to_csv,
csv_path=csv_path,
)
def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
def _select_rows_within_dates(df, timerange=None, df_date_col: str = "date"):
if timerange:
if timerange.starttype == 'date':
if timerange.starttype == "date":
df = df.loc[(df[df_date_col] >= timerange.startdt)]
if timerange.stoptype == 'date':
if timerange.stoptype == "date":
df = df.loc[(df[df_date_col] < timerange.stopdt)]
return df
def _select_rows_by_tags(df, enter_reason_list, exit_reason_list):
if enter_reason_list and "all" not in enter_reason_list:
df = df.loc[(df['enter_reason'].isin(enter_reason_list))]
df = df.loc[(df["enter_reason"].isin(enter_reason_list))]
if exit_reason_list and "all" not in exit_reason_list:
df = df.loc[(df['exit_reason'].isin(exit_reason_list))]
df = df.loc[(df["exit_reason"].isin(exit_reason_list))]
return df
def prepare_results(analysed_trades, stratname,
enter_reason_list, exit_reason_list,
timerange=None):
def prepare_results(
analysed_trades, stratname, enter_reason_list, exit_reason_list, timerange=None
):
res_df = pd.DataFrame()
for pair, trades in analysed_trades[stratname].items():
if (trades.shape[0] > 0):
trades.dropna(subset=['close_date'], inplace=True)
if trades.shape[0] > 0:
trades.dropna(subset=["close_date"], inplace=True)
res_df = pd.concat([res_df, trades], ignore_index=True)
res_df = _select_rows_within_dates(res_df, timerange)
if res_df is not None and res_df.shape[0] > 0 and ('enter_reason' in res_df.columns):
if res_df is not None and res_df.shape[0] > 0 and ("enter_reason" in res_df.columns):
res_df = _select_rows_by_tags(res_df, enter_reason_list, exit_reason_list)
return res_df
def print_results(res_df: pd.DataFrame, analysis_groups: List[str], indicator_list: List[str],
csv_path: Path, rejected_signals=None, to_csv=False):
def print_results(
res_df: pd.DataFrame,
analysis_groups: List[str],
indicator_list: List[str],
csv_path: Path,
rejected_signals=None,
to_csv=False,
):
if res_df.shape[0] > 0:
if analysis_groups:
_do_group_table_output(res_df, analysis_groups, to_csv=to_csv, csv_path=csv_path)
@@ -237,30 +270,31 @@ def print_results(res_df: pd.DataFrame, analysis_groups: List[str], indicator_li
# NB this can be large for big dataframes!
if "all" in indicator_list:
_print_table(res_df,
show_index=False,
name="Indicators:",
to_csv=to_csv,
csv_path=csv_path)
_print_table(
res_df, show_index=False, name="Indicators:", to_csv=to_csv, csv_path=csv_path
)
elif indicator_list is not None and indicator_list:
available_inds = []
for ind in indicator_list:
if ind in res_df:
available_inds.append(ind)
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
_print_table(res_df[ilist],
sortcols=['exit_reason'],
show_index=False,
name="Indicators:",
to_csv=to_csv,
csv_path=csv_path)
_print_table(
res_df[ilist],
sortcols=["exit_reason"],
show_index=False,
name="Indicators:",
to_csv=to_csv,
csv_path=csv_path,
)
else:
print("\\No trades to show")
def _print_table(df: pd.DataFrame, sortcols=None, *, show_index=False, name=None,
to_csv=False, csv_path: Path):
if (sortcols is not None):
def _print_table(
df: pd.DataFrame, sortcols=None, *, show_index=False, name=None, to_csv=False, csv_path: Path
):
if sortcols is not None:
data = df.sort_values(sortcols)
else:
data = df
@@ -273,60 +307,64 @@ def _print_table(df: pd.DataFrame, sortcols=None, *, show_index=False, name=None
if name is not None:
print(name)
print(
tabulate(
data,
headers='keys',
tablefmt='psql',
showindex=show_index
)
)
print(tabulate(data, headers="keys", tablefmt="psql", showindex=show_index))
def process_entry_exit_reasons(config: Config):
try:
analysis_groups = config.get('analysis_groups', [])
enter_reason_list = config.get('enter_reason_list', ["all"])
exit_reason_list = config.get('exit_reason_list', ["all"])
indicator_list = config.get('indicator_list', [])
do_rejected = config.get('analysis_rejected', False)
to_csv = config.get('analysis_to_csv', False)
csv_path = Path(config.get('analysis_csv_path', config['exportfilename']))
analysis_groups = config.get("analysis_groups", [])
enter_reason_list = config.get("enter_reason_list", ["all"])
exit_reason_list = config.get("exit_reason_list", ["all"])
indicator_list = config.get("indicator_list", [])
do_rejected = config.get("analysis_rejected", False)
to_csv = config.get("analysis_to_csv", False)
csv_path = Path(config.get("analysis_csv_path", config["exportfilename"]))
if to_csv and not csv_path.is_dir():
raise OperationalException(f"Specified directory {csv_path} does not exist.")
timerange = TimeRange.parse_timerange(None if config.get(
'timerange') is None else str(config.get('timerange')))
timerange = TimeRange.parse_timerange(
None if config.get("timerange") is None else str(config.get("timerange"))
)
backtest_stats = load_backtest_stats(config['exportfilename'])
backtest_stats = load_backtest_stats(config["exportfilename"])
for strategy_name, results in backtest_stats['strategy'].items():
trades = load_backtest_data(config['exportfilename'], strategy_name)
for strategy_name, results in backtest_stats["strategy"].items():
trades = load_backtest_data(config["exportfilename"], strategy_name)
if trades is not None and not trades.empty:
signal_candles = _load_signal_candles(config['exportfilename'])
signal_candles = _load_signal_candles(config["exportfilename"])
rej_df = None
if do_rejected:
rejected_signals_dict = _load_rejected_signals(config['exportfilename'])
rej_df = prepare_results(rejected_signals_dict, strategy_name,
enter_reason_list, exit_reason_list,
timerange=timerange)
rejected_signals_dict = _load_rejected_signals(config["exportfilename"])
rej_df = prepare_results(
rejected_signals_dict,
strategy_name,
enter_reason_list,
exit_reason_list,
timerange=timerange,
)
analysed_trades_dict = _process_candles_and_indicators(
config['exchange']['pair_whitelist'], strategy_name,
trades, signal_candles)
config["exchange"]["pair_whitelist"], strategy_name, trades, signal_candles
)
res_df = prepare_results(analysed_trades_dict, strategy_name,
enter_reason_list, exit_reason_list,
timerange=timerange)
res_df = prepare_results(
analysed_trades_dict,
strategy_name,
enter_reason_list,
exit_reason_list,
timerange=timerange,
)
print_results(res_df,
analysis_groups,
indicator_list,
rejected_signals=rej_df,
to_csv=to_csv,
csv_path=csv_path)
print_results(
res_df,
analysis_groups,
indicator_list,
rejected_signals=rej_df,
to_csv=to_csv,
csv_path=csv_path,
)
except ValueError as e:
raise OperationalException(e) from e

View File

@@ -5,8 +5,17 @@ Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
# flake8: noqa: F401
from .datahandlers import get_datahandler
from .history_utils import (convert_trades_to_ohlcv, download_data_main, get_timerange, load_data,
load_pair_history, refresh_backtest_ohlcv_data,
refresh_backtest_trades_data, refresh_data, validate_backtest_data)
from .history_utils import (
convert_trades_to_ohlcv,
download_data_main,
get_timerange,
load_data,
load_pair_history,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data,
refresh_data,
validate_backtest_data,
)

View File

@@ -14,11 +14,11 @@ logger = logging.getLogger(__name__)
class FeatherDataHandler(IDataHandler):
_columns = DEFAULT_DATAFRAME_COLUMNS
def ohlcv_store(
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Store data in json format "values".
format looks as follows:
@@ -33,11 +33,12 @@ class FeatherDataHandler(IDataHandler):
self.create_dir_if_needed(filename)
data.reset_index(drop=True).loc[:, self._columns].to_feather(
filename, compression_level=9, compression='lz4')
filename, compression_level=9, compression="lz4"
)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
def _ohlcv_load(
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
@@ -50,28 +51,31 @@ class FeatherDataHandler(IDataHandler):
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(
self._datadir, pair, timeframe, candle_type=candle_type)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type=candle_type)
if not filename.exists():
# Fallback mode for 1M files
filename = self._pair_data_filename(
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True)
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True
)
if not filename.exists():
return DataFrame(columns=self._columns)
pairdata = read_feather(filename)
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
pairdata = pairdata.astype(
dtype={
"open": "float",
"high": "float",
"low": "float",
"close": "float",
"volume": "float",
}
)
pairdata["date"] = to_datetime(pairdata["date"], unit="ms", utc=True)
return pairdata
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: DataFrame,
candle_type: CandleType
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Append data to existing data structures
@@ -92,7 +96,7 @@ class FeatherDataHandler(IDataHandler):
"""
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
self.create_dir_if_needed(filename)
data.reset_index(drop=True).to_feather(filename, compression_level=9, compression='lz4')
data.reset_index(drop=True).to_feather(filename, compression_level=9, compression="lz4")
def trades_append(self, pair: str, data: DataFrame):
"""
@@ -104,7 +108,7 @@ class FeatherDataHandler(IDataHandler):
raise NotImplementedError()
def _trades_load(
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
) -> DataFrame:
"""
Load a pair from file, either .json.gz or .json

View File

@@ -15,11 +15,11 @@ logger = logging.getLogger(__name__)
class HDF5DataHandler(IDataHandler):
_columns = DEFAULT_DATAFRAME_COLUMNS
def ohlcv_store(
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType) -> None:
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType
) -> None:
"""
Store data in hdf5 file.
:param pair: Pair - used to generate filename
@@ -35,13 +35,18 @@ class HDF5DataHandler(IDataHandler):
self.create_dir_if_needed(filename)
_data.loc[:, self._columns].to_hdf(
filename, key=key, mode='a', complevel=9, complib='blosc',
format='table', data_columns=['date']
filename,
key=key,
mode="a",
complevel=9,
complib="blosc",
format="table",
data_columns=["date"],
)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange], candle_type: CandleType
) -> pd.DataFrame:
def _ohlcv_load(
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
) -> pd.DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
@@ -55,41 +60,40 @@ class HDF5DataHandler(IDataHandler):
:return: DataFrame with ohlcv data, or empty DataFrame
"""
key = self._pair_ohlcv_key(pair, timeframe)
filename = self._pair_data_filename(
self._datadir,
pair,
timeframe,
candle_type=candle_type
)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type=candle_type)
if not filename.exists():
# Fallback mode for 1M files
filename = self._pair_data_filename(
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True)
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True
)
if not filename.exists():
return pd.DataFrame(columns=self._columns)
where = []
if timerange:
if timerange.starttype == 'date':
if timerange.starttype == "date":
where.append(f"date >= Timestamp({timerange.startts * 1e9})")
if timerange.stoptype == 'date':
if timerange.stoptype == "date":
where.append(f"date <= Timestamp({timerange.stopts * 1e9})")
pairdata = pd.read_hdf(filename, key=key, mode="r", where=where)
if list(pairdata.columns) != self._columns:
raise ValueError("Wrong dataframe format")
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata = pairdata.astype(
dtype={
"open": "float",
"high": "float",
"low": "float",
"close": "float",
"volume": "float",
}
)
pairdata = pairdata.reset_index(drop=True)
return pairdata
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: pd.DataFrame,
candle_type: CandleType
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType
) -> None:
"""
Append data to existing data structures
@@ -111,9 +115,13 @@ class HDF5DataHandler(IDataHandler):
key = self._pair_trades_key(pair)
data.to_hdf(
self._pair_trades_filename(self._datadir, pair, trading_mode), key=key,
mode='a', complevel=9, complib='blosc',
format='table', data_columns=['timestamp']
self._pair_trades_filename(self._datadir, pair, trading_mode),
key=key,
mode="a",
complevel=9,
complib="blosc",
format="table",
data_columns=["timestamp"],
)
def trades_append(self, pair: str, data: pd.DataFrame):
@@ -142,13 +150,13 @@ class HDF5DataHandler(IDataHandler):
return pd.DataFrame(columns=DEFAULT_TRADES_COLUMNS)
where = []
if timerange:
if timerange.starttype == 'date':
if timerange.starttype == "date":
where.append(f"timestamp >= {timerange.startts * 1e3}")
if timerange.stoptype == 'date':
if timerange.stoptype == "date":
where.append(f"timestamp < {timerange.stopts * 1e3}")
trades: pd.DataFrame = pd.read_hdf(filename, key=key, mode="r", where=where)
trades[['id', 'type']] = trades[['id', 'type']].replace({np.nan: None})
trades[["id", "type"]] = trades[["id", "type"]].replace({np.nan: None})
return trades
@classmethod
@@ -158,7 +166,7 @@ class HDF5DataHandler(IDataHandler):
@classmethod
def _pair_ohlcv_key(cls, pair: str, timeframe: str) -> str:
# Escape futures pairs to avoid warnings
pair_esc = pair.replace(':', '_')
pair_esc = pair.replace(":", "_")
return f"{pair_esc}/ohlcv/tf_{timeframe}"
@classmethod

View File

@@ -3,6 +3,7 @@ Abstract datahandler interface.
It's subclasses handle and storing data from disk.
"""
import logging
import re
from abc import ABC, abstractmethod
@@ -16,8 +17,12 @@ from pandas import DataFrame
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_TRADES_COLUMNS, ListPairsWithTimeframes
from freqtrade.data.converter import (clean_ohlcv_dataframe, trades_convert_types,
trades_df_remove_duplicates, trim_dataframe)
from freqtrade.data.converter import (
clean_ohlcv_dataframe,
trades_convert_types,
trades_df_remove_duplicates,
trim_dataframe,
)
from freqtrade.enums import CandleType, TradingMode
from freqtrade.exchange import timeframe_to_seconds
@@ -26,8 +31,7 @@ logger = logging.getLogger(__name__)
class IDataHandler(ABC):
_OHLCV_REGEX = r'^([a-zA-Z_\d-]+)\-(\d+[a-zA-Z]{1,2})\-?([a-zA-Z_]*)?(?=\.)'
_OHLCV_REGEX = r"^([a-zA-Z_\d-]+)\-(\d+[a-zA-Z]{1,2})\-?([a-zA-Z_]*)?(?=\.)"
def __init__(self, datadir: Path) -> None:
self._datadir = datadir
@@ -41,7 +45,8 @@ class IDataHandler(ABC):
@classmethod
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
cls, datadir: Path, trading_mode: TradingMode
) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
@@ -49,17 +54,20 @@ class IDataHandler(ABC):
:return: List of Tuples of (pair, timeframe, CandleType)
"""
if trading_mode == TradingMode.FUTURES:
datadir = datadir.joinpath('futures')
datadir = datadir.joinpath("futures")
_tmp = [
re.search(
cls._OHLCV_REGEX, p.name
) for p in datadir.glob(f"*.{cls._get_file_extension()}")]
re.search(cls._OHLCV_REGEX, p.name)
for p in datadir.glob(f"*.{cls._get_file_extension()}")
]
return [
(
cls.rebuild_pair_from_filename(match[1]),
cls.rebuild_timeframe_from_filename(match[2]),
CandleType.from_string(match[3])
) for match in _tmp if match and len(match.groups()) > 1]
CandleType.from_string(match[3]),
)
for match in _tmp
if match and len(match.groups()) > 1
]
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
@@ -73,17 +81,20 @@ class IDataHandler(ABC):
"""
candle = ""
if candle_type != CandleType.SPOT:
datadir = datadir.joinpath('futures')
datadir = datadir.joinpath("futures")
candle = f"-{candle_type}"
ext = cls._get_file_extension()
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + candle + f'.{ext})', p.name)
for p in datadir.glob(f"*{timeframe}{candle}.{ext}")]
_tmp = [
re.search(r"^(\S+)(?=\-" + timeframe + candle + f".{ext})", p.name)
for p in datadir.glob(f"*{timeframe}{candle}.{ext}")
]
# Check if regex found something and only return these results
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
@abstractmethod
def ohlcv_store(
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Store ohlcv data.
:param pair: Pair - used to generate filename
@@ -93,8 +104,9 @@ class IDataHandler(ABC):
:return: None
"""
def ohlcv_data_min_max(self, pair: str, timeframe: str,
candle_type: CandleType) -> Tuple[datetime, datetime, int]:
def ohlcv_data_min_max(
self, pair: str, timeframe: str, candle_type: CandleType
) -> Tuple[datetime, datetime, int]:
"""
Returns the min and max timestamp for the given pair and timeframe.
:param pair: Pair to get min/max for
@@ -109,12 +121,12 @@ class IDataHandler(ABC):
datetime.fromtimestamp(0, tz=timezone.utc),
0,
)
return df.iloc[0]['date'].to_pydatetime(), df.iloc[-1]['date'].to_pydatetime(), len(df)
return df.iloc[0]["date"].to_pydatetime(), df.iloc[-1]["date"].to_pydatetime(), len(df)
@abstractmethod
def _ohlcv_load(self, pair: str, timeframe: str, timerange: Optional[TimeRange],
candle_type: CandleType
) -> DataFrame:
def _ohlcv_load(
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
@@ -144,11 +156,7 @@ class IDataHandler(ABC):
@abstractmethod
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: DataFrame,
candle_type: CandleType
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Append data to existing data structures
@@ -166,8 +174,10 @@ class IDataHandler(ABC):
:return: List of Pairs
"""
_ext = cls._get_file_extension()
_tmp = [re.search(r'^(\S+)(?=\-trades.' + _ext + ')', p.name)
for p in datadir.glob(f"*trades.{_ext}")]
_tmp = [
re.search(r"^(\S+)(?=\-trades." + _ext + ")", p.name)
for p in datadir.glob(f"*trades.{_ext}")
]
# Check if regex found something and only return these results to avoid exceptions.
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
@@ -227,7 +237,7 @@ class IDataHandler(ABC):
return False
def trades_load(
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
) -> DataFrame:
"""
Load a pair from file, either .json.gz or .json
@@ -260,7 +270,7 @@ class IDataHandler(ABC):
pair: str,
timeframe: str,
candle_type: CandleType,
no_timeframe_modify: bool = False
no_timeframe_modify: bool = False,
) -> Path:
pair_s = misc.pair_to_filename(pair)
candle = ""
@@ -268,10 +278,9 @@ class IDataHandler(ABC):
timeframe = cls.timeframe_to_file(timeframe)
if candle_type != CandleType.SPOT:
datadir = datadir.joinpath('futures')
datadir = datadir.joinpath("futures")
candle = f"-{candle_type}"
filename = datadir.joinpath(
f'{pair_s}-{timeframe}{candle}.{cls._get_file_extension()}')
filename = datadir.joinpath(f"{pair_s}-{timeframe}{candle}.{cls._get_file_extension()}")
return filename
@classmethod
@@ -279,14 +288,14 @@ class IDataHandler(ABC):
pair_s = misc.pair_to_filename(pair)
if trading_mode == TradingMode.FUTURES:
# Futures pair ...
datadir = datadir.joinpath('futures')
datadir = datadir.joinpath("futures")
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
filename = datadir.joinpath(f"{pair_s}-trades.{cls._get_file_extension()}")
return filename
@staticmethod
def timeframe_to_file(timeframe: str):
return timeframe.replace('M', 'Mo')
return timeframe.replace("M", "Mo")
@staticmethod
def rebuild_timeframe_from_filename(timeframe: str) -> str:
@@ -294,7 +303,7 @@ class IDataHandler(ABC):
converts timeframe from disk to file
Replaces mo with M (to avoid problems on case-insensitive filesystems)
"""
return re.sub('1mo', '1M', timeframe, flags=re.IGNORECASE)
return re.sub("1mo", "1M", timeframe, flags=re.IGNORECASE)
@staticmethod
def rebuild_pair_from_filename(pair: str) -> str:
@@ -302,18 +311,22 @@ class IDataHandler(ABC):
Rebuild pair name from filename
Assumes a asset name of max. 7 length to also support BTC-PERP and BTC-PERP:USD names.
"""
res = re.sub(r'^(([A-Za-z\d]{1,10})|^([A-Za-z\-]{1,6}))(_)', r'\g<1>/', pair, count=1)
res = re.sub('_', ':', res, count=1)
res = re.sub(r"^(([A-Za-z\d]{1,10})|^([A-Za-z\-]{1,6}))(_)", r"\g<1>/", pair, count=1)
res = re.sub("_", ":", res, count=1)
return res
def ohlcv_load(self, pair, timeframe: str,
candle_type: CandleType, *,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
warn_no_data: bool = True,
) -> DataFrame:
def ohlcv_load(
self,
pair,
timeframe: str,
candle_type: CandleType,
*,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
warn_no_data: bool = True,
) -> DataFrame:
"""
Load cached candle (OHLCV) data for the given pair.
@@ -333,15 +346,12 @@ class IDataHandler(ABC):
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdf = self._ohlcv_load(
pair,
timeframe,
timerange=timerange_startup,
candle_type=candle_type
pair, timeframe, timerange=timerange_startup, candle_type=candle_type
)
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
enddate = pairdf.iloc[-1]["date"]
if timerange_startup:
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
@@ -350,17 +360,25 @@ class IDataHandler(ABC):
return pairdf
# incomplete candles should only be dropped if we didn't trim the end beforehand.
pairdf = clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
pairdf = clean_ohlcv_dataframe(
pairdf,
timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and enddate == pairdf.iloc[-1]["date"]),
)
self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data)
return pairdf
def _check_empty_df(
self, pairdf: DataFrame, pair: str, timeframe: str, candle_type: CandleType,
warn_no_data: bool, warn_price: bool = False) -> bool:
self,
pairdf: DataFrame,
pair: str,
timeframe: str,
candle_type: CandleType,
warn_no_data: bool,
warn_price: bool = False,
) -> bool:
"""
Warn on empty dataframe
"""
@@ -373,39 +391,55 @@ class IDataHandler(ABC):
return True
elif warn_price:
candle_price_gap = 0
if (candle_type in (CandleType.SPOT, CandleType.FUTURES) and
not pairdf.empty
and 'close' in pairdf.columns and 'open' in pairdf.columns):
if (
candle_type in (CandleType.SPOT, CandleType.FUTURES)
and not pairdf.empty
and "close" in pairdf.columns
and "open" in pairdf.columns
):
# Detect gaps between prior close and open
gaps = ((pairdf['open'] - pairdf['close'].shift(1)) / pairdf['close'].shift(1))
gaps = (pairdf["open"] - pairdf["close"].shift(1)) / pairdf["close"].shift(1)
gaps = gaps.dropna()
if len(gaps):
candle_price_gap = max(abs(gaps))
if candle_price_gap > 0.1:
logger.info(f"Price jump in {pair}, {timeframe}, {candle_type} between two candles "
f"of {candle_price_gap:.2%} detected.")
logger.info(
f"Price jump in {pair}, {timeframe}, {candle_type} between two candles "
f"of {candle_price_gap:.2%} detected."
)
return False
def _validate_pairdata(self, pair, pairdata: DataFrame, timeframe: str,
candle_type: CandleType, timerange: TimeRange):
def _validate_pairdata(
self,
pair,
pairdata: DataFrame,
timeframe: str,
candle_type: CandleType,
timerange: TimeRange,
):
"""
Validates pairdata for missing data at start end end and logs warnings.
:param pairdata: Dataframe to validate
:param timerange: Timerange specified for start and end dates
"""
if timerange.starttype == 'date':
if pairdata.iloc[0]['date'] > timerange.startdt:
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
if pairdata.iloc[-1]['date'] < timerange.stopdt:
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.starttype == "date":
if pairdata.iloc[0]["date"] > timerange.startdt:
logger.warning(
f"{pair}, {candle_type}, {timeframe}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}"
)
if timerange.stoptype == "date":
if pairdata.iloc[-1]["date"] < timerange.stopdt:
logger.warning(
f"{pair}, {candle_type}, {timeframe}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}"
)
def rename_futures_data(
self, pair: str, new_pair: str, timeframe: str, candle_type: CandleType):
self, pair: str, new_pair: str, timeframe: str, candle_type: CandleType
):
"""
Temporary method to migrate data from old naming to new naming (BTC/USDT -> BTC/USDT:USDT)
Only used for binance to support the binance futures naming unification.
@@ -431,18 +465,19 @@ class IDataHandler(ABC):
if funding_rate_combs:
logger.warning(
f'Migrating {len(funding_rate_combs)} funding fees to correct timeframe.')
f"Migrating {len(funding_rate_combs)} funding fees to correct timeframe."
)
for pair, timeframe, candletype in funding_rate_combs:
old_name = self._pair_data_filename(self._datadir, pair, timeframe, candletype)
new_name = self._pair_data_filename(self._datadir, pair, ff_timeframe, candletype)
if not Path(old_name).exists():
logger.warning(f'{old_name} does not exist, skipping.')
logger.warning(f"{old_name} does not exist, skipping.")
continue
if Path(new_name).exists():
logger.warning(f'{new_name} already exists, Removing.')
logger.warning(f"{new_name} already exists, Removing.")
Path(new_name).unlink()
Path(old_name).rename(new_name)
@@ -457,27 +492,33 @@ def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
:return: Datahandler class
"""
if datatype == 'json':
if datatype == "json":
from .jsondatahandler import JsonDataHandler
return JsonDataHandler
elif datatype == 'jsongz':
elif datatype == "jsongz":
from .jsondatahandler import JsonGzDataHandler
return JsonGzDataHandler
elif datatype == 'hdf5':
elif datatype == "hdf5":
from .hdf5datahandler import HDF5DataHandler
return HDF5DataHandler
elif datatype == 'feather':
elif datatype == "feather":
from .featherdatahandler import FeatherDataHandler
return FeatherDataHandler
elif datatype == 'parquet':
elif datatype == "parquet":
from .parquetdatahandler import ParquetDataHandler
return ParquetDataHandler
else:
raise ValueError(f"No datahandler for datatype {datatype} available.")
def get_datahandler(datadir: Path, data_format: Optional[str] = None,
data_handler: Optional[IDataHandler] = None) -> IDataHandler:
def get_datahandler(
datadir: Path, data_format: Optional[str] = None, data_handler: Optional[IDataHandler] = None
) -> IDataHandler:
"""
:param datadir: Folder to save data
:param data_format: dataformat to use
@@ -485,6 +526,6 @@ def get_datahandler(datadir: Path, data_format: Optional[str] = None,
"""
if not data_handler:
HandlerClass = get_datahandlerclass(data_format or 'feather')
HandlerClass = get_datahandlerclass(data_format or "feather")
data_handler = HandlerClass(datadir)
return data_handler

View File

@@ -17,12 +17,12 @@ logger = logging.getLogger(__name__)
class JsonDataHandler(IDataHandler):
_use_zip = False
_columns = DEFAULT_DATAFRAME_COLUMNS
def ohlcv_store(
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Store data in json format "values".
format looks as follows:
@@ -37,16 +37,16 @@ class JsonDataHandler(IDataHandler):
self.create_dir_if_needed(filename)
_data = data.copy()
# Convert date to int
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
_data["date"] = _data["date"].astype(np.int64) // 1000 // 1000
# Reset index, select only appropriate columns and save as json
_data.reset_index(drop=True).loc[:, self._columns].to_json(
filename, orient="values",
compression='gzip' if self._use_zip else None)
filename, orient="values", compression="gzip" if self._use_zip else None
)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
def _ohlcv_load(
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
@@ -59,31 +59,34 @@ class JsonDataHandler(IDataHandler):
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(
self._datadir, pair, timeframe, candle_type=candle_type)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type=candle_type)
if not filename.exists():
# Fallback mode for 1M files
filename = self._pair_data_filename(
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True)
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True
)
if not filename.exists():
return DataFrame(columns=self._columns)
try:
pairdata = read_json(filename, orient='values')
pairdata = read_json(filename, orient="values")
pairdata.columns = self._columns
except ValueError:
logger.error(f"Could not load data for {pair}.")
return DataFrame(columns=self._columns)
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
pairdata = pairdata.astype(
dtype={
"open": "float",
"high": "float",
"low": "float",
"close": "float",
"volume": "float",
}
)
pairdata["date"] = to_datetime(pairdata["date"], unit="ms", utc=True)
return pairdata
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: DataFrame,
candle_type: CandleType
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Append data to existing data structures
@@ -145,5 +148,4 @@ class JsonDataHandler(IDataHandler):
class JsonGzDataHandler(JsonDataHandler):
_use_zip = True

View File

@@ -14,11 +14,11 @@ logger = logging.getLogger(__name__)
class ParquetDataHandler(IDataHandler):
_columns = DEFAULT_DATAFRAME_COLUMNS
def ohlcv_store(
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Store data in json format "values".
format looks as follows:
@@ -34,9 +34,9 @@ class ParquetDataHandler(IDataHandler):
data.reset_index(drop=True).loc[:, self._columns].to_parquet(filename)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
def _ohlcv_load(
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
@@ -49,28 +49,31 @@ class ParquetDataHandler(IDataHandler):
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(
self._datadir, pair, timeframe, candle_type=candle_type)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type=candle_type)
if not filename.exists():
# Fallback mode for 1M files
filename = self._pair_data_filename(
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True)
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True
)
if not filename.exists():
return DataFrame(columns=self._columns)
pairdata = read_parquet(filename)
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True)
pairdata = pairdata.astype(
dtype={
"open": "float",
"high": "float",
"low": "float",
"close": "float",
"volume": "float",
}
)
pairdata["date"] = to_datetime(pairdata["date"], unit="ms", utc=True)
return pairdata
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: DataFrame,
candle_type: CandleType
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType
) -> None:
"""
Append data to existing data structures

View File

@@ -7,11 +7,20 @@ from typing import Dict, List, Optional, Tuple
from pandas import DataFrame, concat
from freqtrade.configuration import TimeRange
from freqtrade.constants import (DATETIME_PRINT_FORMAT, DEFAULT_DATAFRAME_COLUMNS,
DL_DATA_TIMEFRAMES, DOCS_LINK, Config)
from freqtrade.data.converter import (clean_ohlcv_dataframe, convert_trades_to_ohlcv,
ohlcv_to_dataframe, trades_df_remove_duplicates,
trades_list_to_df)
from freqtrade.constants import (
DATETIME_PRINT_FORMAT,
DEFAULT_DATAFRAME_COLUMNS,
DL_DATA_TIMEFRAMES,
DOCS_LINK,
Config,
)
from freqtrade.data.converter import (
clean_ohlcv_dataframe,
convert_trades_to_ohlcv,
ohlcv_to_dataframe,
trades_df_remove_duplicates,
trades_list_to_df,
)
from freqtrade.data.history.datahandlers import IDataHandler, get_datahandler
from freqtrade.enums import CandleType, TradingMode
from freqtrade.exceptions import OperationalException
@@ -25,17 +34,19 @@ from freqtrade.util.migrations import migrate_data
logger = logging.getLogger(__name__)
def load_pair_history(pair: str,
timeframe: str,
datadir: Path, *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
data_format: Optional[str] = None,
data_handler: Optional[IDataHandler] = None,
candle_type: CandleType = CandleType.SPOT
) -> DataFrame:
def load_pair_history(
pair: str,
timeframe: str,
datadir: Path,
*,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
data_format: Optional[str] = None,
data_handler: Optional[IDataHandler] = None,
candle_type: CandleType = CandleType.SPOT,
) -> DataFrame:
"""
Load cached ohlcv history for the given pair.
@@ -54,27 +65,30 @@ def load_pair_history(pair: str,
"""
data_handler = get_datahandler(datadir, data_format, data_handler)
return data_handler.ohlcv_load(pair=pair,
timeframe=timeframe,
timerange=timerange,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
candle_type=candle_type,
)
return data_handler.ohlcv_load(
pair=pair,
timeframe=timeframe,
timerange=timerange,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
candle_type=candle_type,
)
def load_data(datadir: Path,
timeframe: str,
pairs: List[str], *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False,
data_format: str = 'feather',
candle_type: CandleType = CandleType.SPOT,
user_futures_funding_rate: Optional[int] = None,
) -> Dict[str, DataFrame]:
def load_data(
datadir: Path,
timeframe: str,
pairs: List[str],
*,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False,
data_format: str = "feather",
candle_type: CandleType = CandleType.SPOT,
user_futures_funding_rate: Optional[int] = None,
) -> Dict[str, DataFrame]:
"""
Load ohlcv history data for a list of pairs.
@@ -91,18 +105,21 @@ def load_data(datadir: Path,
"""
result: Dict[str, DataFrame] = {}
if startup_candles > 0 and timerange:
logger.info(f'Using indicator startup period: {startup_candles} ...')
logger.info(f"Using indicator startup period: {startup_candles} ...")
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
hist = load_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles,
data_handler=data_handler,
candle_type=candle_type,
)
hist = load_pair_history(
pair=pair,
timeframe=timeframe,
datadir=datadir,
timerange=timerange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles,
data_handler=data_handler,
candle_type=candle_type,
)
if not hist.empty:
result[pair] = hist
else:
@@ -116,14 +133,16 @@ def load_data(datadir: Path,
return result
def refresh_data(*, datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
data_format: Optional[str] = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
) -> None:
def refresh_data(
*,
datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
data_format: Optional[str] = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
) -> None:
"""
Refresh ohlcv history data for a list of pairs.
@@ -137,11 +156,17 @@ def refresh_data(*, datadir: Path,
"""
data_handler = get_datahandler(datadir, data_format)
for idx, pair in enumerate(pairs):
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
timeframe=timeframe, datadir=datadir,
timerange=timerange, exchange=exchange, data_handler=data_handler,
candle_type=candle_type)
process = f"{idx}/{len(pairs)}"
_download_pair_history(
pair=pair,
process=process,
timeframe=timeframe,
datadir=datadir,
timerange=timerange,
exchange=exchange,
data_handler=data_handler,
candle_type=candle_type,
)
def _load_cached_data_for_updating(
@@ -163,42 +188,49 @@ def _load_cached_data_for_updating(
start = None
end = None
if timerange:
if timerange.starttype == 'date':
if timerange.starttype == "date":
start = timerange.startdt
if timerange.stoptype == 'date':
if timerange.stoptype == "date":
end = timerange.stopdt
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
timerange=None, fill_missing=False,
drop_incomplete=True, warn_no_data=False,
candle_type=candle_type)
data = data_handler.ohlcv_load(
pair,
timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=True,
warn_no_data=False,
candle_type=candle_type,
)
if not data.empty:
if not prepend and start and start < data.iloc[0]['date']:
if not prepend and start and start < data.iloc[0]["date"]:
# Earlier data than existing data requested, redownload all
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
else:
if prepend:
end = data.iloc[0]['date']
end = data.iloc[0]["date"]
else:
start = data.iloc[-1]['date']
start = data.iloc[-1]["date"]
start_ms = int(start.timestamp() * 1000) if start else None
end_ms = int(end.timestamp() * 1000) if end else None
return data, start_ms, end_ms
def _download_pair_history(pair: str, *,
datadir: Path,
exchange: Exchange,
timeframe: str = '5m',
process: str = '',
new_pairs_days: int = 30,
data_handler: Optional[IDataHandler] = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
erase: bool = False,
prepend: bool = False,
) -> bool:
def _download_pair_history(
pair: str,
*,
datadir: Path,
exchange: Exchange,
timeframe: str = "5m",
process: str = "",
new_pairs_days: int = 30,
data_handler: Optional[IDataHandler] = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
erase: bool = False,
prepend: bool = False,
) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
@@ -217,54 +249,71 @@ def _download_pair_history(pair: str, *,
try:
if erase:
if data_handler.ohlcv_purge(pair, timeframe, candle_type=candle_type):
logger.info(f'Deleting existing data for pair {pair}, {timeframe}, {candle_type}.')
logger.info(f"Deleting existing data for pair {pair}, {timeframe}, {candle_type}.")
data, since_ms, until_ms = _load_cached_data_for_updating(
pair, timeframe, timerange,
pair,
timeframe,
timerange,
data_handler=data_handler,
candle_type=candle_type,
prepend=prepend)
prepend=prepend,
)
logger.info(f'({process}) - Download history data for "{pair}", {timeframe}, '
f'{candle_type} and store in {datadir}. '
f'From {format_ms_time(since_ms) if since_ms else "start"} to '
f'{format_ms_time(until_ms) if until_ms else "now"}'
)
logger.info(
f'({process}) - Download history data for "{pair}", {timeframe}, '
f"{candle_type} and store in {datadir}. "
f'From {format_ms_time(since_ms) if since_ms else "start"} to '
f'{format_ms_time(until_ms) if until_ms else "now"}'
)
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
logger.debug("Current End: %s",
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
logger.debug(
"Current Start: %s",
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
logger.debug(
"Current End: %s",
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair,
timeframe=timeframe,
since_ms=since_ms if since_ms else
int((datetime.now() - timedelta(days=new_pairs_days)
).timestamp()) * 1000,
is_new_pair=data.empty,
candle_type=candle_type,
until_ms=until_ms if until_ms else None
)
new_data = exchange.get_historic_ohlcv(
pair=pair,
timeframe=timeframe,
since_ms=(
since_ms
if since_ms
else int((datetime.now() - timedelta(days=new_pairs_days)).timestamp()) * 1000
),
is_new_pair=data.empty,
candle_type=candle_type,
until_ms=until_ms if until_ms else None,
)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
fill_missing=False, drop_incomplete=True)
new_dataframe = ohlcv_to_dataframe(
new_data, timeframe, pair, fill_missing=False, drop_incomplete=True
)
if data.empty:
data = new_dataframe
else:
# Run cleaning again to ensure there were no duplicate candles
# Especially between existing and new data.
data = clean_ohlcv_dataframe(concat([data, new_dataframe], axis=0), timeframe, pair,
fill_missing=False, drop_incomplete=False)
data = clean_ohlcv_dataframe(
concat([data, new_dataframe], axis=0),
timeframe,
pair,
fill_missing=False,
drop_incomplete=False,
)
logger.debug("New Start: %s",
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
logger.debug(
"New Start: %s",
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
logger.debug(
"New End: %s",
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
return True
@@ -276,13 +325,18 @@ def _download_pair_history(pair: str, *,
return False
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
datadir: Path, trading_mode: str,
timerange: Optional[TimeRange] = None,
new_pairs_days: int = 30, erase: bool = False,
data_format: Optional[str] = None,
prepend: bool = False,
) -> List[str]:
def refresh_backtest_ohlcv_data(
exchange: Exchange,
pairs: List[str],
timeframes: List[str],
datadir: Path,
trading_mode: str,
timerange: Optional[TimeRange] = None,
new_pairs_days: int = 30,
erase: bool = False,
data_format: Optional[str] = None,
prepend: bool = False,
) -> List[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
@@ -291,63 +345,77 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format)
candle_type = CandleType.get_default(trading_mode)
process = ''
process = ""
for idx, pair in enumerate(pairs, start=1):
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
for timeframe in timeframes:
logger.debug(f'Downloading pair {pair}, {candle_type}, interval {timeframe}.')
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
timerange=timerange, data_handler=data_handler,
timeframe=str(timeframe), new_pairs_days=new_pairs_days,
candle_type=candle_type,
erase=erase, prepend=prepend)
if trading_mode == 'futures':
logger.debug(f"Downloading pair {pair}, {candle_type}, interval {timeframe}.")
process = f"{idx}/{len(pairs)}"
_download_pair_history(
pair=pair,
process=process,
datadir=datadir,
exchange=exchange,
timerange=timerange,
data_handler=data_handler,
timeframe=str(timeframe),
new_pairs_days=new_pairs_days,
candle_type=candle_type,
erase=erase,
prepend=prepend,
)
if trading_mode == "futures":
# Predefined candletype (and timeframe) depending on exchange
# Downloads what is necessary to backtest based on futures data.
tf_mark = exchange.get_option('mark_ohlcv_timeframe')
tf_funding_rate = exchange.get_option('funding_fee_timeframe')
tf_mark = exchange.get_option("mark_ohlcv_timeframe")
tf_funding_rate = exchange.get_option("funding_fee_timeframe")
fr_candle_type = CandleType.from_string(exchange.get_option('mark_ohlcv_price'))
fr_candle_type = CandleType.from_string(exchange.get_option("mark_ohlcv_price"))
# All exchanges need FundingRate for futures trading.
# The timeframe is aligned to the mark-price timeframe.
combs = ((CandleType.FUNDING_RATE, tf_funding_rate), (fr_candle_type, tf_mark))
for candle_type_f, tf in combs:
logger.debug(f'Downloading pair {pair}, {candle_type_f}, interval {tf}.')
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
timerange=timerange, data_handler=data_handler,
timeframe=str(tf), new_pairs_days=new_pairs_days,
candle_type=candle_type_f,
erase=erase, prepend=prepend)
logger.debug(f"Downloading pair {pair}, {candle_type_f}, interval {tf}.")
_download_pair_history(
pair=pair,
process=process,
datadir=datadir,
exchange=exchange,
timerange=timerange,
data_handler=data_handler,
timeframe=str(tf),
new_pairs_days=new_pairs_days,
candle_type=candle_type_f,
erase=erase,
prepend=prepend,
)
return pairs_not_available
def _download_trades_history(exchange: Exchange,
pair: str, *,
new_pairs_days: int = 30,
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler,
trading_mode: TradingMode,
) -> bool:
def _download_trades_history(
exchange: Exchange,
pair: str,
*,
new_pairs_days: int = 30,
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler,
trading_mode: TradingMode,
) -> bool:
"""
Download trade history from the exchange.
Appends to previously downloaded trades data.
"""
try:
until = None
since = 0
if timerange:
if timerange.starttype == 'date':
if timerange.starttype == "date":
since = timerange.startts * 1000
if timerange.stoptype == 'date':
if timerange.stoptype == "date":
until = timerange.stopts * 1000
trades = data_handler.trades_load(pair, trading_mode)
@@ -356,60 +424,76 @@ def _download_trades_history(exchange: Exchange,
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
# DEFAULT_TRADES_COLUMNS: 1 -> id
if not trades.empty and since > 0 and since < trades.iloc[0]['timestamp']:
if not trades.empty and since > 0 and since < trades.iloc[0]["timestamp"]:
# since is before the first trade
logger.info(f"Start ({trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}) earlier than "
f"available data. Redownloading trades for {pair}...")
logger.info(
f"Start ({trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}) earlier than "
f"available data. Redownloading trades for {pair}..."
)
trades = trades_list_to_df([])
from_id = trades.iloc[-1]['id'] if not trades.empty else None
if not trades.empty and since < trades.iloc[-1]['timestamp']:
from_id = trades.iloc[-1]["id"] if not trades.empty else None
if not trades.empty and since < trades.iloc[-1]["timestamp"]:
# Reset since to the last available point
# - 5 seconds (to ensure we're getting all trades)
since = trades.iloc[-1]['timestamp'] - (5 * 1000)
logger.info(f"Using last trade date -5s - Downloading trades for {pair} "
f"since: {format_ms_time(since)}.")
since = trades.iloc[-1]["timestamp"] - (5 * 1000)
logger.info(
f"Using last trade date -5s - Downloading trades for {pair} "
f"since: {format_ms_time(since)}."
)
if not since:
since = dt_ts(dt_now() - timedelta(days=new_pairs_days))
logger.debug("Current Start: %s", 'None' if trades.empty else
f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}")
logger.debug("Current End: %s", 'None' if trades.empty else
f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}")
logger.debug(
"Current Start: %s",
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
)
logger.debug(
"Current End: %s",
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
)
logger.info(f"Current Amount of trades: {len(trades)}")
# Default since_ms to 30 days if nothing is given
new_trades = exchange.get_historic_trades(pair=pair,
since=since,
until=until,
from_id=from_id,
)
new_trades = exchange.get_historic_trades(
pair=pair,
since=since,
until=until,
from_id=from_id,
)
new_trades_df = trades_list_to_df(new_trades[1])
trades = concat([trades, new_trades_df], axis=0)
# Remove duplicates to make sure we're not storing data we don't need
trades = trades_df_remove_duplicates(trades)
data_handler.trades_store(pair, trades, trading_mode)
logger.debug("New Start: %s", 'None' if trades.empty else
f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}")
logger.debug("New End: %s", 'None' if trades.empty else
f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}")
logger.debug(
"New Start: %s",
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
)
logger.debug(
"New End: %s",
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
)
logger.info(f"New Amount of trades: {len(trades)}")
return True
except Exception:
logger.exception(
f'Failed to download historic trades for pair: "{pair}". '
)
logger.exception(f'Failed to download historic trades for pair: "{pair}". ')
return False
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
timerange: TimeRange, trading_mode: TradingMode,
new_pairs_days: int = 30,
erase: bool = False, data_format: str = 'feather',
) -> List[str]:
def refresh_backtest_trades_data(
exchange: Exchange,
pairs: List[str],
datadir: Path,
timerange: TimeRange,
trading_mode: TradingMode,
new_pairs_days: int = 30,
erase: bool = False,
data_format: str = "feather",
) -> List[str]:
"""
Refresh stored trades data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
@@ -425,15 +509,17 @@ def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir:
if erase:
if data_handler.trades_purge(pair, trading_mode):
logger.info(f'Deleting existing data for pair {pair}.')
logger.info(f"Deleting existing data for pair {pair}.")
logger.info(f'Downloading trades for pair {pair}.')
_download_trades_history(exchange=exchange,
pair=pair,
new_pairs_days=new_pairs_days,
timerange=timerange,
data_handler=data_handler,
trading_mode=trading_mode)
logger.info(f"Downloading trades for pair {pair}.")
_download_trades_history(
exchange=exchange,
pair=pair,
new_pairs_days=new_pairs_days,
timerange=timerange,
data_handler=data_handler,
trading_mode=trading_mode,
)
return pairs_not_available
@@ -445,15 +531,18 @@ def get_timerange(data: Dict[str, DataFrame]) -> Tuple[datetime, datetime]:
:return: tuple containing min_date, max_date
"""
timeranges = [
(frame['date'].min().to_pydatetime(), frame['date'].max().to_pydatetime())
(frame["date"].min().to_pydatetime(), frame["date"].max().to_pydatetime())
for frame in data.values()
]
return (min(timeranges, key=operator.itemgetter(0))[0],
max(timeranges, key=operator.itemgetter(1))[1])
return (
min(timeranges, key=operator.itemgetter(0))[0],
max(timeranges, key=operator.itemgetter(1))[1],
)
def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
max_date: datetime, timeframe_min: int) -> bool:
def validate_backtest_data(
data: DataFrame, pair: str, min_date: datetime, max_date: datetime, timeframe_min: int
) -> bool:
"""
Validates preprocessed backtesting data for missing values and shows warnings about it that.
@@ -469,89 +558,111 @@ def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
dflen = len(data)
if dflen < expected_frames:
found_missing = True
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
pair, expected_frames, dflen, expected_frames - dflen)
logger.warning(
"%s has missing frames: expected %s, got %s, that's %s missing values",
pair,
expected_frames,
dflen,
expected_frames - dflen,
)
return found_missing
def download_data_main(config: Config) -> None:
timerange = TimeRange()
if 'days' in config:
time_since = (datetime.now() - timedelta(days=config['days'])).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f'{time_since}-')
if "days" in config:
time_since = (datetime.now() - timedelta(days=config["days"])).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f"{time_since}-")
if 'timerange' in config:
timerange = timerange.parse_timerange(config['timerange'])
if "timerange" in config:
timerange = timerange.parse_timerange(config["timerange"])
# Remove stake-currency to skip checks which are not relevant for datadownload
config['stake_currency'] = ''
config["stake_currency"] = ""
pairs_not_available: List[str] = []
# Init exchange
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
exchange = ExchangeResolver.load_exchange(config, validate=False)
available_pairs = [
p for p in exchange.get_markets(
tradable_only=True, active_only=not config.get('include_inactive')
).keys()
p
for p in exchange.get_markets(
tradable_only=True, active_only=not config.get("include_inactive")
).keys()
]
expanded_pairs = dynamic_expand_pairlist(config, available_pairs)
if 'timeframes' not in config:
config['timeframes'] = DL_DATA_TIMEFRAMES
if "timeframes" not in config:
config["timeframes"] = DL_DATA_TIMEFRAMES
# Manual validations of relevant settings
if not config['exchange'].get('skip_pair_validation', False):
if not config["exchange"].get("skip_pair_validation", False):
exchange.validate_pairs(expanded_pairs)
logger.info(f"About to download pairs: {expanded_pairs}, "
f"intervals: {config['timeframes']} to {config['datadir']}")
logger.info(
f"About to download pairs: {expanded_pairs}, "
f"intervals: {config['timeframes']} to {config['datadir']}"
)
if len(expanded_pairs) == 0:
logger.warning(
"No pairs available for download. "
"Please make sure you're using the correct Pair naming for your selected trade mode. \n"
f"More info: {DOCS_LINK}/bot-basics/#pair-naming")
f"More info: {DOCS_LINK}/bot-basics/#pair-naming"
)
for timeframe in config['timeframes']:
for timeframe in config["timeframes"]:
exchange.validate_timeframes(timeframe)
# Start downloading
try:
if config.get('download_trades'):
if config.get("download_trades"):
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=expanded_pairs, datadir=config['datadir'],
timerange=timerange, new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_trades'],
trading_mode=config.get('trading_mode', TradingMode.SPOT),
)
exchange,
pairs=expanded_pairs,
datadir=config["datadir"],
timerange=timerange,
new_pairs_days=config["new_pairs_days"],
erase=bool(config.get("erase")),
data_format=config["dataformat_trades"],
trading_mode=config.get("trading_mode", TradingMode.SPOT),
)
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
candle_type=config.get('candle_type_def', CandleType.SPOT),
pairs=expanded_pairs,
timeframes=config["timeframes"],
datadir=config["datadir"],
timerange=timerange,
erase=bool(config.get("erase")),
data_format_ohlcv=config["dataformat_ohlcv"],
data_format_trades=config["dataformat_trades"],
candle_type=config.get("candle_type_def", CandleType.SPOT),
)
else:
if not exchange.get_option('ohlcv_has_history', True):
if not exchange.get_option("ohlcv_has_history", True):
raise OperationalException(
f"Historic klines not available for {exchange.name}. "
"Please use `--dl-trades` instead for this exchange "
"(will unfortunately take a long time)."
)
)
migrate_data(config, exchange)
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange,
new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'],
trading_mode=config.get('trading_mode', 'spot'),
prepend=config.get('prepend_data', False)
exchange,
pairs=expanded_pairs,
timeframes=config["timeframes"],
datadir=config["datadir"],
timerange=timerange,
new_pairs_days=config["new_pairs_days"],
erase=bool(config.get("erase")),
data_format=config["dataformat_ohlcv"],
trading_mode=config.get("trading_mode", "spot"),
prepend=config.get("prepend_data", False),
)
finally:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")
logger.info(
f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}."
)

View File

@@ -31,7 +31,8 @@ def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close"
def combine_dataframes_by_column(
data: Dict[str, pd.DataFrame], column: str = "close") -> pd.DataFrame:
data: Dict[str, pd.DataFrame], column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
@@ -41,14 +42,15 @@ def combine_dataframes_by_column(
"""
if not data:
raise ValueError("No data provided.")
df_comb = pd.concat([data[pair].set_index('date').rename(
{column: pair}, axis=1)[pair] for pair in data], axis=1)
df_comb = pd.concat(
[data[pair].set_index("date").rename({column: pair}, axis=1)[pair] for pair in data], axis=1
)
return df_comb
def combined_dataframes_with_rel_mean(
data: Dict[str, pd.DataFrame], fromdt: datetime, todt: datetime,
column: str = "close") -> pd.DataFrame:
data: Dict[str, pd.DataFrame], fromdt: datetime, todt: datetime, column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
@@ -60,14 +62,15 @@ def combined_dataframes_with_rel_mean(
df_comb = combine_dataframes_by_column(data, column)
# Trim dataframes to the given timeframe
df_comb = df_comb.iloc[(df_comb.index >= fromdt) & (df_comb.index < todt)]
df_comb['count'] = df_comb.count(axis=1)
df_comb['mean'] = df_comb.mean(axis=1)
df_comb['rel_mean'] = df_comb['mean'].pct_change().fillna(0).cumsum()
return df_comb[['mean', 'rel_mean', 'count']]
df_comb["count"] = df_comb.count(axis=1)
df_comb["mean"] = df_comb.mean(axis=1)
df_comb["rel_mean"] = df_comb["mean"].pct_change().fillna(0).cumsum()
return df_comb[["mean", "rel_mean", "count"]]
def combine_dataframes_with_mean(
data: Dict[str, pd.DataFrame], column: str = "close") -> pd.DataFrame:
data: Dict[str, pd.DataFrame], column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
@@ -78,13 +81,14 @@ def combine_dataframes_with_mean(
"""
df_comb = combine_dataframes_by_column(data, column)
df_comb['mean'] = df_comb.mean(axis=1)
df_comb["mean"] = df_comb.mean(axis=1)
return df_comb
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
timeframe: str) -> pd.DataFrame:
def create_cum_profit(
df: pd.DataFrame, trades: pd.DataFrame, col_name: str, timeframe: str
) -> pd.DataFrame:
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
@@ -97,11 +101,11 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
from freqtrade.exchange import timeframe_to_resample_freq
timeframe_freq = timeframe_to_resample_freq(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(timeframe_freq, on='close_date'
)[['profit_abs']].sum()
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
_trades_sum = trades.resample(timeframe_freq, on="close_date")[["profit_abs"]].sum()
df.loc[:, col_name] = _trades_sum["profit_abs"].cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
# FFill to get continuous
@@ -109,29 +113,34 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
return df
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str,
starting_balance: float) -> pd.DataFrame:
def _calc_drawdown_series(
profit_results: pd.DataFrame, *, date_col: str, value_col: str, starting_balance: float
) -> pd.DataFrame:
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
max_drawdown_df['date'] = profit_results.loc[:, date_col]
max_drawdown_df["cumulative"] = profit_results[value_col].cumsum()
max_drawdown_df["high_value"] = max_drawdown_df["cumulative"].cummax()
max_drawdown_df["drawdown"] = max_drawdown_df["cumulative"] - max_drawdown_df["high_value"]
max_drawdown_df["date"] = profit_results.loc[:, date_col]
if starting_balance:
cumulative_balance = starting_balance + max_drawdown_df['cumulative']
max_balance = starting_balance + max_drawdown_df['high_value']
max_drawdown_df['drawdown_relative'] = ((max_balance - cumulative_balance) / max_balance)
cumulative_balance = starting_balance + max_drawdown_df["cumulative"]
max_balance = starting_balance + max_drawdown_df["high_value"]
max_drawdown_df["drawdown_relative"] = (max_balance - cumulative_balance) / max_balance
else:
# NOTE: This is not completely accurate,
# but might good enough if starting_balance is not available
max_drawdown_df['drawdown_relative'] = (
(max_drawdown_df['high_value'] - max_drawdown_df['cumulative'])
/ max_drawdown_df['high_value'])
max_drawdown_df["drawdown_relative"] = (
max_drawdown_df["high_value"] - max_drawdown_df["cumulative"]
) / max_drawdown_df["high_value"]
return max_drawdown_df
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_ratio', starting_balance: float = 0.0
):
def calculate_underwater(
trades: pd.DataFrame,
*,
date_col: str = "close_date",
value_col: str = "profit_ratio",
starting_balance: float = 0.0,
):
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
@@ -145,18 +154,20 @@ def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results,
date_col=date_col,
value_col=value_col,
starting_balance=starting_balance)
profit_results, date_col=date_col, value_col=value_col, starting_balance=starting_balance
)
return max_drawdown_df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_abs', starting_balance: float = 0,
relative: bool = False
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
def calculate_max_drawdown(
trades: pd.DataFrame,
*,
date_col: str = "close_date",
value_col: str = "profit_abs",
starting_balance: float = 0,
relative: bool = False,
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
@@ -172,32 +183,31 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date'
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results,
date_col=date_col,
value_col=value_col,
starting_balance=starting_balance
profit_results, date_col=date_col, value_col=value_col, starting_balance=starting_balance
)
idxmin = (
max_drawdown_df['drawdown_relative'].idxmax()
if relative else max_drawdown_df['drawdown'].idxmin()
max_drawdown_df["drawdown_relative"].idxmax()
if relative
else max_drawdown_df["drawdown"].idxmin()
)
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]["high_value"].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
['high_value'].idxmax(), 'cumulative']
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
max_drawdown_rel = max_drawdown_df.loc[idxmin, 'drawdown_relative']
high_val = max_drawdown_df.loc[
max_drawdown_df.iloc[:idxmin]["high_value"].idxmax(), "cumulative"
]
low_val = max_drawdown_df.loc[idxmin, "cumulative"]
max_drawdown_rel = max_drawdown_df.loc[idxmin, "drawdown_relative"]
return (
abs(max_drawdown_df.loc[idxmin, 'drawdown']),
abs(max_drawdown_df.loc[idxmin, "drawdown"]),
high_date,
low_date,
high_val,
low_val,
max_drawdown_rel
max_drawdown_rel,
)
@@ -213,9 +223,9 @@ def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[f
raise ValueError("Trade dataframe empty.")
csum_df = pd.DataFrame()
csum_df['sum'] = trades['profit_abs'].cumsum()
csum_min = csum_df['sum'].min() + starting_balance
csum_max = csum_df['sum'].max() + starting_balance
csum_df["sum"] = trades["profit_abs"].cumsum()
csum_min = csum_df["sum"].min() + starting_balance
csum_max = csum_df["sum"].max() + starting_balance
return csum_min, csum_max
@@ -245,28 +255,29 @@ def calculate_expectancy(trades: pd.DataFrame) -> Tuple[float, float]:
expectancy_ratio = 100
if len(trades) > 0:
winning_trades = trades.loc[trades['profit_abs'] > 0]
losing_trades = trades.loc[trades['profit_abs'] < 0]
profit_sum = winning_trades['profit_abs'].sum()
loss_sum = abs(losing_trades['profit_abs'].sum())
winning_trades = trades.loc[trades["profit_abs"] > 0]
losing_trades = trades.loc[trades["profit_abs"] < 0]
profit_sum = winning_trades["profit_abs"].sum()
loss_sum = abs(losing_trades["profit_abs"].sum())
nb_win_trades = len(winning_trades)
nb_loss_trades = len(losing_trades)
average_win = (profit_sum / nb_win_trades) if nb_win_trades > 0 else 0
average_loss = (loss_sum / nb_loss_trades) if nb_loss_trades > 0 else 0
winrate = (nb_win_trades / len(trades))
loserate = (nb_loss_trades / len(trades))
winrate = nb_win_trades / len(trades)
loserate = nb_loss_trades / len(trades)
expectancy = (winrate * average_win) - (loserate * average_loss)
if (average_loss > 0):
if average_loss > 0:
risk_reward_ratio = average_win / average_loss
expectancy_ratio = ((1 + risk_reward_ratio) * winrate) - 1
return expectancy, expectancy_ratio
def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
starting_balance: float) -> float:
def calculate_sortino(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate sortino
:param trades: DataFrame containing trades (requires columns profit_abs)
@@ -275,12 +286,12 @@ def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: dateti
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades['profit_abs'] / starting_balance
total_profit = trades["profit_abs"] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
down_stdev = np.std(trades.loc[trades['profit_abs'] < 0, 'profit_abs'] / starting_balance)
down_stdev = np.std(trades.loc[trades["profit_abs"] < 0, "profit_abs"] / starting_balance)
if down_stdev != 0 and not np.isnan(down_stdev):
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
@@ -292,8 +303,9 @@ def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: dateti
return sortino_ratio
def calculate_sharpe(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
starting_balance: float) -> float:
def calculate_sharpe(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate sharpe
:param trades: DataFrame containing trades (requires column profit_abs)
@@ -302,7 +314,7 @@ def calculate_sharpe(trades: pd.DataFrame, min_date: datetime, max_date: datetim
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades['profit_abs'] / starting_balance
total_profit = trades["profit_abs"] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
@@ -318,8 +330,9 @@ def calculate_sharpe(trades: pd.DataFrame, min_date: datetime, max_date: datetim
return sharp_ratio
def calculate_calmar(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
starting_balance: float) -> float:
def calculate_calmar(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate calmar
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
@@ -328,7 +341,7 @@ def calculate_calmar(trades: pd.DataFrame, min_date: datetime, max_date: datetim
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades['profit_abs'].sum() / starting_balance
total_profit = trades["profit_abs"].sum() / starting_balance
days_period = max(1, (max_date - min_date).days)
# adding slippage of 0.1% per trade

View File

@@ -1,5 +1,6 @@
# pragma pylint: disable=W0603
""" Edge positioning package """
"""Edge positioning package"""
import logging
from collections import defaultdict
from copy import deepcopy
@@ -46,48 +47,49 @@ class Edge:
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
def __init__(self, config: Config, exchange, strategy) -> None:
self.config = config
self.exchange = exchange
self.strategy: IStrategy = strategy
self.edge_config = self.config.get('edge', {})
self.edge_config = self.config.get("edge", {})
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
self._final_pairs: list = []
# checking max_open_trades. it should be -1 as with Edge
# the number of trades is determined by position size
if self.config['max_open_trades'] != float('inf'):
logger.critical('max_open_trades should be -1 in config !')
if self.config["max_open_trades"] != float("inf"):
logger.critical("max_open_trades should be -1 in config !")
if self.config['stake_amount'] != UNLIMITED_STAKE_AMOUNT:
raise OperationalException('Edge works only with unlimited stake amount')
if self.config["stake_amount"] != UNLIMITED_STAKE_AMOUNT:
raise OperationalException("Edge works only with unlimited stake amount")
self._capital_ratio: float = self.config['tradable_balance_ratio']
self._allowed_risk: float = self.edge_config.get('allowed_risk')
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
self._capital_ratio: float = self.config["tradable_balance_ratio"]
self._allowed_risk: float = self.edge_config.get("allowed_risk")
self._since_number_of_days: int = self.edge_config.get("calculate_since_number_of_days", 14)
self._last_updated: int = 0 # Timestamp of pairs last updated time
self._refresh_pairs = True
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
self._stoploss_range_min = float(self.edge_config.get("stoploss_range_min", -0.01))
self._stoploss_range_max = float(self.edge_config.get("stoploss_range_max", -0.05))
self._stoploss_range_step = float(self.edge_config.get("stoploss_range_step", -0.001))
# calculating stoploss range
self._stoploss_range = np.arange(
self._stoploss_range_min,
self._stoploss_range_max,
self._stoploss_range_step
self._stoploss_range_min, self._stoploss_range_max, self._stoploss_range_step
)
self._timerange: TimeRange = TimeRange.parse_timerange(
f"{(dt_now() - timedelta(days=self._since_number_of_days)).strftime('%Y%m%d')}-")
if config.get('fee'):
self.fee = config['fee']
f"{(dt_now() - timedelta(days=self._since_number_of_days)).strftime('%Y%m%d')}-"
)
if config.get("fee"):
self.fee = config["fee"]
else:
try:
self.fee = self.exchange.get_fee(symbol=expand_pairlist(
self.config['exchange']['pair_whitelist'], list(self.exchange.markets))[0])
self.fee = self.exchange.get_fee(
symbol=expand_pairlist(
self.config["exchange"]["pair_whitelist"], list(self.exchange.markets)
)[0]
)
except IndexError:
self.fee = None
@@ -95,28 +97,30 @@ class Edge:
if self.fee is None and pairs:
self.fee = self.exchange.get_fee(pairs[0])
heartbeat = self.edge_config.get('process_throttle_secs')
heartbeat = self.edge_config.get("process_throttle_secs")
if (self._last_updated > 0) and (
self._last_updated + heartbeat > int(dt_now().timestamp())):
self._last_updated + heartbeat > int(dt_now().timestamp())
):
return False
data: Dict[str, Any] = {}
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using local backtesting data (using whitelist in given config) ...')
logger.info("Using stake_currency: %s ...", self.config["stake_currency"])
logger.info("Using local backtesting data (using whitelist in given config) ...")
if self._refresh_pairs:
timerange_startup = deepcopy(self._timerange)
timerange_startup.subtract_start(timeframe_to_seconds(
self.strategy.timeframe) * self.strategy.startup_candle_count)
timerange_startup.subtract_start(
timeframe_to_seconds(self.strategy.timeframe) * self.strategy.startup_candle_count
)
refresh_data(
datadir=self.config['datadir'],
datadir=self.config["datadir"],
pairs=pairs,
exchange=self.exchange,
timeframe=self.strategy.timeframe,
timerange=timerange_startup,
data_format=self.config['dataformat_ohlcv'],
candle_type=self.config.get('candle_type_def', CandleType.SPOT),
data_format=self.config["dataformat_ohlcv"],
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
)
# Download informative pairs too
res = defaultdict(list)
@@ -124,26 +128,27 @@ class Edge:
res[timeframe].append(pair)
for timeframe, inf_pairs in res.items():
timerange_startup = deepcopy(self._timerange)
timerange_startup.subtract_start(timeframe_to_seconds(
timeframe) * self.strategy.startup_candle_count)
timerange_startup.subtract_start(
timeframe_to_seconds(timeframe) * self.strategy.startup_candle_count
)
refresh_data(
datadir=self.config['datadir'],
datadir=self.config["datadir"],
pairs=inf_pairs,
exchange=self.exchange,
timeframe=timeframe,
timerange=timerange_startup,
data_format=self.config['dataformat_ohlcv'],
candle_type=self.config.get('candle_type_def', CandleType.SPOT),
data_format=self.config["dataformat_ohlcv"],
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
)
data = load_data(
datadir=self.config['datadir'],
datadir=self.config["datadir"],
pairs=pairs,
timeframe=self.strategy.timeframe,
timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count,
data_format=self.config['dataformat_ohlcv'],
candle_type=self.config.get('candle_type_def', CandleType.SPOT),
data_format=self.config["dataformat_ohlcv"],
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
)
if not data:
@@ -152,27 +157,29 @@ class Edge:
logger.critical("No data found. Edge is stopped ...")
return False
# Fake run-mode to Edge
prior_rm = self.config['runmode']
self.config['runmode'] = RunMode.EDGE
prior_rm = self.config["runmode"]
self.config["runmode"] = RunMode.EDGE
preprocessed = self.strategy.advise_all_indicators(data)
self.config['runmode'] = prior_rm
self.config["runmode"] = prior_rm
# Print timeframe
min_date, max_date = get_timerange(preprocessed)
logger.info(f'Measuring data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
logger.info(
f"Measuring data from {min_date.strftime(DATETIME_PRINT_FORMAT)} "
f"up to {max_date.strftime(DATETIME_PRINT_FORMAT)} "
f"({(max_date - min_date).days} days).."
)
# TODO: Should edge support shorts? needs to be investigated further
# * (add enter_short exit_short)
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long']
headers = ["date", "open", "high", "low", "close", "enter_long", "exit_long"]
trades: list = []
for pair, pair_data in preprocessed.items():
# Sorting dataframe by date and reset index
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.sort_values(by=["date"])
pair_data = pair_data.reset_index(drop=True)
df_analyzed = self.strategy.ft_advise_signals(pair_data, {'pair': pair})[headers].copy()
df_analyzed = self.strategy.ft_advise_signals(pair_data, {"pair": pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
@@ -188,8 +195,9 @@ class Edge:
return True
def stake_amount(self, pair: str, free_capital: float,
total_capital: float, capital_in_trade: float) -> float:
def stake_amount(
self, pair: str, free_capital: float, total_capital: float, capital_in_trade: float
) -> float:
stoploss = self.get_stoploss(pair)
available_capital = (total_capital + capital_in_trade) * self._capital_ratio
allowed_capital_at_risk = available_capital * self._allowed_risk
@@ -198,14 +206,18 @@ class Edge:
position_size = min(min(max_position_size, free_capital), available_capital)
if pair in self._cached_pairs:
logger.info(
'winrate: %s, expectancy: %s, position size: %s, pair: %s,'
' capital in trade: %s, free capital: %s, total capital: %s,'
' stoploss: %s, available capital: %s.',
"winrate: %s, expectancy: %s, position size: %s, pair: %s,"
" capital in trade: %s, free capital: %s, total capital: %s,"
" stoploss: %s, available capital: %s.",
self._cached_pairs[pair].winrate,
self._cached_pairs[pair].expectancy,
position_size, pair,
capital_in_trade, free_capital, total_capital,
stoploss, available_capital
position_size,
pair,
capital_in_trade,
free_capital,
total_capital,
stoploss,
available_capital,
)
return round(position_size, 15)
@@ -213,8 +225,10 @@ class Edge:
if pair in self._cached_pairs:
return self._cached_pairs[pair].stoploss
else:
logger.warning(f'Tried to access stoploss of non-existing pair {pair}, '
'strategy stoploss is returned instead.')
logger.warning(
f"Tried to access stoploss of non-existing pair {pair}, "
"strategy stoploss is returned instead."
)
return self.strategy.stoploss
def adjust(self, pairs: List[str]) -> list:
@@ -224,8 +238,8 @@ class Edge:
final = []
for pair, info in self._cached_pairs.items():
if (
info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2))
and info.winrate > float(self.edge_config.get('minimum_winrate', 0.60))
info.expectancy > float(self.edge_config.get("minimum_expectancy", 0.2))
and info.winrate > float(self.edge_config.get("minimum_winrate", 0.60))
and pair in pairs
):
final.append(pair)
@@ -234,14 +248,14 @@ class Edge:
self._final_pairs = final
if self._final_pairs:
logger.info(
'Minimum expectancy and minimum winrate are met only for %s,'
' so other pairs are filtered out.',
self._final_pairs
"Minimum expectancy and minimum winrate are met only for %s,"
" so other pairs are filtered out.",
self._final_pairs,
)
else:
logger.info(
'Edge removed all pairs as no pair with minimum expectancy '
'and minimum winrate was found !'
"Edge removed all pairs as no pair with minimum expectancy "
"and minimum winrate was found !"
)
return self._final_pairs
@@ -252,14 +266,17 @@ class Edge:
"""
final = []
for pair, info in self._cached_pairs.items():
if (info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60))):
final.append({
'Pair': pair,
'Winrate': info.winrate,
'Expectancy': info.expectancy,
'Stoploss': info.stoploss,
})
if info.expectancy > float(
self.edge_config.get("minimum_expectancy", 0.2)
) and info.winrate > float(self.edge_config.get("minimum_winrate", 0.60)):
final.append(
{
"Pair": pair,
"Winrate": info.winrate,
"Expectancy": info.expectancy,
"Stoploss": info.stoploss,
}
)
return final
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
@@ -279,28 +296,29 @@ class Edge:
# All returned values are relative, they are defined as ratios.
stake = 0.015
result['trade_duration'] = result['close_date'] - result['open_date']
result["trade_duration"] = result["close_date"] - result["open_date"]
result['trade_duration'] = result['trade_duration'].map(
lambda x: int(x.total_seconds() / 60))
result["trade_duration"] = result["trade_duration"].map(
lambda x: int(x.total_seconds() / 60)
)
# Spends, Takes, Profit, Absolute Profit
# Buy Price
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
result['buy_fee'] = stake * self.fee
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
result["buy_vol"] = stake / result["open_rate"] # How many target are we buying
result["buy_fee"] = stake * self.fee
result["buy_spend"] = stake + result["buy_fee"] # How much we're spending
# Sell price
result['sell_sum'] = result['buy_vol'] * result['close_rate']
result['sell_fee'] = result['sell_sum'] * self.fee
result['sell_take'] = result['sell_sum'] - result['sell_fee']
result["sell_sum"] = result["buy_vol"] * result["close_rate"]
result["sell_fee"] = result["sell_sum"] * self.fee
result["sell_take"] = result["sell_sum"] - result["sell_fee"]
# profit_ratio
result['profit_ratio'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
result["profit_ratio"] = (result["sell_take"] - result["buy_spend"]) / result["buy_spend"]
# Absolute profit
result['profit_abs'] = result['sell_take'] - result['buy_spend']
result["profit_abs"] = result["sell_take"] - result["buy_spend"]
return result
@@ -310,8 +328,8 @@ class Edge:
The calculation will be done per pair and per strategy.
"""
# Removing pairs having less than min_trades_number
min_trades_number = self.edge_config.get('min_trade_number', 10)
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
min_trades_number = self.edge_config.get("min_trade_number", 10)
results = results.groupby(["pair", "stoploss"]).filter(lambda x: len(x) > min_trades_number)
###################################
# Removing outliers (Only Pumps) from the dataset
@@ -319,13 +337,15 @@ class Edge:
# Then every value more than (standard deviation + 2*average) is out (pump)
#
# Removing Pumps
if self.edge_config.get('remove_pumps', False):
results = results[results['profit_abs'] < 2 * results['profit_abs'].std()
+ results['profit_abs'].mean()]
if self.edge_config.get("remove_pumps", False):
results = results[
results["profit_abs"]
< 2 * results["profit_abs"].std() + results["profit_abs"].mean()
]
##########################################################################
# Removing trades having a duration more than X minutes (set in config)
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
max_trade_duration = self.edge_config.get("max_trade_duration_minute", 1440)
results = results[results.trade_duration < max_trade_duration]
#######################################################################
@@ -333,44 +353,54 @@ class Edge:
return {}
groupby_aggregator = {
'profit_abs': [
('nb_trades', 'count'), # number of all trades
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
"profit_abs": [
("nb_trades", "count"), # number of all trades
("profit_sum", lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
("loss_sum", lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
("nb_win_trades", lambda x: x[x > 0].count()), # number of winning trades
],
'trade_duration': [('avg_trade_duration', 'mean')]
"trade_duration": [("avg_trade_duration", "mean")],
}
# Group by (pair and stoploss) by applying above aggregator
df = results.groupby(['pair', 'stoploss'])[['profit_abs', 'trade_duration']].agg(
groupby_aggregator).reset_index(col_level=1)
df = (
results.groupby(["pair", "stoploss"])[["profit_abs", "trade_duration"]]
.agg(groupby_aggregator)
.reset_index(col_level=1)
)
# Dropping level 0 as we don't need it
df.columns = df.columns.droplevel(0)
# Calculating number of losing trades, average win and average loss
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
df['average_win'] = np.where(df['nb_win_trades'] == 0, 0.0,
df['profit_sum'] / df['nb_win_trades'])
df['average_loss'] = np.where(df['nb_loss_trades'] == 0, 0.0,
df['loss_sum'] / df['nb_loss_trades'])
df["nb_loss_trades"] = df["nb_trades"] - df["nb_win_trades"]
df["average_win"] = np.where(
df["nb_win_trades"] == 0, 0.0, df["profit_sum"] / df["nb_win_trades"]
)
df["average_loss"] = np.where(
df["nb_loss_trades"] == 0, 0.0, df["loss_sum"] / df["nb_loss_trades"]
)
# Win rate = number of profitable trades / number of trades
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
df["winrate"] = df["nb_win_trades"] / df["nb_trades"]
# risk_reward_ratio = average win / average loss
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
df["risk_reward_ratio"] = df["average_win"] / df["average_loss"]
# required_risk_reward = (1 / winrate) - 1
df['required_risk_reward'] = (1 / df['winrate']) - 1
df["required_risk_reward"] = (1 / df["winrate"]) - 1
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
df["expectancy"] = (df["risk_reward_ratio"] * df["winrate"]) - (1 - df["winrate"])
# sort by expectancy and stoploss
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
df = (
df.sort_values(by=["expectancy", "stoploss"], ascending=False)
.groupby("pair")
.first()
.sort_values(by=["expectancy"], ascending=False)
.reset_index()
)
final = {}
for x in df.itertuples():
@@ -381,17 +411,17 @@ class Edge:
x.required_risk_reward,
x.expectancy,
x.nb_trades,
x.avg_trade_duration
x.avg_trade_duration,
)
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, df, pair: str, stoploss_range) -> list:
buy_column = df['enter_long'].values
sell_column = df['exit_long'].values
date_column = df['date'].values
ohlc_columns = df[['open', 'high', 'low', 'close']].values
buy_column = df["enter_long"].values
sell_column = df["exit_long"].values
date_column = df["date"].values
ohlc_columns = df[["open", "high", "low", "close"]].values
result: list = []
for stoploss in stoploss_range:
@@ -401,8 +431,9 @@ class Edge:
return result
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
ohlc_columns, stoploss, pair: str):
def _detect_next_stop_or_sell_point(
self, buy_column, sell_column, date_column, ohlc_columns, stoploss, pair: str
):
"""
Iterate through ohlc_columns in order to find the next trade
Next trade opens from the first buy signal noticed to
@@ -429,27 +460,28 @@ class Edge:
open_trade_index += 1
open_price = ohlc_columns[open_trade_index, 0]
stop_price = (open_price * (stoploss + 1))
stop_price = open_price * (stoploss + 1)
# Searching for the index where stoploss is hit
stop_index = utf1st.find_1st(
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller
)
# If we don't find it then we assume stop_index will be far in future (infinite number)
if stop_index == -1:
stop_index = float('inf')
stop_index = float("inf")
# Searching for the index where sell is hit
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
# If we don't find it then we assume sell_index will be far in future (infinite number)
if sell_index == -1:
sell_index = float('inf')
sell_index = float("inf")
# Check if we don't find any stop or sell point (in that case trade remains open)
# It is not interesting for Edge to consider it so we simply ignore the trade
# And stop iterating there is no more entry
if stop_index == sell_index == float('inf'):
if stop_index == sell_index == float("inf"):
break
if stop_index <= sell_index:
@@ -467,17 +499,18 @@ class Edge:
exit_type = ExitType.EXIT_SIGNAL
exit_price = ohlc_columns[exit_index, 0]
trade = {'pair': pair,
'stoploss': stoploss,
'profit_ratio': '',
'profit_abs': '',
'open_date': date_column[open_trade_index],
'close_date': date_column[exit_index],
'trade_duration': '',
'open_rate': round(open_price, 15),
'close_rate': round(exit_price, 15),
'exit_type': exit_type
}
trade = {
"pair": pair,
"stoploss": stoploss,
"profit_ratio": "",
"profit_abs": "",
"open_date": date_column[open_trade_index],
"close_date": date_column[exit_index],
"trade_duration": "",
"open_rate": round(open_price, 15),
"close_rate": round(exit_price, 15),
"exit_type": exit_type,
}
result.append(trade)

View File

@@ -5,6 +5,7 @@ class BacktestState(Enum):
"""
Bot application states
"""
STARTUP = 1
DATALOAD = 2
ANALYZE = 3

View File

@@ -3,6 +3,7 @@ from enum import Enum
class CandleType(str, Enum):
"""Enum to distinguish candle types"""
SPOT = "spot"
FUTURES = "futures"
MARK = "mark"
@@ -17,14 +18,14 @@ class CandleType(str, Enum):
return f"{self.name.lower()}"
@staticmethod
def from_string(value: str) -> 'CandleType':
def from_string(value: str) -> "CandleType":
if not value:
# Default to spot
return CandleType.SPOT
return CandleType(value)
@staticmethod
def get_default(trading_mode: str) -> 'CandleType':
if trading_mode == 'futures':
def get_default(trading_mode: str) -> "CandleType":
if trading_mode == "futures":
return CandleType.FUTURES
return CandleType.SPOT

View File

@@ -5,10 +5,11 @@ class ExitCheckTuple:
"""
NamedTuple for Exit type + reason
"""
exit_type: ExitType
exit_reason: str = ''
def __init__(self, exit_type: ExitType, exit_reason: str = ''):
exit_type: ExitType
exit_reason: str = ""
def __init__(self, exit_type: ExitType, exit_reason: str = ""):
self.exit_type = exit_type
self.exit_reason = exit_reason or exit_type.value

View File

@@ -5,6 +5,7 @@ class ExitType(Enum):
"""
Enum to distinguish between exit reasons
"""
ROI = "roi"
STOP_LOSS = "stop_loss"
STOPLOSS_ON_EXCHANGE = "stoploss_on_exchange"

View File

@@ -2,7 +2,8 @@ from enum import Enum
class HyperoptState(Enum):
""" Hyperopt states """
"""Hyperopt states"""
STARTUP = 1
DATALOAD = 2
INDICATORS = 3

View File

@@ -7,6 +7,7 @@ class MarginMode(str, Enum):
cross margin/futures margin_mode and
isolated margin/futures margin_mode
"""
CROSS = "cross"
ISOLATED = "isolated"
NONE = ''
NONE = ""

View File

@@ -5,6 +5,7 @@ class MarketDirection(Enum):
"""
Enum for various market directions.
"""
LONG = "long"
SHORT = "short"
EVEN = "even"

View File

@@ -2,5 +2,5 @@ from enum import Enum
class OrderTypeValues(str, Enum):
limit = 'limit'
market = 'market'
limit = "limit"
market = "market"

View File

@@ -3,6 +3,7 @@ from enum import Enum
class PriceType(str, Enum):
"""Enum to distinguish possible trigger prices for stoplosses"""
LAST = "last"
MARK = "mark"
INDEX = "index"

View File

@@ -2,27 +2,27 @@ from enum import Enum
class RPCMessageType(str, Enum):
STATUS = 'status'
WARNING = 'warning'
EXCEPTION = 'exception'
STARTUP = 'startup'
STATUS = "status"
WARNING = "warning"
EXCEPTION = "exception"
STARTUP = "startup"
ENTRY = 'entry'
ENTRY_FILL = 'entry_fill'
ENTRY_CANCEL = 'entry_cancel'
ENTRY = "entry"
ENTRY_FILL = "entry_fill"
ENTRY_CANCEL = "entry_cancel"
EXIT = 'exit'
EXIT_FILL = 'exit_fill'
EXIT_CANCEL = 'exit_cancel'
EXIT = "exit"
EXIT_FILL = "exit_fill"
EXIT_CANCEL = "exit_cancel"
PROTECTION_TRIGGER = 'protection_trigger'
PROTECTION_TRIGGER_GLOBAL = 'protection_trigger_global'
PROTECTION_TRIGGER = "protection_trigger"
PROTECTION_TRIGGER_GLOBAL = "protection_trigger_global"
STRATEGY_MSG = 'strategy_msg'
STRATEGY_MSG = "strategy_msg"
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
NEW_CANDLE = 'new_candle'
WHITELIST = "whitelist"
ANALYZED_DF = "analyzed_df"
NEW_CANDLE = "new_candle"
def __repr__(self):
return self.value
@@ -33,10 +33,10 @@ class RPCMessageType(str, Enum):
# Enum for parsing requests from ws consumers
class RPCRequestType(str, Enum):
SUBSCRIBE = 'subscribe'
SUBSCRIBE = "subscribe"
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
WHITELIST = "whitelist"
ANALYZED_DF = "analyzed_df"
def __str__(self):
return self.value

View File

@@ -6,6 +6,7 @@ class RunMode(Enum):
Bot running mode (backtest, hyperopt, ...)
can be "live", "dry-run", "backtest", "edge", "hyperopt".
"""
LIVE = "live"
DRY_RUN = "dry_run"
BACKTEST = "backtest"

View File

@@ -5,6 +5,7 @@ class SignalType(Enum):
"""
Enum to distinguish between enter and exit signals
"""
ENTER_LONG = "enter_long"
EXIT_LONG = "exit_long"
ENTER_SHORT = "enter_short"
@@ -18,6 +19,7 @@ class SignalTagType(Enum):
"""
Enum for signal columns
"""
ENTER_TAG = "enter_tag"
EXIT_TAG = "exit_tag"
@@ -26,8 +28,8 @@ class SignalTagType(Enum):
class SignalDirection(str, Enum):
LONG = 'long'
SHORT = 'short'
LONG = "long"
SHORT = "short"
def __str__(self):
return f"{self.name.lower()}"

View File

@@ -5,6 +5,7 @@ class State(Enum):
"""
Bot application states
"""
RUNNING = 1
STOPPED = 2
RELOAD_CONFIG = 3

View File

@@ -6,6 +6,7 @@ class TradingMode(str, Enum):
Enum to distinguish between
spot, margin, futures or any other trading method
"""
SPOT = "spot"
MARGIN = "margin"
FUTURES = "futures"

View File

@@ -2,6 +2,7 @@
# isort: off
from freqtrade.exchange.common import remove_exchange_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
# isort: on
from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bingx import Bingx
@@ -10,18 +11,30 @@ from freqtrade.exchange.bitpanda import Bitpanda
from freqtrade.exchange.bitvavo import Bitvavo
from freqtrade.exchange.bybit import Bybit
from freqtrade.exchange.coinbasepro import Coinbasepro
from freqtrade.exchange.exchange_utils import (ROUND_DOWN, ROUND_UP, amount_to_contract_precision,
amount_to_contracts, amount_to_precision,
available_exchanges, ccxt_exchanges,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, list_available_exchanges,
market_is_active, price_to_precision,
validate_exchange)
from freqtrade.exchange.exchange_utils_timeframe import (timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date,
timeframe_to_prev_date,
timeframe_to_resample_freq,
timeframe_to_seconds)
from freqtrade.exchange.exchange_utils import (
ROUND_DOWN,
ROUND_UP,
amount_to_contract_precision,
amount_to_contracts,
amount_to_precision,
available_exchanges,
ccxt_exchanges,
contracts_to_amount,
date_minus_candles,
is_exchange_known_ccxt,
list_available_exchanges,
market_is_active,
price_to_precision,
validate_exchange,
)
from freqtrade.exchange.exchange_utils_timeframe import (
timeframe_to_minutes,
timeframe_to_msecs,
timeframe_to_next_date,
timeframe_to_prev_date,
timeframe_to_resample_freq,
timeframe_to_seconds,
)
from freqtrade.exchange.gate import Gate
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.htx import Htx

View File

@@ -1,4 +1,5 @@
""" Binance exchange subclass """
"""Binance exchange subclass"""
import logging
from datetime import datetime, timezone
from pathlib import Path
@@ -18,7 +19,6 @@ logger = logging.getLogger(__name__)
class Binance(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"stop_price_param": "stopPrice",
@@ -36,7 +36,7 @@ class Binance(Exchange):
"tickers_have_price": False,
"floor_leverage": True,
"stop_price_type_field": "workingType",
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
"order_props_in_contracts": ["amount", "cost", "filled", "remaining"],
"stop_price_type_value_mapping": {
PriceType.LAST: "CONTRACT_PRICE",
PriceType.MARK: "MARK_PRICE",
@@ -67,36 +67,44 @@ class Binance(Exchange):
Must be overridden in child methods if required.
"""
try:
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
if self.trading_mode == TradingMode.FUTURES and not self._config["dry_run"]:
position_side = self._api.fapiPrivateGetPositionSideDual()
self._log_exchange_response('position_side_setting', position_side)
self._log_exchange_response("position_side_setting", position_side)
assets_margin = self._api.fapiPrivateGetMultiAssetsMargin()
self._log_exchange_response('multi_asset_margin', assets_margin)
self._log_exchange_response("multi_asset_margin", assets_margin)
msg = ""
if position_side.get('dualSidePosition') is True:
if position_side.get("dualSidePosition") is True:
msg += (
"\nHedge Mode is not supported by freqtrade. "
"Please change 'Position Mode' on your binance futures account.")
if assets_margin.get('multiAssetsMargin') is True:
msg += ("\nMulti-Asset Mode is not supported by freqtrade. "
"Please change 'Asset Mode' on your binance futures account.")
"Please change 'Position Mode' on your binance futures account."
)
if assets_margin.get("multiAssetsMargin") is True:
msg += (
"\nMulti-Asset Mode is not supported by freqtrade. "
"Please change 'Asset Mode' on your binance futures account."
)
if msg:
raise OperationalException(msg)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.OperationFailed, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
) from e
f"Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}"
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False, raise_: bool = False,
until_ms: Optional[int] = None
) -> OHLCVResponse:
async def _async_get_historic_ohlcv(
self,
pair: str,
timeframe: str,
since_ms: int,
candle_type: CandleType,
is_new_pair: bool = False,
raise_: bool = False,
until_ms: Optional[int] = None,
) -> OHLCVResponse:
"""
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
Does not work for other exchanges, which don't return the earliest data when called with "0"
@@ -109,7 +117,8 @@ class Binance(Exchange):
since_ms = x[3][0][0]
logger.info(
f"Candle-data for {pair} available starting with "
f"{datetime.fromtimestamp(since_ms // 1000, tz=timezone.utc).isoformat()}.")
f"{datetime.fromtimestamp(since_ms // 1000, tz=timezone.utc).isoformat()}."
)
return await super()._async_get_historic_ohlcv(
pair=pair,
@@ -135,7 +144,7 @@ class Binance(Exchange):
def dry_run_liquidation_price(
self,
pair: str,
open_rate: float, # Entry price of position
open_rate: float, # Entry price of position
is_short: bool,
amount: float,
stake_amount: float,
@@ -177,7 +186,7 @@ class Binance(Exchange):
# maintenance_amt: (CUM) Maintenance Amount of position
mm_ratio, maintenance_amt = self.get_maintenance_ratio_and_amt(pair, stake_amount)
if (maintenance_amt is None):
if maintenance_amt is None:
raise OperationalException(
"Parameter maintenance_amt is required by Binance.liquidation_price"
f"for {self.trading_mode.value}"
@@ -185,24 +194,18 @@ class Binance(Exchange):
if self.trading_mode == TradingMode.FUTURES:
return (
(
(wallet_balance + cross_vars + maintenance_amt) -
(side_1 * amount * open_rate)
) / (
(amount * mm_ratio) - (side_1 * amount)
)
)
(wallet_balance + cross_vars + maintenance_amt) - (side_1 * amount * open_rate)
) / ((amount * mm_ratio) - (side_1 * amount))
else:
raise OperationalException(
"Freqtrade only supports isolated futures for leverage trading")
"Freqtrade only supports isolated futures for leverage trading"
)
@retrier
def load_leverage_tiers(self) -> Dict[str, List[Dict]]:
if self.trading_mode == TradingMode.FUTURES:
if self._config['dry_run']:
leverage_tiers_path = (
Path(__file__).parent / 'binance_leverage_tiers.json'
)
if self._config["dry_run"]:
leverage_tiers_path = Path(__file__).parent / "binance_leverage_tiers.json"
with leverage_tiers_path.open() as json_file:
return json_load(json_file)
else:
@@ -211,8 +214,10 @@ class Binance(Exchange):
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.OperationFailed, ccxt.ExchangeError) as e:
raise TemporaryError(f'Could not fetch leverage amounts due to'
f'{e.__class__.__name__}. Message: {e}') from e
raise TemporaryError(
f"Could not fetch leverage amounts due to"
f"{e.__class__.__name__}. Message: {e}"
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
else:

View File

@@ -1,4 +1,5 @@
""" Bingx exchange subclass """
"""Bingx exchange subclass"""
import logging
from typing import Dict

View File

@@ -1,4 +1,5 @@
""" Bitmart exchange subclass """
"""Bitmart exchange subclass"""
import logging
from typing import Dict

View File

@@ -1,4 +1,5 @@
""" Bitpanda exchange subclass """
"""Bitpanda exchange subclass"""
import logging
from datetime import datetime, timezone
from typing import Dict, List, Optional
@@ -15,8 +16,9 @@ class Bitpanda(Exchange):
with this exchange.
"""
def get_trades_for_order(self, order_id: str, pair: str, since: datetime,
params: Optional[Dict] = None) -> List:
def get_trades_for_order(
self, order_id: str, pair: str, since: datetime, params: Optional[Dict] = None
) -> List:
"""
Fetch Orders using the "fetch_my_trades" endpoint and filter them by order-id.
The "since" argument passed in is coming from the database and is in UTC,
@@ -33,5 +35,5 @@ class Bitpanda(Exchange):
:param pair: Pair the order is for
:param since: datetime object of the order creation time. Assumes object is in UTC.
"""
params = {'to': int(datetime.now(timezone.utc).timestamp() * 1000)}
params = {"to": int(datetime.now(timezone.utc).timestamp() * 1000)}
return super().get_trades_for_order(order_id, pair, since, params)

View File

@@ -1,4 +1,5 @@
"""Kucoin exchange subclass."""
import logging
from typing import Dict

View File

@@ -1,4 +1,5 @@
""" Bybit exchange subclass """
"""Bybit exchange subclass"""
import logging
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple
@@ -25,6 +26,7 @@ class Bybit(Exchange):
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
unified_account = False
_ft_has: Dict = {
@@ -60,20 +62,14 @@ class Bybit(Exchange):
# ccxt defaults to swap mode.
config = {}
if self.trading_mode == TradingMode.SPOT:
config.update({
"options": {
"defaultType": "spot"
}
})
config.update({"options": {"defaultType": "spot"}})
config.update(super()._ccxt_config)
return config
def market_is_future(self, market: Dict[str, Any]) -> bool:
main = super().market_is_future(market)
# For ByBit, we'll only support USDT markets for now.
return (
main and market['settle'] == 'USDT'
)
return main and market["settle"] == "USDT"
@retrier
def additional_exchange_init(self) -> None:
@@ -83,17 +79,19 @@ class Bybit(Exchange):
Must be overridden in child methods if required.
"""
try:
if not self._config['dry_run']:
if not self._config["dry_run"]:
if self.trading_mode == TradingMode.FUTURES:
position_mode = self._api.set_position_mode(False)
self._log_exchange_response('set_position_mode', position_mode)
self._log_exchange_response("set_position_mode", position_mode)
is_unified = self._api.is_unified_enabled()
# Returns a tuple of bools, first for margin, second for Account
if is_unified and len(is_unified) > 1 and is_unified[1]:
self.unified_account = True
logger.info("Bybit: Unified account.")
raise OperationalException("Bybit: Unified account is not supported. "
"Please use a standard (sub)account.")
raise OperationalException(
"Bybit: Unified account is not supported. "
"Please use a standard (sub)account."
)
else:
self.unified_account = False
logger.info("Bybit: Standard account.")
@@ -101,14 +99,14 @@ class Bybit(Exchange):
raise DDosProtection(e) from e
except (ccxt.OperationFailed, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
) from e
f"Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}"
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def ohlcv_candle_limit(
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None) -> int:
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None
) -> int:
if candle_type in (CandleType.FUNDING_RATE):
return 200
@@ -116,7 +114,7 @@ class Bybit(Exchange):
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
if self.trading_mode != TradingMode.SPOT:
params = {'leverage': leverage}
params = {"leverage": leverage}
self.set_margin_mode(pair, self.margin_mode, accept_fail=True, params=params)
self._set_leverage(leverage, pair, accept_fail=True)
@@ -126,7 +124,7 @@ class Bybit(Exchange):
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'GTC',
time_in_force: str = "GTC",
) -> Dict:
params = super()._get_params(
side=side,
@@ -136,13 +134,13 @@ class Bybit(Exchange):
time_in_force=time_in_force,
)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['position_idx'] = 0
params["position_idx"] = 0
return params
def dry_run_liquidation_price(
self,
pair: str,
open_rate: float, # Entry price of position
open_rate: float, # Entry price of position
is_short: bool,
amount: float,
stake_amount: float,
@@ -185,10 +183,8 @@ class Bybit(Exchange):
mm_ratio, _ = self.get_maintenance_ratio_and_amt(pair, stake_amount)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode == MarginMode.ISOLATED:
if market['inverse']:
raise OperationalException(
"Freqtrade does not yet support inverse contracts")
if market["inverse"]:
raise OperationalException("Freqtrade does not yet support inverse contracts")
initial_margin_rate = 1 / leverage
# See docstring - ignores extra margin!
@@ -199,10 +195,12 @@ class Bybit(Exchange):
else:
raise OperationalException(
"Freqtrade only supports isolated futures for leverage trading")
"Freqtrade only supports isolated futures for leverage trading"
)
def get_funding_fees(
self, pair: str, amount: float, is_short: bool, open_date: datetime) -> float:
self, pair: str, amount: float, is_short: bool, open_date: datetime
) -> float:
"""
Fetch funding fees, either from the exchange (live) or calculates them
based on funding rate/mark price history
@@ -216,8 +214,7 @@ class Bybit(Exchange):
# Bybit does not provide "applied" funding fees per position.
if self.trading_mode == TradingMode.FUTURES:
try:
return self._fetch_and_calculate_funding_fees(
pair, amount, is_short, open_date)
return self._fetch_and_calculate_funding_fees(pair, amount, is_short, open_date)
except ExchangeError:
logger.warning(f"Could not update funding fees for {pair}.")
return 0.0
@@ -234,7 +231,7 @@ class Bybit(Exchange):
while since < dt_now():
until = since + timedelta(days=7, minutes=-1)
orders += super().fetch_orders(pair, since, params={'until': dt_ts(until)})
orders += super().fetch_orders(pair, since, params={"until": dt_ts(until)})
since = until
return orders
@@ -242,12 +239,12 @@ class Bybit(Exchange):
def fetch_order(self, order_id: str, pair: str, params: Optional[Dict] = None) -> Dict:
order = super().fetch_order(order_id, pair, params)
if (
order.get('status') == 'canceled'
and order.get('filled') == 0.0
and order.get('remaining') == 0.0
order.get("status") == "canceled"
and order.get("filled") == 0.0
and order.get("remaining") == 0.0
):
# Canceled orders will have "remaining=0" on bybit.
order['remaining'] = None
order["remaining"] = None
return order
@retrier
@@ -258,7 +255,7 @@ class Bybit(Exchange):
"""
# Load cached tiers
tiers_cached = self.load_cached_leverage_tiers(self._config['stake_currency'])
tiers_cached = self.load_cached_leverage_tiers(self._config["stake_currency"])
if tiers_cached:
tiers = tiers_cached
return tiers
@@ -268,12 +265,12 @@ class Bybit(Exchange):
symbols = self._api.market_symbols([])
def parse_resp(response):
result = self._api.safe_dict(response, 'result', {})
data = self._api.safe_list(result, 'list', [])
return self._api.parse_leverage_tiers(data, symbols, 'symbol')
result = self._api.safe_dict(response, "result", {})
data = self._api.safe_list(result, "list", [])
return self._api.parse_leverage_tiers(data, symbols, "symbol")
params = {
'category': 'linear',
"category": "linear",
}
tiers = {}
# 20 pairs ... should be sufficient assuming 30 pairs per page
@@ -282,11 +279,9 @@ class Bybit(Exchange):
# Fetch from private endpoint
response = self._api.publicGetV5MarketRiskLimit(params)
tiers = tiers | parse_resp(response)
if (cursor := response['result']['nextPageCursor']) == '':
if (cursor := response["result"]["nextPageCursor"]) == "":
break
params.update({
"cursor": cursor
})
params.update({"cursor": cursor})
self.cache_leverage_tiers(tiers, self._config['stake_currency'])
self.cache_leverage_tiers(tiers, self._config["stake_currency"])
return tiers

View File

@@ -21,45 +21,52 @@ def check_exchange(config: Config, check_for_bad: bool = True) -> bool:
and thus is not known for the Freqtrade at all.
"""
if (config['runmode'] in [RunMode.PLOT, RunMode.UTIL_NO_EXCHANGE, RunMode.OTHER]
and not config.get('exchange', {}).get('name')):
if config["runmode"] in [
RunMode.PLOT,
RunMode.UTIL_NO_EXCHANGE,
RunMode.OTHER,
] and not config.get("exchange", {}).get("name"):
# Skip checking exchange in plot mode, since it requires no exchange
return True
logger.info("Checking exchange...")
exchange = config.get('exchange', {}).get('name', '').lower()
exchange = config.get("exchange", {}).get("name", "").lower()
if not exchange:
raise OperationalException(
f'This command requires a configured exchange. You should either use '
f'`--exchange <exchange_name>` or specify a configuration file via `--config`.\n'
f'The following exchanges are available for Freqtrade: '
f"This command requires a configured exchange. You should either use "
f"`--exchange <exchange_name>` or specify a configuration file via `--config`.\n"
f"The following exchanges are available for Freqtrade: "
f'{", ".join(available_exchanges())}'
)
if not is_exchange_known_ccxt(exchange):
raise OperationalException(
f'Exchange "{exchange}" is not known to the ccxt library '
f'and therefore not available for the bot.\n'
f'The following exchanges are available for Freqtrade: '
f"and therefore not available for the bot.\n"
f"The following exchanges are available for Freqtrade: "
f'{", ".join(available_exchanges())}'
)
valid, reason = validate_exchange(exchange)
if not valid:
if check_for_bad:
raise OperationalException(f'Exchange "{exchange}" will not work with Freqtrade. '
f'Reason: {reason}')
raise OperationalException(
f'Exchange "{exchange}" will not work with Freqtrade. ' f"Reason: {reason}"
)
else:
logger.warning(f'Exchange "{exchange}" will not work with Freqtrade. Reason: {reason}')
if MAP_EXCHANGE_CHILDCLASS.get(exchange, exchange) in SUPPORTED_EXCHANGES:
logger.info(f'Exchange "{exchange}" is officially supported '
f'by the Freqtrade development team.')
logger.info(
f'Exchange "{exchange}" is officially supported ' f"by the Freqtrade development team."
)
else:
logger.warning(f'Exchange "{exchange}" is known to the ccxt library, '
f'available for the bot, but not officially supported '
f'by the Freqtrade development team. '
f'It may work flawlessly (please report back) or have serious issues. '
f'Use it at your own discretion.')
logger.warning(
f'Exchange "{exchange}" is known to the ccxt library, '
f"available for the bot, but not officially supported "
f"by the Freqtrade development team. "
f"It may work flawlessly (please report back) or have serious issues. "
f"Use it at your own discretion."
)
return True

View File

@@ -1,4 +1,5 @@
""" CoinbasePro exchange subclass """
"""CoinbasePro exchange subclass"""
import logging
from typing import Dict

View File

@@ -43,46 +43,48 @@ BAD_EXCHANGES = {
}
MAP_EXCHANGE_CHILDCLASS = {
'binanceus': 'binance',
'binanceje': 'binance',
'binanceusdm': 'binance',
'okex': 'okx',
'gateio': 'gate',
'huboi': 'htx',
"binanceus": "binance",
"binanceje": "binance",
"binanceusdm": "binance",
"okex": "okx",
"gateio": "gate",
"huboi": "htx",
}
SUPPORTED_EXCHANGES = [
'binance',
'bitmart',
'gate',
'htx',
'kraken',
'okx',
"binance",
"bitmart",
"gate",
"htx",
"kraken",
"okx",
]
# either the main, or replacement methods (array) is required
EXCHANGE_HAS_REQUIRED: Dict[str, List[str]] = {
# Required / private
'fetchOrder': ['fetchOpenOrder', 'fetchClosedOrder'],
'cancelOrder': [],
'createOrder': [],
'fetchBalance': [],
"fetchOrder": ["fetchOpenOrder", "fetchClosedOrder"],
"cancelOrder": [],
"createOrder": [],
"fetchBalance": [],
# Public endpoints
'fetchOHLCV': [],
"fetchOHLCV": [],
}
EXCHANGE_HAS_OPTIONAL = [
# Private
'fetchMyTrades', # Trades for order - fee detection
'createLimitOrder', 'createMarketOrder', # Either OR for orders
"fetchMyTrades", # Trades for order - fee detection
"createLimitOrder",
"createMarketOrder", # Either OR for orders
# 'setLeverage', # Margin/Futures trading
# 'setMarginMode', # Margin/Futures trading
# 'fetchFundingHistory', # Futures trading
# Public
'fetchOrderBook', 'fetchL2OrderBook', 'fetchTicker', # OR for pricing
'fetchTickers', # For volumepairlist?
'fetchTrades', # Downloading trades data
"fetchOrderBook",
"fetchL2OrderBook",
"fetchTicker", # OR for pricing
"fetchTickers", # For volumepairlist?
"fetchTrades", # Downloading trades data
# 'fetchFundingRateHistory', # Futures trading
# 'fetchPositions', # Futures trading
# 'fetchLeverageTiers', # Futures initialization
@@ -99,11 +101,11 @@ def remove_exchange_credentials(exchange_config: ExchangeConfig, dry_run: bool)
Modifies the input dict!
"""
if dry_run:
exchange_config['key'] = ''
exchange_config['apiKey'] = ''
exchange_config['secret'] = ''
exchange_config['password'] = ''
exchange_config['uid'] = ''
exchange_config["key"] = ""
exchange_config["apiKey"] = ""
exchange_config["secret"] = ""
exchange_config["password"] = ""
exchange_config["uid"] = ""
def calculate_backoff(retrycount, max_retries):
@@ -115,25 +117,27 @@ def calculate_backoff(retrycount, max_retries):
def retrier_async(f):
async def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
count = kwargs.pop("count", API_RETRY_COUNT)
kucoin = args[0].name == "KuCoin" # Check if the exchange is KuCoin.
try:
return await f(*args, **kwargs)
except TemporaryError as ex:
msg = f'{f.__name__}() returned exception: "{ex}". '
if count > 0:
msg += f'Retrying still for {count} times.'
msg += f"Retrying still for {count} times."
count -= 1
kwargs['count'] = count
kwargs["count"] = count
if isinstance(ex, DDosProtection):
if kucoin and "429000" in str(ex):
# Temporary fix for 429000 error on kucoin
# see https://github.com/freqtrade/freqtrade/issues/5700 for details.
_get_logging_mixin().log_once(
f"Kucoin 429 error, avoid triggering DDosProtection backoff delay. "
f"{count} tries left before giving up", logmethod=logger.warning)
f"{count} tries left before giving up",
logmethod=logger.warning,
)
# Reset msg to avoid logging too many times.
msg = ''
msg = ""
else:
backoff_delay = calculate_backoff(count + 1, API_RETRY_COUNT)
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
@@ -142,38 +146,37 @@ def retrier_async(f):
logger.warning(msg)
return await wrapper(*args, **kwargs)
else:
logger.warning(msg + 'Giving up.')
logger.warning(msg + "Giving up.")
raise ex
return wrapper
F = TypeVar('F', bound=Callable[..., Any])
F = TypeVar("F", bound=Callable[..., Any])
# Type shenanigans
@overload
def retrier(_func: F) -> F:
...
def retrier(_func: F) -> F: ...
@overload
def retrier(*, retries=API_RETRY_COUNT) -> Callable[[F], F]:
...
def retrier(*, retries=API_RETRY_COUNT) -> Callable[[F], F]: ...
def retrier(_func: Optional[F] = None, *, retries=API_RETRY_COUNT):
def decorator(f: F) -> F:
@wraps(f)
def wrapper(*args, **kwargs):
count = kwargs.pop('count', retries)
count = kwargs.pop("count", retries)
try:
return f(*args, **kwargs)
except (TemporaryError, RetryableOrderError) as ex:
msg = f'{f.__name__}() returned exception: "{ex}". '
if count > 0:
logger.warning(msg + f'Retrying still for {count} times.')
logger.warning(msg + f"Retrying still for {count} times.")
count -= 1
kwargs.update({'count': count})
kwargs.update({"count": count})
if isinstance(ex, (DDosProtection, RetryableOrderError)):
# increasing backoff
backoff_delay = calculate_backoff(count + 1, retries)
@@ -181,9 +184,11 @@ def retrier(_func: Optional[F] = None, *, retries=API_RETRY_COUNT):
time.sleep(backoff_delay)
return wrapper(*args, **kwargs)
else:
logger.warning(msg + 'Giving up.')
logger.warning(msg + "Giving up.")
raise ex
return cast(F, wrapper)
# Support both @retrier and @retrier(retries=2) syntax
if _func is None:
return decorator

File diff suppressed because it is too large Load Diff

View File

@@ -1,16 +1,29 @@
"""
Exchange support utils
"""
from datetime import datetime, timedelta, timezone
from math import ceil, floor
from typing import Any, Dict, List, Optional, Tuple
import ccxt
from ccxt import (DECIMAL_PLACES, ROUND, ROUND_DOWN, ROUND_UP, SIGNIFICANT_DIGITS, TICK_SIZE,
TRUNCATE, decimal_to_precision)
from ccxt import (
DECIMAL_PLACES,
ROUND,
ROUND_DOWN,
ROUND_UP,
SIGNIFICANT_DIGITS,
TICK_SIZE,
TRUNCATE,
decimal_to_precision,
)
from freqtrade.exchange.common import (BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
SUPPORTED_EXCHANGES)
from freqtrade.exchange.common import (
BAD_EXCHANGES,
EXCHANGE_HAS_OPTIONAL,
EXCHANGE_HAS_REQUIRED,
SUPPORTED_EXCHANGES,
)
from freqtrade.exchange.exchange_utils_timeframe import timeframe_to_minutes, timeframe_to_prev_date
from freqtrade.types import ValidExchangesType
from freqtrade.util import FtPrecise
@@ -20,7 +33,8 @@ CcxtModuleType = Any
def is_exchange_known_ccxt(
exchange_name: str, ccxt_module: Optional[CcxtModuleType] = None) -> bool:
exchange_name: str, ccxt_module: Optional[CcxtModuleType] = None
) -> bool:
return exchange_name in ccxt_exchanges(ccxt_module)
@@ -46,13 +60,13 @@ def validate_exchange(exchange: str) -> Tuple[bool, str]:
"""
ex_mod = getattr(ccxt, exchange.lower())()
result = True
reason = ''
reason = ""
if not ex_mod or not ex_mod.has:
return False, ''
return False, ""
missing = [
k for k, v in EXCHANGE_HAS_REQUIRED.items()
if ex_mod.has.get(k) is not True
and not (all(ex_mod.has.get(x) for x in v))
k
for k, v in EXCHANGE_HAS_REQUIRED.items()
if ex_mod.has.get(k) is not True and not (all(ex_mod.has.get(x) for x in v))
]
if missing:
result = False
@@ -62,7 +76,7 @@ def validate_exchange(exchange: str) -> Tuple[bool, str]:
if exchange.lower() in BAD_EXCHANGES:
result = False
reason = BAD_EXCHANGES.get(exchange.lower(), '')
reason = BAD_EXCHANGES.get(exchange.lower(), "")
if missing_opt:
reason += f"{'. ' if reason else ''}missing opt: {', '.join(missing_opt)}. "
@@ -71,23 +85,26 @@ def validate_exchange(exchange: str) -> Tuple[bool, str]:
def _build_exchange_list_entry(
exchange_name: str, exchangeClasses: Dict[str, Any]) -> ValidExchangesType:
exchange_name: str, exchangeClasses: Dict[str, Any]
) -> ValidExchangesType:
valid, comment = validate_exchange(exchange_name)
result: ValidExchangesType = {
'name': exchange_name,
'valid': valid,
'supported': exchange_name.lower() in SUPPORTED_EXCHANGES,
'comment': comment,
'trade_modes': [{'trading_mode': 'spot', 'margin_mode': ''}],
"name": exchange_name,
"valid": valid,
"supported": exchange_name.lower() in SUPPORTED_EXCHANGES,
"comment": comment,
"trade_modes": [{"trading_mode": "spot", "margin_mode": ""}],
}
if resolved := exchangeClasses.get(exchange_name.lower()):
supported_modes = [{'trading_mode': 'spot', 'margin_mode': ''}] + [
{'trading_mode': tm.value, 'margin_mode': mm.value}
for tm, mm in resolved['class']._supported_trading_mode_margin_pairs
supported_modes = [{"trading_mode": "spot", "margin_mode": ""}] + [
{"trading_mode": tm.value, "margin_mode": mm.value}
for tm, mm in resolved["class"]._supported_trading_mode_margin_pairs
]
result.update({
'trade_modes': supported_modes,
})
result.update(
{
"trade_modes": supported_modes,
}
)
return result
@@ -99,7 +116,7 @@ def list_available_exchanges(all_exchanges: bool) -> List[ValidExchangesType]:
exchanges = ccxt_exchanges() if all_exchanges else available_exchanges()
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
subclassed = {e['name'].lower(): e for e in ExchangeResolver.search_all_objects({}, False)}
subclassed = {e["name"].lower(): e for e in ExchangeResolver.search_all_objects({}, False)}
exchanges_valid: List[ValidExchangesType] = [
_build_exchange_list_entry(e, subclassed) for e in exchanges
@@ -109,7 +126,8 @@ def list_available_exchanges(all_exchanges: bool) -> List[ValidExchangesType]:
def date_minus_candles(
timeframe: str, candle_count: int, date: Optional[datetime] = None) -> datetime:
timeframe: str, candle_count: int, date: Optional[datetime] = None
) -> datetime:
"""
subtract X candles from a date.
:param timeframe: timeframe in string format (e.g. "5m")
@@ -133,7 +151,7 @@ def market_is_active(market: Dict) -> bool:
# true then it's true. If it's undefined, then it's most likely true, but not 100% )"
# See https://github.com/ccxt/ccxt/issues/4874,
# https://github.com/ccxt/ccxt/issues/4075#issuecomment-434760520
return market.get('active', True) is not False
return market.get("active", True) is not False
def amount_to_contracts(amount: float, contract_size: Optional[float]) -> float:
@@ -163,8 +181,9 @@ def contracts_to_amount(num_contracts: float, contract_size: Optional[float]) ->
return num_contracts
def amount_to_precision(amount: float, amount_precision: Optional[float],
precisionMode: Optional[int]) -> float:
def amount_to_precision(
amount: float, amount_precision: Optional[float], precisionMode: Optional[int]
) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
@@ -179,17 +198,24 @@ def amount_to_precision(amount: float, amount_precision: Optional[float],
if amount_precision is not None and precisionMode is not None:
precision = int(amount_precision) if precisionMode != TICK_SIZE else amount_precision
# precision must be an int for non-ticksize inputs.
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=precision,
counting_mode=precisionMode,
))
amount = float(
decimal_to_precision(
amount,
rounding_mode=TRUNCATE,
precision=precision,
counting_mode=precisionMode,
)
)
return amount
def amount_to_contract_precision(
amount, amount_precision: Optional[float], precisionMode: Optional[int],
contract_size: Optional[float]) -> float:
amount,
amount_precision: Optional[float],
precisionMode: Optional[int],
contract_size: Optional[float],
) -> float:
"""
Returns the amount to buy or sell to a precision the Exchange accepts
including calculation to and from contracts.
@@ -222,23 +248,25 @@ def __price_to_precision_significant_digits(
from decimal import ROUND_DOWN as dec_ROUND_DOWN
from decimal import ROUND_UP as dec_ROUND_UP
from decimal import Decimal
dec = Decimal(str(price))
string = f'{dec:f}'
string = f"{dec:f}"
precision = round(price_precision)
q = precision - dec.adjusted() - 1
sigfig = Decimal('10') ** -q
sigfig = Decimal("10") ** -q
if q < 0:
string_to_precision = string[:precision]
# string_to_precision is '' when we have zero precision
below = sigfig * Decimal(string_to_precision if string_to_precision else '0')
below = sigfig * Decimal(string_to_precision if string_to_precision else "0")
above = below + sigfig
res = above if rounding_mode == ROUND_UP else below
precise = f'{res:f}'
precise = f"{res:f}"
else:
precise = '{:f}'.format(dec.quantize(
sigfig,
rounding=dec_ROUND_DOWN if rounding_mode == ROUND_DOWN else dec_ROUND_UP)
precise = "{:f}".format(
dec.quantize(
sigfig, rounding=dec_ROUND_DOWN if rounding_mode == ROUND_DOWN else dec_ROUND_UP
)
)
return float(precise)
@@ -268,10 +296,14 @@ def price_to_precision(
if price_precision is not None and precisionMode is not None:
if rounding_mode not in (ROUND_UP, ROUND_DOWN):
# Use CCXT code where possible.
return float(decimal_to_precision(price, rounding_mode=rounding_mode,
precision=price_precision,
counting_mode=precisionMode
))
return float(
decimal_to_precision(
price,
rounding_mode=rounding_mode,
precision=price_precision,
counting_mode=precisionMode,
)
)
if precisionMode == TICK_SIZE:
precision = FtPrecise(price_precision)
@@ -285,7 +317,6 @@ def price_to_precision(
return round(float(str(res)), 14)
return price
elif precisionMode == DECIMAL_PLACES:
ndigits = round(price_precision)
ticks = price * (10**ndigits)
if rounding_mode == ROUND_UP:

View File

@@ -36,16 +36,16 @@ def timeframe_to_resample_freq(timeframe: str) -> str:
form ('1m', '5m', '1h', '1d', '1w', etc.) to the resample frequency
used by pandas ('1T', '5T', '1H', '1D', '1W', etc.)
"""
if timeframe == '1y':
return '1YS'
if timeframe == "1y":
return "1YS"
timeframe_seconds = timeframe_to_seconds(timeframe)
timeframe_minutes = timeframe_seconds // 60
resample_interval = f'{timeframe_seconds}s'
resample_interval = f"{timeframe_seconds}s"
if 10000 < timeframe_minutes < 43200:
resample_interval = '1W-MON'
resample_interval = "1W-MON"
elif timeframe_minutes >= 43200 and timeframe_minutes < 525600:
# Monthly candles need special treatment to stick to the 1st of the month
resample_interval = f'{timeframe}S'
resample_interval = f"{timeframe}S"
elif timeframe_minutes > 43200:
resample_interval = timeframe
return resample_interval
@@ -62,8 +62,7 @@ def timeframe_to_prev_date(timeframe: str, date: Optional[datetime] = None) -> d
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(
timeframe, dt_ts(date), ROUND_DOWN) // 1000
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, dt_ts(date), ROUND_DOWN) // 1000
return dt_from_ts(new_timestamp)
@@ -76,6 +75,5 @@ def timeframe_to_next_date(timeframe: str, date: Optional[datetime] = None) -> d
"""
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(
timeframe, dt_ts(date), ROUND_UP) // 1000
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, dt_ts(date), ROUND_UP) // 1000
return dt_from_ts(new_timestamp)

View File

@@ -1,4 +1,5 @@
""" Gate.io exchange subclass """
"""Gate.io exchange subclass"""
import logging
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
@@ -24,7 +25,7 @@ class Gate(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
"order_time_in_force": ['GTC', 'IOC'],
"order_time_in_force": ["GTC", "IOC"],
"stoploss_on_exchange": True,
"stoploss_order_types": {"limit": "limit"},
"stop_price_param": "stopPrice",
@@ -51,13 +52,13 @@ class Gate(Exchange):
]
def _get_params(
self,
side: BuySell,
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'GTC',
) -> Dict:
self,
side: BuySell,
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = "GTC",
) -> Dict:
params = super()._get_params(
side=side,
ordertype=ordertype,
@@ -65,13 +66,14 @@ class Gate(Exchange):
reduceOnly=reduceOnly,
time_in_force=time_in_force,
)
if ordertype == 'market' and self.trading_mode == TradingMode.FUTURES:
params['type'] = 'market'
params.update({'timeInForce': 'IOC'})
if ordertype == "market" and self.trading_mode == TradingMode.FUTURES:
params["type"] = "market"
params.update({"timeInForce": "IOC"})
return params
def get_trades_for_order(self, order_id: str, pair: str, since: datetime,
params: Optional[Dict] = None) -> List:
def get_trades_for_order(
self, order_id: str, pair: str, since: datetime, params: Optional[Dict] = None
) -> List:
trades = super().get_trades_for_order(order_id, pair, since, params)
if self.trading_mode == TradingMode.FUTURES:
@@ -84,45 +86,38 @@ class Gate(Exchange):
pair_fees = self._trading_fees.get(pair, {})
if pair_fees:
for idx, trade in enumerate(trades):
fee = trade.get('fee', {})
if fee and fee.get('cost') is None:
takerOrMaker = trade.get('takerOrMaker', 'taker')
fee = trade.get("fee", {})
if fee and fee.get("cost") is None:
takerOrMaker = trade.get("takerOrMaker", "taker")
if pair_fees.get(takerOrMaker) is not None:
trades[idx]['fee'] = {
'currency': self.get_pair_quote_currency(pair),
'cost': trade['cost'] * pair_fees[takerOrMaker],
'rate': pair_fees[takerOrMaker],
trades[idx]["fee"] = {
"currency": self.get_pair_quote_currency(pair),
"cost": trade["cost"] * pair_fees[takerOrMaker],
"rate": pair_fees[takerOrMaker],
}
return trades
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
return safe_value_fallback2(order, order, 'id_stop', 'id')
return safe_value_fallback2(order, order, "id_stop", "id")
def fetch_stoploss_order(self, order_id: str, pair: str, params: Optional[Dict] = None) -> Dict:
order = self.fetch_order(
order_id=order_id,
pair=pair,
params={'stop': True}
)
if order.get('status', 'open') == 'closed':
order = self.fetch_order(order_id=order_id, pair=pair, params={"stop": True})
if order.get("status", "open") == "closed":
# Places a real order - which we need to fetch explicitly.
val = 'trade_id' if self.trading_mode == TradingMode.FUTURES else 'fired_order_id'
val = "trade_id" if self.trading_mode == TradingMode.FUTURES else "fired_order_id"
if new_orderid := order.get('info', {}).get(val):
if new_orderid := order.get("info", {}).get(val):
order1 = self.fetch_order(order_id=new_orderid, pair=pair, params=params)
order1['id_stop'] = order1['id']
order1['id'] = order_id
order1['type'] = 'stoploss'
order1['stopPrice'] = order.get('stopPrice')
order1['status_stop'] = 'triggered'
order1["id_stop"] = order1["id"]
order1["id"] = order_id
order1["type"] = "stoploss"
order1["stopPrice"] = order.get("stopPrice")
order1["status_stop"] = "triggered"
return order1
return order
def cancel_stoploss_order(
self, order_id: str, pair: str, params: Optional[Dict] = None) -> Dict:
return self.cancel_order(
order_id=order_id,
pair=pair,
params={'stop': True}
)
self, order_id: str, pair: str, params: Optional[Dict] = None
) -> Dict:
return self.cancel_order(order_id=order_id, pair=pair, params={"stop": True})

View File

@@ -1,4 +1,5 @@
""" HTX exchange subclass """
"""HTX exchange subclass"""
import logging
from typing import Dict
@@ -26,10 +27,11 @@ class Htx(Exchange):
}
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = self._params.copy()
params.update({
"stopPrice": stop_price,
"operator": "lte",
})
params.update(
{
"stopPrice": stop_price,
"operator": "lte",
}
)
return params

View File

@@ -1,4 +1,5 @@
""" Idex exchange subclass """
"""Idex exchange subclass"""
import logging
from typing import Dict

View File

@@ -1,4 +1,5 @@
""" Kraken exchange subclass """
"""Kraken exchange subclass"""
import logging
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
@@ -18,7 +19,6 @@ logger = logging.getLogger(__name__)
class Kraken(Exchange):
_params: Dict = {"trading_agreement": "agree"}
_ft_has: Dict = {
"stoploss_on_exchange": True,
@@ -47,18 +47,17 @@ class Kraken(Exchange):
"""
parent_check = super().market_is_tradable(market)
return (parent_check and
market.get('darkpool', False) is False)
return parent_check and market.get("darkpool", False) is False
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Tickers:
# Only fetch tickers for current stake currency
# Otherwise the request for kraken becomes too large.
symbols = list(self.get_markets(quote_currencies=[self._config['stake_currency']]))
symbols = list(self.get_markets(quote_currencies=[self._config["stake_currency"]]))
return super().get_tickers(symbols=symbols, cached=cached)
@retrier
def get_balances(self) -> dict:
if self._config['dry_run']:
if self._config["dry_run"]:
return {}
try:
@@ -70,23 +69,28 @@ class Kraken(Exchange):
balances.pop("used", None)
orders = self._api.fetch_open_orders()
order_list = [(x["symbol"].split("/")[0 if x["side"] == "sell" else 1],
x["remaining"] if x["side"] == "sell" else x["remaining"] * x["price"],
# Don't remove the below comment, this can be important for debugging
# x["side"], x["amount"],
) for x in orders]
order_list = [
(
x["symbol"].split("/")[0 if x["side"] == "sell" else 1],
x["remaining"] if x["side"] == "sell" else x["remaining"] * x["price"],
# Don't remove the below comment, this can be important for debugging
# x["side"], x["amount"],
)
for x in orders
]
for bal in balances:
if not isinstance(balances[bal], dict):
continue
balances[bal]['used'] = sum(order[1] for order in order_list if order[0] == bal)
balances[bal]['free'] = balances[bal]['total'] - balances[bal]['used']
balances[bal]["used"] = sum(order[1] for order in order_list if order[0] == bal)
balances[bal]["free"] = balances[bal]["total"] - balances[bal]["used"]
return balances
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.OperationFailed, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e
f"Could not get balance due to {e.__class__.__name__}. Message: {e}"
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@@ -108,7 +112,7 @@ class Kraken(Exchange):
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'GTC'
time_in_force: str = "GTC",
) -> Dict:
params = super()._get_params(
side=side,
@@ -118,10 +122,10 @@ class Kraken(Exchange):
time_in_force=time_in_force,
)
if leverage > 1.0:
params['leverage'] = round(leverage)
if time_in_force == 'PO':
params.pop('timeInForce', None)
params['postOnly'] = True
params["leverage"] = round(leverage)
if time_in_force == "PO":
params.pop("timeInForce", None)
params["postOnly"] = True
return params
def calculate_funding_fees(
@@ -131,7 +135,7 @@ class Kraken(Exchange):
is_short: bool,
open_date: datetime,
close_date: datetime,
time_in_ratio: Optional[float] = None
time_in_ratio: Optional[float] = None,
) -> float:
"""
# ! This method will always error when run by Freqtrade because time_in_ratio is never
@@ -149,12 +153,13 @@ class Kraken(Exchange):
"""
if not time_in_ratio:
raise OperationalException(
f"time_in_ratio is required for {self.name}._get_funding_fee")
f"time_in_ratio is required for {self.name}._get_funding_fee"
)
fees: float = 0
if not df.empty:
df = df[(df['date'] >= open_date) & (df['date'] <= close_date)]
fees = sum(df['open_fund'] * df['open_mark'] * amount * time_in_ratio)
df = df[(df["date"] >= open_date) & (df["date"] <= close_date)]
fees = sum(df["open_fund"] * df["open_mark"] * amount * time_in_ratio)
return fees if is_short else -fees
@@ -164,14 +169,11 @@ class Kraken(Exchange):
Applies only to fetch_trade_history by id.
"""
if len(trades) > 0:
if (
isinstance(trades[-1].get('info'), list)
and len(trades[-1].get('info', [])) > 7
):
if isinstance(trades[-1].get("info"), list) and len(trades[-1].get("info", [])) > 7:
# Trade response's "last" value.
return trades[-1].get('info', [])[-1]
return trades[-1].get("info", [])[-1]
# Fall back to timestamp if info is somehow empty.
return trades[-1].get('timestamp')
return trades[-1].get("timestamp")
return None
def _valid_trade_pagination_id(self, pair: str, from_id: str) -> bool:

View File

@@ -1,4 +1,5 @@
"""Kucoin exchange subclass."""
import logging
from typing import Dict
@@ -26,32 +27,27 @@ class Kucoin(Exchange):
"stoploss_order_types": {"limit": "limit", "market": "market"},
"l2_limit_range": [20, 100],
"l2_limit_range_required": False,
"order_time_in_force": ['GTC', 'FOK', 'IOC'],
"order_time_in_force": ["GTC", "FOK", "IOC"],
"ohlcv_candle_limit": 1500,
}
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = self._params.copy()
params.update({
'stopPrice': stop_price,
'stop': 'loss'
})
params.update({"stopPrice": stop_price, "stop": "loss"})
return params
def create_order(
self,
*,
pair: str,
ordertype: str,
side: BuySell,
amount: float,
rate: float,
leverage: float,
reduceOnly: bool = False,
time_in_force: str = 'GTC',
) -> Dict:
self,
*,
pair: str,
ordertype: str,
side: BuySell,
amount: float,
rate: float,
leverage: float,
reduceOnly: bool = False,
time_in_force: str = "GTC",
) -> Dict:
res = super().create_order(
pair=pair,
ordertype=ordertype,
@@ -66,7 +62,7 @@ class Kucoin(Exchange):
# ccxt returns status = 'closed' at the moment - which is information ccxt invented.
# Since we rely on status heavily, we must set it to 'open' here.
# ref: https://github.com/ccxt/ccxt/pull/16674, (https://github.com/ccxt/ccxt/pull/16553)
if not self._config['dry_run']:
res['type'] = ordertype
res['status'] = 'open'
if not self._config["dry_run"]:
res["type"] = ordertype
res["status"] = "open"
return res

View File

@@ -6,8 +6,12 @@ import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import CandleType, MarginMode, PriceType, TradingMode
from freqtrade.exceptions import (DDosProtection, OperationalException, RetryableOrderError,
TemporaryError)
from freqtrade.exceptions import (
DDosProtection,
OperationalException,
RetryableOrderError,
TemporaryError,
)
from freqtrade.exchange import Exchange, date_minus_candles
from freqtrade.exchange.common import retrier
from freqtrade.misc import safe_value_fallback2
@@ -37,7 +41,7 @@ class Okx(Exchange):
PriceType.LAST: "last",
PriceType.MARK: "index",
PriceType.INDEX: "mark",
},
},
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
@@ -49,10 +53,11 @@ class Okx(Exchange):
net_only = True
_ccxt_params: Dict = {'options': {'brokerId': 'ffb5405ad327SUDE'}}
_ccxt_params: Dict = {"options": {"brokerId": "ffb5405ad327SUDE"}}
def ohlcv_candle_limit(
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None) -> int:
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None
) -> int:
"""
Exchange ohlcv candle limit
OKX has the following behaviour:
@@ -64,9 +69,8 @@ class Okx(Exchange):
:param since_ms: Starting timestamp
:return: Candle limit as integer
"""
if (
candle_type in (CandleType.FUTURES, CandleType.SPOT) and
(not since_ms or since_ms > (date_minus_candles(timeframe, 300).timestamp() * 1000))
if candle_type in (CandleType.FUTURES, CandleType.SPOT) and (
not since_ms or since_ms > (date_minus_candles(timeframe, 300).timestamp() * 1000)
):
return 300
@@ -80,29 +84,29 @@ class Okx(Exchange):
Must be overridden in child methods if required.
"""
try:
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
if self.trading_mode == TradingMode.FUTURES and not self._config["dry_run"]:
accounts = self._api.fetch_accounts()
self._log_exchange_response('fetch_accounts', accounts)
self._log_exchange_response("fetch_accounts", accounts)
if len(accounts) > 0:
self.net_only = accounts[0].get('info', {}).get('posMode') == 'net_mode'
self.net_only = accounts[0].get("info", {}).get("posMode") == "net_mode"
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.OperationFailed, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
) from e
f"Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}"
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def _get_posSide(self, side: BuySell, reduceOnly: bool):
if self.net_only:
return 'net'
return "net"
if not reduceOnly:
# Enter
return 'long' if side == 'buy' else 'short'
return "long" if side == "buy" else "short"
else:
# Exit
return 'long' if side == 'sell' else 'short'
return "long" if side == "sell" else "short"
def _get_params(
self,
@@ -110,7 +114,7 @@ class Okx(Exchange):
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'GTC',
time_in_force: str = "GTC",
) -> Dict:
params = super()._get_params(
side=side,
@@ -120,18 +124,21 @@ class Okx(Exchange):
time_in_force=time_in_force,
)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['tdMode'] = self.margin_mode.value
params['posSide'] = self._get_posSide(side, reduceOnly)
params["tdMode"] = self.margin_mode.value
params["posSide"] = self._get_posSide(side, reduceOnly)
return params
def __fetch_leverage_already_set(self, pair: str, leverage: float, side: BuySell) -> bool:
try:
res_lev = self._api.fetch_leverage(symbol=pair, params={
res_lev = self._api.fetch_leverage(
symbol=pair,
params={
"mgnMode": self.margin_mode.value,
"posSide": self._get_posSide(side, False),
})
self._log_exchange_response('get_leverage', res_lev)
already_set = all(float(x['lever']) == leverage for x in res_lev['data'])
},
)
self._log_exchange_response("get_leverage", res_lev)
already_set = all(float(x["lever"]) == leverage for x in res_lev["data"])
return already_set
except ccxt.BaseError:
@@ -148,8 +155,9 @@ class Okx(Exchange):
params={
"mgnMode": self.margin_mode.value,
"posSide": self._get_posSide(side, False),
})
self._log_exchange_response('set_leverage', res)
},
)
self._log_exchange_response("set_leverage", res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
@@ -157,84 +165,81 @@ class Okx(Exchange):
already_set = self.__fetch_leverage_already_set(pair, leverage, side)
if not already_set:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}'
) from e
f"Could not set leverage due to {e.__class__.__name__}. Message: {e}"
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def get_max_pair_stake_amount(
self,
pair: str,
price: float,
leverage: float = 1.0
) -> float:
def get_max_pair_stake_amount(self, pair: str, price: float, leverage: float = 1.0) -> float:
if self.trading_mode == TradingMode.SPOT:
return float('inf') # Not actually inf, but this probably won't matter for SPOT
return float("inf") # Not actually inf, but this probably won't matter for SPOT
if pair not in self._leverage_tiers:
return float('inf')
return float("inf")
pair_tiers = self._leverage_tiers[pair]
return pair_tiers[-1]['maxNotional'] / leverage
return pair_tiers[-1]["maxNotional"] / leverage
def _get_stop_params(self, side: BuySell, ordertype: str, stop_price: float) -> Dict:
params = super()._get_stop_params(side, ordertype, stop_price)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['tdMode'] = self.margin_mode.value
params['posSide'] = self._get_posSide(side, True)
params["tdMode"] = self.margin_mode.value
params["posSide"] = self._get_posSide(side, True)
return params
def _convert_stop_order(self, pair: str, order_id: str, order: Dict) -> Dict:
if (
order.get('status', 'open') == 'closed'
and (real_order_id := order.get('info', {}).get('ordId')) is not None
order.get("status", "open") == "closed"
and (real_order_id := order.get("info", {}).get("ordId")) is not None
):
# Once a order triggered, we fetch the regular followup order.
order_reg = self.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order_reg)
order_reg['id_stop'] = order_reg['id']
order_reg['id'] = order_id
order_reg['type'] = 'stoploss'
order_reg['status_stop'] = 'triggered'
self._log_exchange_response("fetch_stoploss_order1", order_reg)
order_reg["id_stop"] = order_reg["id"]
order_reg["id"] = order_id
order_reg["type"] = "stoploss"
order_reg["status_stop"] = "triggered"
return order_reg
order = self._order_contracts_to_amount(order)
order['type'] = 'stoploss'
order["type"] = "stoploss"
return order
def fetch_stoploss_order(self, order_id: str, pair: str, params: Optional[Dict] = None) -> Dict:
if self._config['dry_run']:
if self._config["dry_run"]:
return self.fetch_dry_run_order(order_id)
try:
params1 = {'stop': True}
params1 = {"stop": True}
order_reg = self._api.fetch_order(order_id, pair, params=params1)
self._log_exchange_response('fetch_stoploss_order', order_reg)
self._log_exchange_response("fetch_stoploss_order", order_reg)
return self._convert_stop_order(pair, order_id, order_reg)
except ccxt.OrderNotFound:
pass
params2 = {'stop': True, 'ordType': 'conditional'}
for method in (self._api.fetch_open_orders, self._api.fetch_closed_orders,
self._api.fetch_canceled_orders):
params2 = {"stop": True, "ordType": "conditional"}
for method in (
self._api.fetch_open_orders,
self._api.fetch_closed_orders,
self._api.fetch_canceled_orders,
):
try:
orders = method(pair, params=params2)
orders_f = [order for order in orders if order['id'] == order_id]
orders_f = [order for order in orders if order["id"] == order_id]
if orders_f:
order = orders_f[0]
return self._convert_stop_order(pair, order_id, order)
except ccxt.BaseError:
pass
raise RetryableOrderError(
f'StoplossOrder not found (pair: {pair} id: {order_id}).')
raise RetryableOrderError(f"StoplossOrder not found (pair: {pair} id: {order_id}).")
def get_order_id_conditional(self, order: Dict[str, Any]) -> str:
if order.get('type', '') == 'stop':
return safe_value_fallback2(order, order, 'id_stop', 'id')
return order['id']
if order.get("type", "") == "stop":
return safe_value_fallback2(order, order, "id_stop", "id")
return order["id"]
def cancel_stoploss_order(
self, order_id: str, pair: str, params: Optional[Dict] = None) -> Dict:
params1 = {'stop': True}
self, order_id: str, pair: str, params: Optional[Dict] = None
) -> Dict:
params1 = {"stop": True}
# 'ordType': 'conditional'
#
return self.cancel_order(
@@ -247,10 +252,10 @@ class Okx(Exchange):
orders = []
orders = self._api.fetch_closed_orders(pair, since=since_ms)
if (since_ms < dt_ts(dt_now() - timedelta(days=6, hours=23))):
if since_ms < dt_ts(dt_now() - timedelta(days=6, hours=23)):
# Regular fetch_closed_orders only returns 7 days of data.
# Force usage of "archive" endpoint, which returns 3 months of data.
params = {'method': 'privateGetTradeOrdersHistoryArchive'}
params = {"method": "privateGetTradeOrdersHistoryArchive"}
orders_hist = self._api.fetch_closed_orders(pair, since=since_ms, params=params)
orders.extend(orders_hist)

View File

@@ -19,6 +19,7 @@ class Base3ActionRLEnv(BaseEnvironment):
"""
Base class for a 3 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
@@ -73,11 +74,18 @@ class Base3ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type, 'profit': self.get_unrealized_profit()})
{
"price": self.current_price(),
"index": self._current_tick,
"type": trade_type,
"profit": self.get_unrealized_profit(),
}
)
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
if (
self._total_profit < self.max_drawdown
or self._total_unrealized_profit < self.max_drawdown
):
self._done = True
self._position_history.append(self._position)
@@ -89,7 +97,7 @@ class Base3ActionRLEnv(BaseEnvironment):
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
current_profit_pct=self.get_unrealized_profit(),
)
observation = self._get_observation()
@@ -109,10 +117,14 @@ class Base3ActionRLEnv(BaseEnvironment):
return (
(action == Actions.Buy.value and self._position == Positions.Neutral)
or (action == Actions.Sell.value and self._position == Positions.Long)
or (action == Actions.Sell.value and self._position == Positions.Neutral
and self.can_short)
or (action == Actions.Buy.value and self._position == Positions.Short
and self.can_short)
or (
action == Actions.Sell.value
and self._position == Positions.Neutral
and self.can_short
)
or (
action == Actions.Buy.value and self._position == Positions.Short and self.can_short
)
)
def _is_valid(self, action: int) -> bool:

View File

@@ -20,6 +20,7 @@ class Base4ActionRLEnv(BaseEnvironment):
"""
Base class for a 4 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
@@ -52,7 +53,6 @@ class Base4ActionRLEnv(BaseEnvironment):
trade_type = None
if self.is_tradesignal(action):
if action == Actions.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
@@ -75,11 +75,18 @@ class Base4ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type, 'profit': self.get_unrealized_profit()})
{
"price": self.current_price(),
"index": self._current_tick,
"type": trade_type,
"profit": self.get_unrealized_profit(),
}
)
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
if (
self._total_profit < self.max_drawdown
or self._total_unrealized_profit < self.max_drawdown
):
self._done = True
self._position_history.append(self._position)
@@ -91,7 +98,7 @@ class Base4ActionRLEnv(BaseEnvironment):
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
current_profit_pct=self.get_unrealized_profit(),
)
observation = self._get_observation()
@@ -108,14 +115,16 @@ class Base4ActionRLEnv(BaseEnvironment):
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Short_enter.value and self._position == Positions.Long) or
(action == Actions.Exit.value and self._position == Positions.Neutral) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Long_enter.value and self._position == Positions.Short))
return not (
(action == Actions.Neutral.value and self._position == Positions.Neutral)
or (action == Actions.Neutral.value and self._position == Positions.Short)
or (action == Actions.Neutral.value and self._position == Positions.Long)
or (action == Actions.Short_enter.value and self._position == Positions.Short)
or (action == Actions.Short_enter.value and self._position == Positions.Long)
or (action == Actions.Exit.value and self._position == Positions.Neutral)
or (action == Actions.Long_enter.value and self._position == Positions.Long)
or (action == Actions.Long_enter.value and self._position == Positions.Short)
)
def _is_valid(self, action: int) -> bool:
"""

View File

@@ -21,6 +21,7 @@ class Base5ActionRLEnv(BaseEnvironment):
"""
Base class for a 5 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
@@ -53,7 +54,6 @@ class Base5ActionRLEnv(BaseEnvironment):
trade_type = None
if self.is_tradesignal(action):
if action == Actions.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
@@ -81,11 +81,18 @@ class Base5ActionRLEnv(BaseEnvironment):
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type, 'profit': self.get_unrealized_profit()})
{
"price": self.current_price(),
"index": self._current_tick,
"type": trade_type,
"profit": self.get_unrealized_profit(),
}
)
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
if (
self._total_profit < self.max_drawdown
or self._total_unrealized_profit < self.max_drawdown
):
self._done = True
self._position_history.append(self._position)
@@ -97,7 +104,7 @@ class Base5ActionRLEnv(BaseEnvironment):
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
current_profit_pct=self.get_unrealized_profit(),
)
observation = self._get_observation()
@@ -113,17 +120,19 @@ class Base5ActionRLEnv(BaseEnvironment):
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Short_enter.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Neutral) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Long_enter.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Neutral))
return not (
(action == Actions.Neutral.value and self._position == Positions.Neutral)
or (action == Actions.Neutral.value and self._position == Positions.Short)
or (action == Actions.Neutral.value and self._position == Positions.Long)
or (action == Actions.Short_enter.value and self._position == Positions.Short)
or (action == Actions.Short_enter.value and self._position == Positions.Long)
or (action == Actions.Short_exit.value and self._position == Positions.Long)
or (action == Actions.Short_exit.value and self._position == Positions.Neutral)
or (action == Actions.Long_enter.value and self._position == Positions.Long)
or (action == Actions.Long_enter.value and self._position == Positions.Short)
or (action == Actions.Long_exit.value and self._position == Positions.Short)
or (action == Actions.Long_exit.value and self._position == Positions.Neutral)
)
def _is_valid(self, action: int) -> bool:
# trade signal

View File

@@ -21,6 +21,7 @@ class BaseActions(Enum):
"""
Default action space, mostly used for type handling.
"""
Neutral = 0
Long_enter = 1
Long_exit = 2
@@ -44,11 +45,22 @@ class BaseEnvironment(gym.Env):
See RL/Base5ActionRLEnv.py and RL/Base4ActionRLEnv.py
"""
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
reward_kwargs: dict = {}, window_size=10, starting_point=True,
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
fee: float = 0.0015, can_short: bool = False, pair: str = "",
df_raw: DataFrame = DataFrame()):
def __init__(
self,
df: DataFrame = DataFrame(),
prices: DataFrame = DataFrame(),
reward_kwargs: dict = {},
window_size=10,
starting_point=True,
id: str = "baseenv-1",
seed: int = 1,
config: dict = {},
live: bool = False,
fee: float = 0.0015,
can_short: bool = False,
pair: str = "",
df_raw: DataFrame = DataFrame(),
):
"""
Initializes the training/eval environment.
:param df: dataframe of features
@@ -64,15 +76,15 @@ class BaseEnvironment(gym.Env):
:param can_short: Whether or not the environment can short
"""
self.config: dict = config
self.rl_config: dict = config['freqai']['rl_config']
self.add_state_info: bool = self.rl_config.get('add_state_info', False)
self.rl_config: dict = config["freqai"]["rl_config"]
self.add_state_info: bool = self.rl_config.get("add_state_info", False)
self.id: str = id
self.max_drawdown: float = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
self.compound_trades: bool = config['stake_amount'] == 'unlimited'
self.max_drawdown: float = 1 - self.rl_config.get("max_training_drawdown_pct", 0.8)
self.compound_trades: bool = config["stake_amount"] == "unlimited"
self.pair: str = pair
self.raw_features: DataFrame = df_raw
if self.config.get('fee', None) is not None:
self.fee = self.config['fee']
if self.config.get("fee", None) is not None:
self.fee = self.config["fee"]
else:
self.fee = fee
@@ -82,14 +94,22 @@ class BaseEnvironment(gym.Env):
self.can_short: bool = can_short
self.live: bool = live
if not self.live and self.add_state_info:
raise OperationalException("`add_state_info` is not available in backtesting. Change "
"parameter to false in your rl_config. See `add_state_info` "
"docs for more info.")
raise OperationalException(
"`add_state_info` is not available in backtesting. Change "
"parameter to false in your rl_config. See `add_state_info` "
"docs for more info."
)
self.seed(seed)
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
reward_kwargs: dict, starting_point=True):
def reset_env(
self,
df: DataFrame,
prices: DataFrame,
window_size: int,
reward_kwargs: dict,
starting_point=True,
):
"""
Resets the environment when the agent fails (in our case, if the drawdown
exceeds the user set max_training_drawdown_pct)
@@ -113,8 +133,7 @@ class BaseEnvironment(gym.Env):
self.total_features = self.signal_features.shape[1]
self.shape = (window_size, self.total_features)
self.set_action_space()
self.observation_space = spaces.Box(
low=-1, high=1, shape=self.shape, dtype=np.float32)
self.observation_space = spaces.Box(low=-1, high=1, shape=self.shape, dtype=np.float32)
# episode
self._start_tick: int = self.window_size
@@ -151,8 +170,13 @@ class BaseEnvironment(gym.Env):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def tensorboard_log(self, metric: str, value: Optional[Union[int, float]] = None,
inc: Optional[bool] = None, category: str = "custom"):
def tensorboard_log(
self,
metric: str,
value: Optional[Union[int, float]] = None,
inc: Optional[bool] = None,
category: str = "custom",
):
"""
Function builds the tensorboard_metrics dictionary
to be parsed by the TensorboardCallback. This
@@ -195,7 +219,7 @@ class BaseEnvironment(gym.Env):
self._done = False
if self.starting_point is True:
if self.rl_config.get('randomize_starting_position', False):
if self.rl_config.get("randomize_starting_position", False):
length_of_data = int(self._end_tick / 4)
start_tick = random.randint(self.window_size + 1, length_of_data)
self._start_tick = start_tick
@@ -207,8 +231,8 @@ class BaseEnvironment(gym.Env):
self._last_trade_tick = None
self._position = Positions.Neutral
self.total_reward = 0.
self._total_profit = 1. # unit
self.total_reward = 0.0
self._total_profit = 1.0 # unit
self.history = {}
self.trade_history = []
self.portfolio_log_returns = np.zeros(len(self.prices))
@@ -231,18 +255,19 @@ class BaseEnvironment(gym.Env):
This may or may not be independent of action types, user can inherit
this in their custom "MyRLEnv"
"""
features_window = self.signal_features[(
self._current_tick - self.window_size):self._current_tick]
features_window = self.signal_features[
(self._current_tick - self.window_size) : self._current_tick
]
if self.add_state_info:
features_and_state = DataFrame(np.zeros((len(features_window), 3)),
columns=['current_profit_pct',
'position',
'trade_duration'],
index=features_window.index)
features_and_state = DataFrame(
np.zeros((len(features_window), 3)),
columns=["current_profit_pct", "position", "trade_duration"],
index=features_window.index,
)
features_and_state['current_profit_pct'] = self.get_unrealized_profit()
features_and_state['position'] = self._position.value
features_and_state['trade_duration'] = self.get_trade_duration()
features_and_state["current_profit_pct"] = self.get_unrealized_profit()
features_and_state["position"] = self._position.value
features_and_state["trade_duration"] = self.get_trade_duration()
features_and_state = pd.concat([features_window, features_and_state], axis=1)
return features_and_state
else:
@@ -262,10 +287,10 @@ class BaseEnvironment(gym.Env):
Get the unrealized profit if the agent is in a trade
"""
if self._last_trade_tick is None:
return 0.
return 0.0
if self._position == Positions.Neutral:
return 0.
return 0.0
elif self._position == Positions.Short:
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
@@ -275,7 +300,7 @@ class BaseEnvironment(gym.Env):
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (current_price - last_trade_price) / last_trade_price
else:
return 0.
return 0.0
@abstractmethod
def is_tradesignal(self, action: int) -> bool:

View File

@@ -30,10 +30,10 @@ from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
torch.multiprocessing.set_sharing_strategy('file_system')
torch.multiprocessing.set_sharing_strategy("file_system")
SB3_MODELS = ['PPO', 'A2C', 'DQN']
SB3_CONTRIB_MODELS = ['TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'QRDQN']
SB3_MODELS = ["PPO", "A2C", "DQN"]
SB3_CONTRIB_MODELS = ["TRPO", "ARS", "RecurrentPPO", "MaskablePPO", "QRDQN"]
class BaseReinforcementLearningModel(IFreqaiModel):
@@ -42,57 +42,60 @@ class BaseReinforcementLearningModel(IFreqaiModel):
"""
def __init__(self, **kwargs) -> None:
super().__init__(config=kwargs['config'])
self.max_threads = min(self.freqai_info['rl_config'].get(
'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
super().__init__(config=kwargs["config"])
self.max_threads = min(
self.freqai_info["rl_config"].get("cpu_count", 1),
max(int(self.max_system_threads / 2), 1),
)
th.set_num_threads(self.max_threads)
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
self.reward_params = self.freqai_info["rl_config"]["model_reward_parameters"]
self.train_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
self.eval_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
self.eval_callback: Optional[MaskableEvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config']
self.model_type = self.freqai_info["rl_config"]["model_type"]
self.rl_config = self.freqai_info["rl_config"]
self.df_raw: DataFrame = DataFrame()
self.continual_learning = self.freqai_info.get('continual_learning', False)
self.continual_learning = self.freqai_info.get("continual_learning", False)
if self.model_type in SB3_MODELS:
import_str = 'stable_baselines3'
import_str = "stable_baselines3"
elif self.model_type in SB3_CONTRIB_MODELS:
import_str = 'sb3_contrib'
import_str = "sb3_contrib"
else:
raise OperationalException(f'{self.model_type} not available in stable_baselines3 or '
f'sb3_contrib. please choose one of {SB3_MODELS} or '
f'{SB3_CONTRIB_MODELS}')
raise OperationalException(
f"{self.model_type} not available in stable_baselines3 or "
f"sb3_contrib. please choose one of {SB3_MODELS} or "
f"{SB3_CONTRIB_MODELS}"
)
mod = importlib.import_module(import_str, self.model_type)
self.MODELCLASS = getattr(mod, self.model_type)
self.policy_type = self.freqai_info['rl_config']['policy_type']
self.policy_type = self.freqai_info["rl_config"]["policy_type"]
self.unset_outlier_removal()
self.net_arch = self.rl_config.get('net_arch', [128, 128])
self.net_arch = self.rl_config.get("net_arch", [128, 128])
self.dd.model_type = import_str
self.tensorboard_callback: TensorboardCallback = \
TensorboardCallback(verbose=1, actions=BaseActions)
self.tensorboard_callback: TensorboardCallback = TensorboardCallback(
verbose=1, actions=BaseActions
)
def unset_outlier_removal(self):
"""
If user has activated any function that may remove training points, this
function will set them to false and warn them
"""
if self.ft_params.get('use_SVM_to_remove_outliers', False):
self.ft_params.update({'use_SVM_to_remove_outliers': False})
logger.warning('User tried to use SVM with RL. Deactivating SVM.')
if self.ft_params.get('use_DBSCAN_to_remove_outliers', False):
self.ft_params.update({'use_DBSCAN_to_remove_outliers': False})
logger.warning('User tried to use DBSCAN with RL. Deactivating DBSCAN.')
if self.ft_params.get('DI_threshold', False):
self.ft_params.update({'DI_threshold': False})
logger.warning('User tried to use DI_threshold with RL. Deactivating DI_threshold.')
if self.freqai_info['data_split_parameters'].get('shuffle', False):
self.freqai_info['data_split_parameters'].update({'shuffle': False})
logger.warning('User tried to shuffle training data. Setting shuffle to False')
if self.ft_params.get("use_SVM_to_remove_outliers", False):
self.ft_params.update({"use_SVM_to_remove_outliers": False})
logger.warning("User tried to use SVM with RL. Deactivating SVM.")
if self.ft_params.get("use_DBSCAN_to_remove_outliers", False):
self.ft_params.update({"use_DBSCAN_to_remove_outliers": False})
logger.warning("User tried to use DBSCAN with RL. Deactivating DBSCAN.")
if self.ft_params.get("DI_threshold", False):
self.ft_params.update({"DI_threshold": False})
logger.warning("User tried to use DI_threshold with RL. Deactivating DI_threshold.")
if self.freqai_info["data_split_parameters"].get("shuffle", False):
self.freqai_info["data_split_parameters"].update({"shuffle": False})
logger.warning("User tried to shuffle training data. Setting shuffle to False")
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
@@ -102,7 +105,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("--------------------Starting training " f"{pair} --------------------")
logger.info(f"--------------------Starting training {pair} --------------------")
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
@@ -111,8 +114,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
training_filter=True,
)
dd: Dict[str, Any] = dk.make_train_test_datasets(
features_filtered, labels_filtered)
dd: Dict[str, Any] = dk.make_train_test_datasets(features_filtered, labels_filtered)
self.df_raw = copy.deepcopy(dd["train_features"])
dk.fit_labels() # FIXME useless for now, but just satiating append methods
@@ -121,18 +123,18 @@ class BaseReinforcementLearningModel(IFreqaiModel):
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
dk.feature_pipeline.fit_transform(
dd["train_features"], dd["train_labels"], dd["train_weights"]
)
)
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
dk.feature_pipeline.transform(
dd["test_features"], dd["test_labels"], dd["test_weights"]
)
)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
@@ -147,9 +149,13 @@ class BaseReinforcementLearningModel(IFreqaiModel):
return model
def set_train_and_eval_environments(self, data_dictionary: Dict[str, DataFrame],
prices_train: DataFrame, prices_test: DataFrame,
dk: FreqaiDataKitchen):
def set_train_and_eval_environments(
self,
data_dictionary: Dict[str, DataFrame],
prices_train: DataFrame,
prices_test: DataFrame,
dk: FreqaiDataKitchen,
):
"""
User can override this if they are using a custom MyRLEnv
:param data_dictionary: dict = common data dictionary containing train and test
@@ -165,11 +171,14 @@ class BaseReinforcementLearningModel(IFreqaiModel):
self.train_env = self.MyRLEnv(df=train_df, prices=prices_train, **env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df, prices=prices_test, **env_info))
self.eval_callback = MaskableEvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path),
use_masking=(self.model_type == 'MaskablePPO' and
is_masking_supported(self.eval_env)))
self.eval_callback = MaskableEvalCallback(
self.eval_env,
deterministic=True,
render=False,
eval_freq=len(train_df),
best_model_save_path=str(dk.data_path),
use_masking=(self.model_type == "MaskablePPO" and is_masking_supported(self.eval_env)),
)
actions = self.train_env.get_actions()
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
@@ -178,16 +187,19 @@ class BaseReinforcementLearningModel(IFreqaiModel):
"""
Create dictionary of environment arguments
"""
env_info = {"window_size": self.CONV_WIDTH,
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live,
"can_short": self.can_short,
"pair": pair,
"df_raw": self.df_raw}
env_info = {
"window_size": self.CONV_WIDTH,
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live,
"can_short": self.can_short,
"pair": pair,
"df_raw": self.df_raw,
}
if self.data_provider:
env_info["fee"] = self.data_provider._exchange \
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
env_info["fee"] = self.data_provider._exchange.get_fee( # type: ignore
symbol=self.data_provider.current_whitelist()[0]
)
return env_info
@@ -219,11 +231,12 @@ class BaseReinforcementLearningModel(IFreqaiModel):
for trade in open_trades:
if trade.pair == pair:
if self.data_provider._exchange is None: # type: ignore
logger.error('No exchange available.')
logger.error("No exchange available.")
return 0, 0, 0
else:
current_rate = self.data_provider._exchange.get_rate( # type: ignore
pair, refresh=False, side="exit", is_short=trade.is_short)
pair, refresh=False, side="exit", is_short=trade.is_short
)
now = datetime.now(timezone.utc).timestamp()
trade_duration = int((now - trade.open_date_utc.timestamp()) / self.base_tf_seconds)
@@ -255,16 +268,17 @@ class BaseReinforcementLearningModel(IFreqaiModel):
dk.data_dictionary["prediction_features"] = self.drop_ohlc_from_df(filtered_dataframe, dk)
dk.data_dictionary["prediction_features"], _, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
dk.data_dictionary["prediction_features"], outlier_check=True
)
pred_df = self.rl_model_predict(
dk.data_dictionary["prediction_features"], dk, self.model)
pred_df = self.rl_model_predict(dk.data_dictionary["prediction_features"], dk, self.model)
pred_df.fillna(0, inplace=True)
return (pred_df, dk.do_predict)
def rl_model_predict(self, dataframe: DataFrame,
dk: FreqaiDataKitchen, model: Any) -> DataFrame:
def rl_model_predict(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, model: Any
) -> DataFrame:
"""
A helper function to make predictions in the Reinforcement learning module.
:param dataframe: DataFrame = the dataframe of features to make the predictions on
@@ -275,11 +289,11 @@ class BaseReinforcementLearningModel(IFreqaiModel):
def _predict(window):
observations = dataframe.iloc[window.index]
if self.live and self.rl_config.get('add_state_info', False):
if self.live and self.rl_config.get("add_state_info", False):
market_side, current_profit, trade_duration = self.get_state_info(dk.pair)
observations['current_profit_pct'] = current_profit
observations['position'] = market_side
observations['trade_duration'] = trade_duration
observations["current_profit_pct"] = current_profit
observations["position"] = market_side
observations["trade_duration"] = trade_duration
res, _ = model.predict(observations, deterministic=True)
return res
@@ -287,23 +301,31 @@ class BaseReinforcementLearningModel(IFreqaiModel):
return output
def build_ohlc_price_dataframes(self, data_dictionary: dict,
pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame,
DataFrame]:
def build_ohlc_price_dataframes(
self, data_dictionary: dict, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Builds the train prices and test prices for the environment.
"""
pair = pair.replace(':', '')
pair = pair.replace(":", "")
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# price data for model training and evaluation
tf = self.config['timeframe']
rename_dict = {'%-raw_open': 'open', '%-raw_low': 'low',
'%-raw_high': ' high', '%-raw_close': 'close'}
rename_dict_old = {f'%-{pair}raw_open_{tf}': 'open', f'%-{pair}raw_low_{tf}': 'low',
f'%-{pair}raw_high_{tf}': ' high', f'%-{pair}raw_close_{tf}': 'close'}
tf = self.config["timeframe"]
rename_dict = {
"%-raw_open": "open",
"%-raw_low": "low",
"%-raw_high": " high",
"%-raw_close": "close",
}
rename_dict_old = {
f"%-{pair}raw_open_{tf}": "open",
f"%-{pair}raw_low_{tf}": "low",
f"%-{pair}raw_high_{tf}": " high",
f"%-{pair}raw_close_{tf}": "close",
}
prices_train = train_df.filter(rename_dict.keys(), axis=1)
prices_train_old = train_df.filter(rename_dict_old.keys(), axis=1)
@@ -311,17 +333,21 @@ class BaseReinforcementLearningModel(IFreqaiModel):
if not prices_train_old.empty:
prices_train = prices_train_old
rename_dict = rename_dict_old
logger.warning('Reinforcement learning module didn\'t find the correct raw prices '
'assigned in feature_engineering_standard(). '
'Please assign them with:\n'
'dataframe["%-raw_close"] = dataframe["close"]\n'
'dataframe["%-raw_open"] = dataframe["open"]\n'
'dataframe["%-raw_high"] = dataframe["high"]\n'
'dataframe["%-raw_low"] = dataframe["low"]\n'
'inside `feature_engineering_standard()')
logger.warning(
"Reinforcement learning module didn't find the correct raw prices "
"assigned in feature_engineering_standard(). "
"Please assign them with:\n"
'dataframe["%-raw_close"] = dataframe["close"]\n'
'dataframe["%-raw_open"] = dataframe["open"]\n'
'dataframe["%-raw_high"] = dataframe["high"]\n'
'dataframe["%-raw_low"] = dataframe["low"]\n'
"inside `feature_engineering_standard()"
)
elif prices_train.empty:
raise OperationalException("No prices found, please follow log warning "
"instructions to correct the strategy.")
raise OperationalException(
"No prices found, please follow log warning "
"instructions to correct the strategy."
)
prices_train.rename(columns=rename_dict, inplace=True)
prices_train.reset_index(drop=True)
@@ -339,7 +365,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
"""
Given a dataframe, drop the ohlc data
"""
drop_list = ['%-raw_open', '%-raw_low', '%-raw_high', '%-raw_close']
drop_list = ["%-raw_open", "%-raw_low", "%-raw_high", "%-raw_close"]
if self.rl_config["drop_ohlc_from_features"]:
df.drop(drop_list, axis=1, inplace=True)
@@ -358,7 +384,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
if exists:
model = self.MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
else:
logger.info('No model file on disk to continue learning from.')
logger.info("No model file on disk to continue learning from.")
return model
@@ -400,15 +426,18 @@ class BaseReinforcementLearningModel(IFreqaiModel):
return -2
pnl = self.get_unrealized_profit()
factor = 100.
factor = 100.0
# you can use feature values from dataframe
rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
rsi_now = self.raw_features[
f"%-rsi-period-10_shift-1_{self.pair}_{self.config['timeframe']}"
].iloc[self._current_tick]
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
if (
action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral
):
if rsi_now < 40:
factor = 40 / rsi_now
else:
@@ -419,7 +448,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
max_trade_duration = self.rl_config.get("max_trade_duration_candles", 300)
if self._last_trade_tick:
trade_duration = self._current_tick - self._last_trade_tick
else:
@@ -431,28 +460,36 @@ class BaseReinforcementLearningModel(IFreqaiModel):
factor *= 0.5
# discourage sitting in position
if (self._position in (Positions.Short, Positions.Long) and
action == Actions.Neutral.value):
if (
self._position in (Positions.Short, Positions.Long)
and action == Actions.Neutral.value
):
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
factor *= self.rl_config["model_reward_parameters"].get("win_reward_factor", 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
factor *= self.rl_config["model_reward_parameters"].get("win_reward_factor", 2)
return float(pnl * factor)
return 0.
return 0.0
def make_env(MyRLEnv: Type[BaseEnvironment], env_id: str, rank: int,
seed: int, train_df: DataFrame, price: DataFrame,
env_info: Dict[str, Any] = {}) -> Callable:
def make_env(
MyRLEnv: Type[BaseEnvironment],
env_id: str,
rank: int,
seed: int,
train_df: DataFrame,
price: DataFrame,
env_info: Dict[str, Any] = {},
) -> Callable:
"""
Utility function for multiprocessed env.
@@ -465,10 +502,9 @@ def make_env(MyRLEnv: Type[BaseEnvironment], env_id: str, rank: int,
"""
def _init() -> gym.Env:
env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank,
**env_info)
env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank, **env_info)
return env
set_random_seed(seed)
return _init

View File

@@ -21,9 +21,7 @@ class BaseClassifierModel(IFreqaiModel):
such as prediction_models/CatboostClassifier.py for guidance.
"""
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
@@ -47,26 +45,28 @@ class BaseClassifierModel(IFreqaiModel):
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------")
logger.info(
f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------"
)
# split data into train/test data.
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
dk.feature_pipeline.fit_transform(
dd["train_features"], dd["train_labels"], dd["train_weights"]
)
)
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
dk.feature_pipeline.transform(
dd["test_features"], dd["test_labels"], dd["test_weights"]
)
)
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
@@ -77,8 +77,10 @@ class BaseClassifierModel(IFreqaiModel):
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
logger.info(
f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------"
)
return model
@@ -102,7 +104,8 @@ class BaseClassifierModel(IFreqaiModel):
dk.data_dictionary["prediction_features"] = filtered_df
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
dk.data_dictionary["prediction_features"], outlier_check=True
)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:

View File

@@ -59,8 +59,7 @@ class BasePyTorchClassifier(BasePyTorchModel):
class_names = self.model.model_meta_data.get("class_names", None)
if not class_names:
raise ValueError(
"Missing class names. "
"self.model.model_meta_data['class_names'] is None."
"Missing class names. self.model.model_meta_data['class_names'] is None."
)
if not self.class_name_to_index:
@@ -74,11 +73,11 @@ class BasePyTorchClassifier(BasePyTorchModel):
dk.data_dictionary["prediction_features"] = filtered_df
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
dk.data_dictionary["prediction_features"], outlier_check=True
)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
dk.data_dictionary["prediction_features"], device=self.device
)
self.model.model.eval()
logits = self.model.model(x)
@@ -100,10 +99,10 @@ class BasePyTorchClassifier(BasePyTorchModel):
return (pred_df, dk.do_predict)
def encode_class_names(
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str],
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str],
):
"""
encode class name, str -> int
@@ -120,15 +119,12 @@ class BasePyTorchClassifier(BasePyTorchModel):
)
@staticmethod
def assert_valid_class_names(
target_column: pd.Series,
class_names: List[str]
):
def assert_valid_class_names(target_column: pd.Series, class_names: List[str]):
non_defined_labels = set(target_column) - set(class_names)
if len(non_defined_labels) != 0:
raise OperationalException(
f"Found non defined labels: {non_defined_labels}, ",
f"expecting labels: {class_names}"
f"expecting labels: {class_names}",
)
def decode_class_names(self, class_ints: torch.Tensor) -> List[str]:
@@ -144,10 +140,10 @@ class BasePyTorchClassifier(BasePyTorchModel):
logger.info(f"encoded class name to index: {self.class_name_to_index}")
def convert_label_column_to_int(
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str]
self,
data_dictionary: Dict[str, pd.DataFrame],
dk: FreqaiDataKitchen,
class_names: List[str],
):
self.init_class_names_to_index_mapping(class_names)
self.encode_class_names(data_dictionary, dk, class_names)
@@ -162,9 +158,7 @@ class BasePyTorchClassifier(BasePyTorchModel):
return self.class_names
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
@@ -191,18 +185,18 @@ class BasePyTorchClassifier(BasePyTorchModel):
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
dk.feature_pipeline.fit_transform(
dd["train_features"], dd["train_labels"], dd["train_weights"]
)
)
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
dk.feature_pipeline.transform(
dd["test_features"], dd["test_labels"], dd["test_weights"]
)
)
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
@@ -212,7 +206,9 @@ class BasePyTorchClassifier(BasePyTorchModel):
model = self.fit(dd, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
logger.info(
f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------"
)
return model

View File

@@ -21,7 +21,7 @@ class BasePyTorchModel(IFreqaiModel, ABC):
super().__init__(config=kwargs["config"])
self.dd.model_type = "pytorch"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
test_size = self.freqai_info.get('data_split_parameters', {}).get('test_size')
test_size = self.freqai_info.get("data_split_parameters", {}).get("test_size")
self.splits = ["train", "test"] if test_size != 0 else ["train"]
self.window_size = self.freqai_info.get("conv_width", 1)

View File

@@ -41,11 +41,11 @@ class BasePyTorchRegressor(BasePyTorchModel):
dk.data_dictionary["prediction_features"] = filtered_df
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
dk.data_dictionary["prediction_features"], outlier_check=True
)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
dk.data_dictionary["prediction_features"], device=self.device
)
self.model.model.eval()
y = self.model.model(x)
@@ -59,9 +59,7 @@ class BasePyTorchRegressor(BasePyTorchModel):
dk.do_predict = outliers
return (pred_df, dk.do_predict)
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
@@ -91,19 +89,19 @@ class BasePyTorchRegressor(BasePyTorchModel):
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
dk.feature_pipeline.fit_transform(
dd["train_features"], dd["train_labels"], dd["train_weights"]
)
)
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
dk.feature_pipeline.transform(
dd["test_features"], dd["test_labels"], dd["test_weights"]
)
)
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
logger.info(
@@ -114,7 +112,9 @@ class BasePyTorchRegressor(BasePyTorchModel):
model = self.fit(dd, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
logger.info(
f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------"
)
return model

View File

@@ -20,9 +20,7 @@ class BaseRegressionModel(IFreqaiModel):
such as prediction_models/CatboostRegressor.py for guidance.
"""
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
@@ -46,8 +44,10 @@ class BaseRegressionModel(IFreqaiModel):
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------")
logger.info(
f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------"
)
# split data into train/test data.
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
@@ -55,19 +55,19 @@ class BaseRegressionModel(IFreqaiModel):
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
dk.feature_pipeline.fit_transform(
dd["train_features"], dd["train_labels"], dd["train_weights"]
)
)
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
dk.feature_pipeline.transform(
dd["test_features"], dd["test_labels"], dd["test_weights"]
)
)
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
logger.info(
@@ -79,8 +79,10 @@ class BaseRegressionModel(IFreqaiModel):
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
logger.info(
f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------"
)
return model
@@ -102,7 +104,8 @@ class BaseRegressionModel(IFreqaiModel):
)
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
dk.data_dictionary["prediction_features"], outlier_check=True
)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:

View File

@@ -9,7 +9,6 @@ from freqtrade.exceptions import OperationalException
class FreqaiMultiOutputClassifier(MultiOutputClassifier):
def fit(self, X, y, sample_weight=None, fit_params=None):
"""Fit the model to data, separately for each output variable.
Parameters
@@ -48,18 +47,14 @@ class FreqaiMultiOutputClassifier(MultiOutputClassifier):
"multi-output regression but has only one."
)
if sample_weight is not None and not has_fit_parameter(
self.estimator, "sample_weight"
):
if sample_weight is not None and not has_fit_parameter(self.estimator, "sample_weight"):
raise ValueError("Underlying estimator does not support sample weights.")
if not fit_params:
fit_params = [None] * y.shape[1]
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_estimator)(
self.estimator, X, y[:, i], sample_weight, **fit_params[i]
)
delayed(_fit_estimator)(self.estimator, X, y[:, i], sample_weight, **fit_params[i])
for i in range(y.shape[1])
)
@@ -67,8 +62,9 @@ class FreqaiMultiOutputClassifier(MultiOutputClassifier):
for estimator in self.estimators_:
self.classes_.extend(estimator.classes_)
if len(set(self.classes_)) != len(self.classes_):
raise OperationalException(f"Class labels must be unique across targets: "
f"{self.classes_}")
raise OperationalException(
f"Class labels must be unique across targets: {self.classes_}"
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_

View File

@@ -4,7 +4,6 @@ from sklearn.utils.validation import has_fit_parameter
class FreqaiMultiOutputRegressor(MultiOutputRegressor):
def fit(self, X, y, sample_weight=None, fit_params=None):
"""Fit the model to data, separately for each output variable.
Parameters
@@ -40,18 +39,14 @@ class FreqaiMultiOutputRegressor(MultiOutputRegressor):
"multi-output regression but has only one."
)
if sample_weight is not None and not has_fit_parameter(
self.estimator, "sample_weight"
):
if sample_weight is not None and not has_fit_parameter(self.estimator, "sample_weight"):
raise ValueError("Underlying estimator does not support sample weights.")
if not fit_params:
fit_params = [None] * y.shape[1]
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_estimator)(
self.estimator, X, y[:, i], sample_weight, **fit_params[i]
)
delayed(_fit_estimator)(self.estimator, X, y[:, i], sample_weight, **fit_params[i])
for i in range(y.shape[1])
)

View File

@@ -66,7 +66,6 @@ class FreqaiDataDrawer:
"""
def __init__(self, full_path: Path, config: Config):
self.config = config
self.freqai_info = config.get("freqai", {})
# dictionary holding all pair metadata necessary to load in from disk
@@ -81,7 +80,8 @@ class FreqaiDataDrawer:
self.full_path = full_path
self.historic_predictions_path = Path(self.full_path / "historic_predictions.pkl")
self.historic_predictions_bkp_path = Path(
self.full_path / "historic_predictions.backup.pkl")
self.full_path / "historic_predictions.backup.pkl"
)
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
@@ -96,9 +96,12 @@ class FreqaiDataDrawer:
self.metric_tracker_lock = threading.Lock()
self.old_DBSCAN_eps: Dict[str, float] = {}
self.empty_pair_dict: pair_info = {
"model_filename": "", "trained_timestamp": 0,
"data_path": "", "extras": {}}
self.model_type = self.freqai_info.get('model_save_type', 'joblib')
"model_filename": "",
"trained_timestamp": 0,
"data_path": "",
"extras": {},
}
self.model_type = self.freqai_info.get("model_save_type", "joblib")
def update_metric_tracker(self, metric: str, value: float, pair: str) -> None:
"""
@@ -109,11 +112,11 @@ class FreqaiDataDrawer:
if pair not in self.metric_tracker:
self.metric_tracker[pair] = {}
if metric not in self.metric_tracker[pair]:
self.metric_tracker[pair][metric] = {'timestamp': [], 'value': []}
self.metric_tracker[pair][metric] = {"timestamp": [], "value": []}
timestamp = int(datetime.now(timezone.utc).timestamp())
self.metric_tracker[pair][metric]['value'].append(value)
self.metric_tracker[pair][metric]['timestamp'].append(timestamp)
self.metric_tracker[pair][metric]["value"].append(value)
self.metric_tracker[pair][metric]["timestamp"].append(timestamp)
def collect_metrics(self, time_spent: float, pair: str):
"""
@@ -121,10 +124,10 @@ class FreqaiDataDrawer:
"""
load1, load5, load15 = psutil.getloadavg()
cpus = psutil.cpu_count()
self.update_metric_tracker('train_time', time_spent, pair)
self.update_metric_tracker('cpu_load1min', load1 / cpus, pair)
self.update_metric_tracker('cpu_load5min', load5 / cpus, pair)
self.update_metric_tracker('cpu_load15min', load15 / cpus, pair)
self.update_metric_tracker("train_time", time_spent, pair)
self.update_metric_tracker("cpu_load1min", load1 / cpus, pair)
self.update_metric_tracker("cpu_load5min", load5 / cpus, pair)
self.update_metric_tracker("cpu_load15min", load15 / cpus, pair)
def load_global_metadata_from_disk(self):
"""
@@ -155,7 +158,7 @@ class FreqaiDataDrawer:
Tries to load an existing metrics dictionary if the user
wants to collect metrics.
"""
if self.freqai_info.get('write_metrics_to_disk', False):
if self.freqai_info.get("write_metrics_to_disk", False):
exists = self.metric_tracker_path.is_file()
if exists:
with self.metric_tracker_path.open("r") as fp:
@@ -181,10 +184,11 @@ class FreqaiDataDrawer:
)
except EOFError:
logger.warning(
'Historical prediction file was corrupted. Trying to load backup file.')
"Historical prediction file was corrupted. Trying to load backup file."
)
with self.historic_predictions_bkp_path.open("rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
logger.warning("FreqAI successfully loaded the backup historical predictions file.")
else:
logger.info("Could not find existing historic_predictions, starting from scratch")
@@ -206,27 +210,33 @@ class FreqaiDataDrawer:
Save metric tracker of all pair metrics collected.
"""
with self.save_lock:
with self.metric_tracker_path.open('w') as fp:
rapidjson.dump(self.metric_tracker, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
with self.metric_tracker_path.open("w") as fp:
rapidjson.dump(
self.metric_tracker,
fp,
default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE,
)
def save_drawer_to_disk(self) -> None:
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with self.save_lock:
with self.pair_dictionary_path.open('w') as fp:
rapidjson.dump(self.pair_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
with self.pair_dictionary_path.open("w") as fp:
rapidjson.dump(
self.pair_dict, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE
)
def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
"""
Save global metadata json to disk
"""
with self.save_lock:
with self.global_metadata_path.open('w') as fp:
rapidjson.dump(metadata, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
with self.global_metadata_path.open("w") as fp:
rapidjson.dump(
metadata, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE
)
def np_encoder(self, object):
if isinstance(object, np.generic):
@@ -264,9 +274,7 @@ class FreqaiDataDrawer:
return
def set_initial_return_values(
self, pair: str,
pred_df: DataFrame,
dataframe: DataFrame
self, pair: str, pred_df: DataFrame, dataframe: DataFrame
) -> None:
"""
Set the initial return values to the historical predictions dataframe. This avoids needing
@@ -285,7 +293,7 @@ class FreqaiDataDrawer:
new_pred["date_pred"] = dataframe["date"]
# set everything to nan except date_pred
columns_to_nan = new_pred.columns.difference(['date_pred', 'date'])
columns_to_nan = new_pred.columns.difference(["date_pred", "date"])
new_pred[columns_to_nan] = None
hist_preds = self.historic_predictions[pair].copy()
@@ -296,14 +304,15 @@ class FreqaiDataDrawer:
# find the closest common date between new_pred and historic predictions
# and cut off the new_pred dataframe at that date
common_dates = pd.merge(new_pred, hist_preds,
on="date_pred", how="inner")
common_dates = pd.merge(new_pred, hist_preds, on="date_pred", how="inner")
if len(common_dates.index) > 0:
new_pred = new_pred.iloc[len(common_dates):]
new_pred = new_pred.iloc[len(common_dates) :]
else:
logger.warning("No common dates found between new predictions and historic "
"predictions. You likely left your FreqAI instance offline "
f"for more than {len(dataframe.index)} candles.")
logger.warning(
"No common dates found between new predictions and historic "
"predictions. You likely left your FreqAI instance offline "
f"for more than {len(dataframe.index)} candles."
)
# Pandas warns that its keeping dtypes of non NaN columns...
# yea we know and we already want that behavior. Ignoring.
@@ -311,21 +320,22 @@ class FreqaiDataDrawer:
warnings.filterwarnings("ignore", category=FutureWarning)
# reindex new_pred columns to match the historic predictions dataframe
new_pred_reindexed = new_pred.reindex(columns=hist_preds.columns)
df_concat = pd.concat(
[hist_preds, new_pred_reindexed],
ignore_index=True
)
df_concat = pd.concat([hist_preds, new_pred_reindexed], ignore_index=True)
# any missing values will get zeroed out so users can see the exact
# downtime in FreqUI
df_concat = df_concat.fillna(0)
self.historic_predictions[pair] = df_concat
self.model_return_values[pair] = df_concat.tail(
len(dataframe.index)).reset_index(drop=True)
self.model_return_values[pair] = df_concat.tail(len(dataframe.index)).reset_index(drop=True)
def append_model_predictions(self, pair: str, predictions: DataFrame,
do_preds: NDArray[np.int_],
dk: FreqaiDataKitchen, strat_df: DataFrame) -> None:
def append_model_predictions(
self,
pair: str,
predictions: DataFrame,
do_preds: NDArray[np.int_],
dk: FreqaiDataKitchen,
strat_df: DataFrame,
) -> None:
"""
Append model predictions to historic predictions dataframe, then set the
strategy return dataframe to the tail of the historic predictions. The length of
@@ -338,15 +348,9 @@ class FreqaiDataDrawer:
index = self.historic_predictions[pair].index[-1:]
columns = self.historic_predictions[pair].columns
zeros_df = pd.DataFrame(
np.zeros((1, len(columns))),
index=index,
columns=columns
)
zeros_df = pd.DataFrame(np.zeros((1, len(columns))), index=index, columns=columns)
self.historic_predictions[pair] = pd.concat(
[self.historic_predictions[pair], zeros_df],
ignore_index=True,
axis=0
[self.historic_predictions[pair], zeros_df], ignore_index=True, axis=0
)
df = self.historic_predictions[pair]
@@ -370,8 +374,8 @@ class FreqaiDataDrawer:
df.iloc[-1, DI_values_loc] = dk.DI_values[-1]
# extra values the user added within custom prediction model
if dk.data['extra_returns_per_train']:
rets = dk.data['extra_returns_per_train']
if dk.data["extra_returns_per_train"]:
rets = dk.data["extra_returns_per_train"]
for return_str in rets:
return_loc = df.columns.get_loc(return_str)
df.iloc[-1, return_loc] = rets[return_str]
@@ -392,7 +396,8 @@ class FreqaiDataDrawer:
self.model_return_values[pair] = df.tail(len_df).reset_index(drop=True)
def attach_return_values_to_return_dataframe(
self, pair: str, dataframe: DataFrame) -> DataFrame:
self, pair: str, dataframe: DataFrame
) -> DataFrame:
"""
Attach the return values to the strat dataframe
:param dataframe: DataFrame = strategy dataframe
@@ -423,15 +428,14 @@ class FreqaiDataDrawer:
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
dataframe["DI_values"] = 0
if dk.data['extra_returns_per_train']:
rets = dk.data['extra_returns_per_train']
if dk.data["extra_returns_per_train"]:
rets = dk.data["extra_returns_per_train"]
for return_str in rets:
dataframe[return_str] = 0
dk.return_dataframe = dataframe
def purge_old_models(self) -> None:
num_keep = self.freqai_info["purge_old_models"]
if not num_keep:
return
@@ -508,10 +512,10 @@ class FreqaiDataDrawer:
save_path = Path(dk.data_path)
# Save the trained model
if self.model_type == 'joblib':
if self.model_type == "joblib":
with (save_path / f"{dk.model_filename}_model.joblib").open("wb") as fp:
cloudpickle.dump(model, fp)
elif self.model_type == 'keras':
elif self.model_type == "keras":
model.save(save_path / f"{dk.model_filename}_model.h5")
elif self.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
model.save(save_path / f"{dk.model_filename}_model.zip")
@@ -596,23 +600,25 @@ class FreqaiDataDrawer:
# try to access model in memory instead of loading object from disk to save time
if dk.live and coin in self.model_dictionary:
model = self.model_dictionary[coin]
elif self.model_type == 'joblib':
elif self.model_type == "joblib":
with (dk.data_path / f"{dk.model_filename}_model.joblib").open("rb") as fp:
model = cloudpickle.load(fp)
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
elif "stable_baselines" in self.model_type or "sb3_contrib" == self.model_type:
mod = importlib.import_module(
self.model_type, self.freqai_info['rl_config']['model_type'])
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
self.model_type, self.freqai_info["rl_config"]["model_type"]
)
MODELCLASS = getattr(mod, self.freqai_info["rl_config"]["model_type"])
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
elif self.model_type == 'pytorch':
elif self.model_type == "pytorch":
import torch
zip = torch.load(dk.data_path / f"{dk.model_filename}_model.zip")
model = zip["pytrainer"]
model = model.load_from_checkpoint(zip)
if not model:
raise OperationalException(
f"Unable to load model, ensure model exists at " f"{dk.data_path} "
f"Unable to load model, ensure model exists at {dk.data_path} "
)
# load it into ram if it was loaded from disk
@@ -639,23 +645,18 @@ class FreqaiDataDrawer:
df_dp = strategy.dp.get_pair_dataframe(pair, tf)
if len(df_dp.index) == 0:
continue
if str(hist_df.iloc[-1]["date"]) == str(
df_dp.iloc[-1:]["date"].iloc[-1]
):
if str(hist_df.iloc[-1]["date"]) == str(df_dp.iloc[-1:]["date"].iloc[-1]):
continue
try:
index = (
df_dp.loc[
df_dp["date"] == hist_df.iloc[-1]["date"]
].index[0]
+ 1
)
index = df_dp.loc[df_dp["date"] == hist_df.iloc[-1]["date"]].index[0] + 1
except IndexError:
if hist_df.iloc[-1]['date'] < df_dp['date'].iloc[0]:
raise OperationalException("In memory historical data is older than "
f"oldest DataProvider candle for {pair} on "
f"timeframe {tf}")
if hist_df.iloc[-1]["date"] < df_dp["date"].iloc[0]:
raise OperationalException(
"In memory historical data is older than "
f"oldest DataProvider candle for {pair} on "
f"timeframe {tf}"
)
else:
index = -1
logger.warning(
@@ -677,7 +678,7 @@ class FreqaiDataDrawer:
axis=0,
)
self.current_candle = history_data[dk.pair][self.config['timeframe']].iloc[-1]['date']
self.current_candle = history_data[dk.pair][self.config["timeframe"]].iloc[-1]["date"]
def load_all_pair_histories(self, timerange: TimeRange, dk: FreqaiDataKitchen) -> None:
"""
@@ -715,13 +716,12 @@ class FreqaiDataDrawer:
corr_dataframes: Dict[Any, Any] = {}
base_dataframes: Dict[Any, Any] = {}
historic_data = self.historic_data
pairs = self.freqai_info["feature_parameters"].get(
"include_corr_pairlist", []
)
pairs = self.freqai_info["feature_parameters"].get("include_corr_pairlist", [])
for tf in self.freqai_info["feature_parameters"].get("include_timeframes"):
base_dataframes[tf] = dk.slice_dataframe(
timerange, historic_data[pair][tf]).reset_index(drop=True)
timerange, historic_data[pair][tf]
).reset_index(drop=True)
if pairs:
for p in pairs:
if pair in p:
@@ -741,8 +741,8 @@ class FreqaiDataDrawer:
"""
if not self.historic_predictions_path.is_file():
raise OperationalException(
'Historic predictions not found. Historic predictions data is required '
'to run backtest with the freqai-backtest-live-models option '
"Historic predictions not found. Historic predictions data is required "
"to run backtest with the freqai-backtest-live-models option "
)
self.load_historic_predictions_from_disk()
@@ -758,6 +758,6 @@ class FreqaiDataDrawer:
# add 1 day to string timerange to ensure BT module will load all dataframe data
end_date = end_date + timedelta(days=1)
backtesting_timerange = TimeRange(
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
"date", "date", int(start_date.timestamp()), int(end_date.timestamp())
)
return backtesting_timerange

View File

@@ -24,7 +24,7 @@ from freqtrade.strategy import merge_informative_pair
from freqtrade.strategy.interface import IStrategy
pd.set_option('future.no_silent_downcasting', True)
pd.set_option("future.no_silent_downcasting", True)
SECONDS_IN_DAY = 86400
SECONDS_IN_HOUR = 3600
@@ -98,7 +98,7 @@ class FreqaiDataKitchen:
config["freqai"]["backtest_period_days"],
)
self.data['extra_returns_per_train'] = self.freqai_config.get('extra_returns_per_train', {})
self.data["extra_returns_per_train"] = self.freqai_config.get("extra_returns_per_train", {})
if not self.freqai_config.get("data_kitchen_thread_count", 0):
self.thread_count = max(int(psutil.cpu_count() * 2 - 2), 1)
else:
@@ -120,8 +120,7 @@ class FreqaiDataKitchen:
"""
self.full_path = self.get_full_models_path(self.config)
self.data_path = Path(
self.full_path
/ f"sub-train-{pair.split('/')[0]}_{trained_timestamp}"
self.full_path / f"sub-train-{pair.split('/')[0]}_{trained_timestamp}"
)
return
@@ -138,8 +137,8 @@ class FreqaiDataKitchen:
"""
feat_dict = self.freqai_config["feature_parameters"]
if 'shuffle' not in self.freqai_config['data_split_parameters']:
self.freqai_config["data_split_parameters"].update({'shuffle': False})
if "shuffle" not in self.freqai_config["data_split_parameters"]:
self.freqai_config["data_split_parameters"].update({"shuffle": False})
weights: npt.ArrayLike
if feat_dict.get("weight_factor", 0) > 0:
@@ -147,7 +146,7 @@ class FreqaiDataKitchen:
else:
weights = np.ones(len(filtered_dataframe))
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
if self.freqai_config.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
(
train_features,
test_features,
@@ -172,26 +171,43 @@ class FreqaiDataKitchen:
if feat_dict["shuffle_after_split"]:
rint1 = random.randint(0, 100)
rint2 = random.randint(0, 100)
train_features = train_features.sample(
frac=1, random_state=rint1).reset_index(drop=True)
train_features = train_features.sample(frac=1, random_state=rint1).reset_index(
drop=True
)
train_labels = train_labels.sample(frac=1, random_state=rint1).reset_index(drop=True)
train_weights = pd.DataFrame(train_weights).sample(
frac=1, random_state=rint1).reset_index(drop=True).to_numpy()[:, 0]
train_weights = (
pd.DataFrame(train_weights)
.sample(frac=1, random_state=rint1)
.reset_index(drop=True)
.to_numpy()[:, 0]
)
test_features = test_features.sample(frac=1, random_state=rint2).reset_index(drop=True)
test_labels = test_labels.sample(frac=1, random_state=rint2).reset_index(drop=True)
test_weights = pd.DataFrame(test_weights).sample(
frac=1, random_state=rint2).reset_index(drop=True).to_numpy()[:, 0]
test_weights = (
pd.DataFrame(test_weights)
.sample(frac=1, random_state=rint2)
.reset_index(drop=True)
.to_numpy()[:, 0]
)
# Simplest way to reverse the order of training and test data:
if self.freqai_config['feature_parameters'].get('reverse_train_test_order', False):
if self.freqai_config["feature_parameters"].get("reverse_train_test_order", False):
return self.build_data_dictionary(
test_features, train_features, test_labels,
train_labels, test_weights, train_weights
)
test_features,
train_features,
test_labels,
train_labels,
test_weights,
train_weights,
)
else:
return self.build_data_dictionary(
train_features, test_features, train_labels,
test_labels, train_weights, test_weights
train_features,
test_features,
train_labels,
test_labels,
train_weights,
test_weights,
)
def filter_features(
@@ -224,26 +240,23 @@ class FreqaiDataKitchen:
drop_index = pd.isnull(filtered_df).any(axis=1) # get the rows that have NaNs,
drop_index = drop_index.replace(True, 1).replace(False, 0).infer_objects(copy=False)
if (training_filter):
if training_filter:
# we don't care about total row number (total no. datapoints) in training, we only care
# about removing any row with NaNs
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
labels = unfiltered_df.filter(label_list, axis=1)
drop_index_labels = pd.isnull(labels).any(axis=1)
drop_index_labels = drop_index_labels.replace(
True, 1
).replace(False, 0).infer_objects(copy=False)
dates = unfiltered_df['date']
drop_index_labels = (
drop_index_labels.replace(True, 1).replace(False, 0).infer_objects(copy=False)
)
dates = unfiltered_df["date"]
filtered_df = filtered_df[
(drop_index == 0) & (drop_index_labels == 0)
] # dropping values
labels = labels[
(drop_index == 0) & (drop_index_labels == 0)
] # assuming the labels depend entirely on the dataframe here.
self.train_dates = dates[
(drop_index == 0) & (drop_index_labels == 0)
]
self.train_dates = dates[(drop_index == 0) & (drop_index_labels == 0)]
logger.info(
f"{self.pair}: dropped {len(unfiltered_df) - len(filtered_df)} training points"
f" due to NaNs in populated dataset {len(unfiltered_df)}."
@@ -266,7 +279,6 @@ class FreqaiDataKitchen:
self.data["filter_drop_index_training"] = drop_index
else:
# we are backtesting so we need to preserve row number to send back to strategy,
# so now we use do_predict to avoid any prediction based on a NaN
drop_index = pd.isnull(filtered_df).any(axis=1)
@@ -295,7 +307,6 @@ class FreqaiDataKitchen:
train_weights: Any,
test_weights: Any,
) -> Dict:
self.data_dictionary = {
"train_features": train_df,
"test_features": test_df,
@@ -303,7 +314,7 @@ class FreqaiDataKitchen:
"test_labels": test_labels,
"train_weights": train_weights,
"test_weights": test_weights,
"train_dates": self.train_dates
"train_dates": self.train_dates,
}
return self.data_dictionary
@@ -330,9 +341,7 @@ class FreqaiDataKitchen:
full_timerange = TimeRange.parse_timerange(tr)
config_timerange = TimeRange.parse_timerange(self.config["timerange"])
if config_timerange.stopts == 0:
config_timerange.stopts = int(
datetime.now(tz=timezone.utc).timestamp()
)
config_timerange.stopts = int(datetime.now(tz=timezone.utc).timestamp())
timerange_train = copy.deepcopy(full_timerange)
timerange_backtest = copy.deepcopy(full_timerange)
@@ -412,9 +421,9 @@ class FreqaiDataKitchen:
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
return weights
def get_predictions_to_append(self, predictions: DataFrame,
do_predict: npt.ArrayLike,
dataframe_backtest: DataFrame) -> DataFrame:
def get_predictions_to_append(
self, predictions: DataFrame, do_predict: npt.ArrayLike, dataframe_backtest: DataFrame
) -> DataFrame:
"""
Get backtest prediction from current backtest period
"""
@@ -459,18 +468,18 @@ class FreqaiDataKitchen:
Back fill values to before the backtesting range so that the dataframe matches size
when it goes back to the strategy. These rows are not included in the backtest.
"""
to_keep = [col for col in dataframe.columns if
not col.startswith("&") and not col.startswith("%%")]
self.return_dataframe = pd.merge(dataframe[to_keep],
self.full_df, how='left', on='date')
self.return_dataframe[self.full_df.columns] = (
self.return_dataframe[self.full_df.columns].fillna(value=0))
to_keep = [
col for col in dataframe.columns if not col.startswith("&") and not col.startswith("%%")
]
self.return_dataframe = pd.merge(dataframe[to_keep], self.full_df, how="left", on="date")
self.return_dataframe[self.full_df.columns] = self.return_dataframe[
self.full_df.columns
].fillna(value=0)
self.full_df = DataFrame()
return
def create_fulltimerange(self, backtest_tr: str, backtest_period_days: int) -> str:
if not isinstance(backtest_period_days, int):
raise OperationalException("backtest_period_days must be an integer")
@@ -484,9 +493,11 @@ class FreqaiDataKitchen:
# it does not. accommodating these kinds of edge cases just to allow open-ended
# timerange is not high enough priority to warrant the effort. It is safer for now
# to simply ask user to add their end date
raise OperationalException("FreqAI backtesting does not allow open ended timeranges. "
"Please indicate the end date of your desired backtesting. "
"timerange.")
raise OperationalException(
"FreqAI backtesting does not allow open ended timeranges. "
"Please indicate the end date of your desired backtesting. "
"timerange."
)
# backtest_timerange.stopts = int(
# datetime.now(tz=timezone.utc).timestamp()
# )
@@ -525,7 +536,6 @@ class FreqaiDataKitchen:
def check_if_new_training_required(
self, trained_timestamp: int
) -> Tuple[bool, TimeRange, TimeRange]:
time = datetime.now(tz=timezone.utc).timestamp()
trained_timerange = TimeRange()
data_load_timerange = TimeRange()
@@ -541,7 +551,7 @@ class FreqaiDataKitchen:
# We notice that users like to use exotic indicators where
# they do not know the required timeperiod. Here we include a factor
# of safety by multiplying the user considered "max" by 2.
max_period = self.config.get('startup_candle_count', 20) * 2
max_period = self.config.get("startup_candle_count", 20) * 2
additional_seconds = max_period * max_tf_seconds
if trained_timestamp != 0:
@@ -578,17 +588,12 @@ class FreqaiDataKitchen:
return retrain, trained_timerange, data_load_timerange
def set_new_model_names(self, pair: str, timestamp_id: int):
coin, _ = pair.split("/")
self.data_path = Path(
self.full_path
/ f"sub-train-{pair.split('/')[0]}_{timestamp_id}"
)
self.data_path = Path(self.full_path / f"sub-train-{pair.split('/')[0]}_{timestamp_id}")
self.model_filename = f"cb_{coin.lower()}_{timestamp_id}"
def set_all_pairs(self) -> None:
self.all_pairs = copy.deepcopy(
self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
)
@@ -597,8 +602,7 @@ class FreqaiDataKitchen:
self.all_pairs.append(pair)
def extract_corr_pair_columns_from_populated_indicators(
self,
dataframe: DataFrame
self, dataframe: DataFrame
) -> Dict[str, DataFrame]:
"""
Find the columns of the dataframe corresponding to the corr_pairlist, save them
@@ -612,19 +616,20 @@ class FreqaiDataKitchen:
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
for pair in pairs:
pair = pair.replace(':', '') # lightgbm does not like colons
pair_cols = [col for col in dataframe.columns if col.startswith("%")
and f"{pair}_" in col]
pair = pair.replace(":", "") # lightgbm does not like colons
pair_cols = [
col for col in dataframe.columns if col.startswith("%") and f"{pair}_" in col
]
if pair_cols:
pair_cols.insert(0, 'date')
pair_cols.insert(0, "date")
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
return corr_dataframes
def attach_corr_pair_columns(self, dataframe: DataFrame,
corr_dataframes: Dict[str, DataFrame],
current_pair: str) -> DataFrame:
def attach_corr_pair_columns(
self, dataframe: DataFrame, corr_dataframes: Dict[str, DataFrame], current_pair: str
) -> DataFrame:
"""
Attach the existing corr_pair dataframes to the current pair dataframe before training
@@ -636,21 +641,23 @@ class FreqaiDataKitchen:
ready for training
"""
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
current_pair = current_pair.replace(':', '')
current_pair = current_pair.replace(":", "")
for pair in pairs:
pair = pair.replace(':', '') # lightgbm does not work with colons
pair = pair.replace(":", "") # lightgbm does not work with colons
if current_pair != pair:
dataframe = dataframe.merge(corr_dataframes[pair], how='left', on='date')
dataframe = dataframe.merge(corr_dataframes[pair], how="left", on="date")
return dataframe
def get_pair_data_for_features(self,
pair: str,
tf: str,
strategy: IStrategy,
corr_dataframes: dict = {},
base_dataframes: dict = {},
is_corr_pairs: bool = False) -> DataFrame:
def get_pair_data_for_features(
self,
pair: str,
tf: str,
strategy: IStrategy,
corr_dataframes: dict = {},
base_dataframes: dict = {},
is_corr_pairs: bool = False,
) -> DataFrame:
"""
Get the data for the pair. If it's not in the dictionary, get it from the data provider
:param pair: str = pair to get data for
@@ -678,8 +685,9 @@ class FreqaiDataKitchen:
dataframe = strategy.dp.get_pair_dataframe(pair=pair, timeframe=tf)
return dataframe
def merge_features(self, df_main: DataFrame, df_to_merge: DataFrame,
tf: str, timeframe_inf: str, suffix: str) -> DataFrame:
def merge_features(
self, df_main: DataFrame, df_to_merge: DataFrame, tf: str, timeframe_inf: str, suffix: str
) -> DataFrame:
"""
Merge the features of the dataframe and remove HLCV and date added columns
:param df_main: DataFrame = main dataframe
@@ -689,17 +697,30 @@ class FreqaiDataKitchen:
:param suffix: str = suffix to add to the columns of the dataframe to merge
:return: dataframe = merged dataframe
"""
dataframe = merge_informative_pair(df_main, df_to_merge, tf, timeframe_inf=timeframe_inf,
append_timeframe=False, suffix=suffix, ffill=True)
dataframe = merge_informative_pair(
df_main,
df_to_merge,
tf,
timeframe_inf=timeframe_inf,
append_timeframe=False,
suffix=suffix,
ffill=True,
)
skip_columns = [
(f"{s}_{suffix}") for s in ["date", "open", "high", "low", "close", "volume"]
]
dataframe = dataframe.drop(columns=skip_columns)
return dataframe
def populate_features(self, dataframe: DataFrame, pair: str, strategy: IStrategy,
corr_dataframes: dict, base_dataframes: dict,
is_corr_pairs: bool = False) -> DataFrame:
def populate_features(
self,
dataframe: DataFrame,
pair: str,
strategy: IStrategy,
corr_dataframes: dict,
base_dataframes: dict,
is_corr_pairs: bool = False,
) -> DataFrame:
"""
Use the user defined strategy functions for populating features
:param dataframe: DataFrame = dataframe to populate
@@ -715,19 +736,22 @@ class FreqaiDataKitchen:
for tf in tfs:
metadata = {"pair": pair, "tf": tf}
informative_df = self.get_pair_data_for_features(
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs
)
informative_copy = informative_df.copy()
logger.debug(f"Populating features for {pair} {tf}")
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
df_features = strategy.feature_engineering_expand_all(
informative_copy.copy(), t, metadata=metadata)
informative_copy.copy(), t, metadata=metadata
)
suffix = f"{t}"
informative_df = self.merge_features(informative_df, df_features, tf, tf, suffix)
generic_df = strategy.feature_engineering_expand_basic(
informative_copy.copy(), metadata=metadata)
informative_copy.copy(), metadata=metadata
)
suffix = "gen"
informative_df = self.merge_features(informative_df, generic_df, tf, tf, suffix)
@@ -740,8 +764,9 @@ class FreqaiDataKitchen:
df_shift = df_shift.add_suffix("_shift-" + str(n))
informative_df = pd.concat((informative_df, df_shift), axis=1)
dataframe = self.merge_features(dataframe.copy(), informative_df,
self.config["timeframe"], tf, f'{pair}_{tf}')
dataframe = self.merge_features(
dataframe.copy(), informative_df, self.config["timeframe"], tf, f"{pair}_{tf}"
)
return dataframe
@@ -771,7 +796,8 @@ class FreqaiDataKitchen:
# check if the user is using the deprecated populate_any_indicators function
new_version = inspect.getsource(strategy.populate_any_indicators) == (
inspect.getsource(IStrategy.populate_any_indicators))
inspect.getsource(IStrategy.populate_any_indicators)
)
if not new_version:
raise OperationalException(
@@ -782,11 +808,10 @@ class FreqaiDataKitchen:
f"{DOCS_LINK}/strategy_migration/#freqai-strategy \n"
"And the feature_engineering_* documentation: \n"
f"{DOCS_LINK}/freqai-feature-engineering/"
)
)
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
pairs: List[str] = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
for tf in tfs:
if tf not in base_dataframes:
@@ -804,9 +829,11 @@ class FreqaiDataKitchen:
dataframe = base_dataframes[self.config["timeframe"]].copy()
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
"include_corr_pairlist", [])
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
corr_dataframes, base_dataframes)
"include_corr_pairlist", []
)
dataframe = self.populate_features(
dataframe.copy(), pair, strategy, corr_dataframes, base_dataframes
)
metadata = {"pair": pair}
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
# ensure corr pairs are always last
@@ -814,8 +841,9 @@ class FreqaiDataKitchen:
if pair == corr_pair:
continue # dont repeat anything from whitelist
if corr_pairs and do_corr_pairs:
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
corr_dataframes, base_dataframes, True)
dataframe = self.populate_features(
dataframe.copy(), corr_pair, strategy, corr_dataframes, base_dataframes, True
)
if self.live:
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
@@ -823,7 +851,7 @@ class FreqaiDataKitchen:
self.get_unique_classes_from_labels(dataframe)
if self.config.get('reduce_df_footprint', False):
if self.config.get("reduce_df_footprint", False):
dataframe = reduce_dataframe_footprint(dataframe)
return dataframe
@@ -858,7 +886,6 @@ class FreqaiDataKitchen:
return dataframe[to_keep]
def get_unique_classes_from_labels(self, dataframe: DataFrame) -> None:
# self.find_features(dataframe)
self.find_labels(dataframe)
@@ -870,9 +897,7 @@ class FreqaiDataKitchen:
for label in self.unique_classes:
self.unique_class_list += list(self.unique_classes[label])
def save_backtesting_prediction(
self, append_df: DataFrame
) -> None:
def save_backtesting_prediction(self, append_df: DataFrame) -> None:
"""
Save prediction dataframe from backtesting to feather file format
:param append_df: dataframe for backtesting period
@@ -883,19 +908,14 @@ class FreqaiDataKitchen:
append_df.to_feather(self.backtesting_results_path)
def get_backtesting_prediction(
self
) -> DataFrame:
def get_backtesting_prediction(self) -> DataFrame:
"""
Get prediction dataframe from feather file format
"""
append_df = pd.read_feather(self.backtesting_results_path)
return append_df
def check_if_backtest_prediction_is_valid(
self,
len_backtest_df: int
) -> bool:
def check_if_backtest_prediction_is_valid(self, len_backtest_df: int) -> bool:
"""
Check if a backtesting prediction already exists and if the predictions
to append have the same size as the backtesting dataframe slice
@@ -903,27 +923,29 @@ class FreqaiDataKitchen:
:return:
:boolean: whether the prediction file is valid.
"""
path_to_predictionfile = Path(self.full_path /
self.backtest_predictions_folder /
f"{self.model_filename}_prediction.feather")
path_to_predictionfile = Path(
self.full_path
/ self.backtest_predictions_folder
/ f"{self.model_filename}_prediction.feather"
)
self.backtesting_results_path = path_to_predictionfile
file_exists = path_to_predictionfile.is_file()
if file_exists:
append_df = self.get_backtesting_prediction()
if len(append_df) == len_backtest_df and 'date' in append_df:
if len(append_df) == len_backtest_df and "date" in append_df:
logger.info(f"Found backtesting prediction file at {path_to_predictionfile}")
return True
else:
logger.info("A new backtesting prediction file is required. "
"(Number of predictions is different from dataframe length or "
"old prediction file version).")
logger.info(
"A new backtesting prediction file is required. "
"(Number of predictions is different from dataframe length or "
"old prediction file version)."
)
return False
else:
logger.info(
f"Could not find backtesting prediction file at {path_to_predictionfile}"
)
logger.info(f"Could not find backtesting prediction file at {path_to_predictionfile}")
return False
def get_full_models_path(self, config: Config) -> Path:
@@ -932,9 +954,7 @@ class FreqaiDataKitchen:
:param config: Configuration dictionary
"""
freqai_config: Dict[str, Any] = config["freqai"]
return Path(
config["user_data_dir"] / "models" / str(freqai_config.get("identifier"))
)
return Path(config["user_data_dir"] / "models" / str(freqai_config.get("identifier")))
def remove_special_chars_from_feature_names(self, dataframe: pd.DataFrame) -> pd.DataFrame:
"""
@@ -943,7 +963,7 @@ class FreqaiDataKitchen:
:return: dataframe with cleaned featrue names
"""
spec_chars = [':']
spec_chars = [":"]
for c in spec_chars:
dataframe.columns = dataframe.columns.str.replace(c, "")
@@ -976,12 +996,14 @@ class FreqaiDataKitchen:
"""
Deprecation warning, migration assistance
"""
logger.warning(f"Your custom IFreqaiModel relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
"We added a basic pipeline for you, but this will be removed "
"in a future version.")
logger.warning(
f"Your custom IFreqaiModel relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
"We added a basic pipeline for you, but this will be removed "
"in a future version."
)
return data_dictionary
@@ -989,12 +1011,14 @@ class FreqaiDataKitchen:
"""
Deprecation warning, migration assistance
"""
logger.warning(f"Your custom IFreqaiModel relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
"We added a basic pipeline for you, but this will be removed "
"in a future version.")
logger.warning(
f"Your custom IFreqaiModel relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
"We added a basic pipeline for you, but this will be removed "
"in a future version."
)
pred_df, _, _ = self.label_pipeline.inverse_transform(df)

View File

@@ -57,21 +57,22 @@ class IFreqaiModel(ABC):
"""
def __init__(self, config: Config) -> None:
self.config = config
self.assert_config(self.config)
self.freqai_info: Dict[str, Any] = config["freqai"]
self.data_split_parameters: Dict[str, Any] = config.get("freqai", {}).get(
"data_split_parameters", {})
"data_split_parameters", {}
)
self.model_training_parameters: Dict[str, Any] = config.get("freqai", {}).get(
"model_training_parameters", {})
"model_training_parameters", {}
)
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
self.retrain = False
self.first = True
self.set_full_path()
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
if self.save_backtest_models:
logger.info('Backtesting module configured to save all models.')
logger.info("Backtesting module configured to save all models.")
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config)
# set current candle to arbitrary historical date
@@ -85,7 +86,7 @@ class IFreqaiModel(ABC):
self.ft_params["DI_threshold"] = 0
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
self.CONV_WIDTH = self.freqai_info.get('conv_width', 1)
self.CONV_WIDTH = self.freqai_info.get("conv_width", 1)
self.class_names: List[str] = [] # used in classification subclasses
self.pair_it = 0
self.pair_it_train = 0
@@ -95,8 +96,8 @@ class IFreqaiModel(ABC):
self.train_time: float = 0
self.begin_time: float = 0
self.begin_time_train: float = 0
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
self.continual_learning = self.freqai_info.get('continual_learning', False)
self.base_tf_seconds = timeframe_to_seconds(self.config["timeframe"])
self.continual_learning = self.freqai_info.get("continual_learning", False)
self.plot_features = self.ft_params.get("plot_feature_importances", 0)
self.corr_dataframes: Dict[str, DataFrame] = {}
# get_corr_dataframes is controlling the caching of corr_dataframes
@@ -109,10 +110,10 @@ class IFreqaiModel(ABC):
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
self.can_short = True # overridden in start() with strategy.can_short
self.model: Any = None
if self.ft_params.get('principal_component_analysis', False) and self.continual_learning:
self.ft_params.update({'principal_component_analysis': False})
logger.warning('User tried to use PCA with continual learning. Deactivating PCA.')
self.activate_tensorboard: bool = self.freqai_info.get('activate_tensorboard', True)
if self.ft_params.get("principal_component_analysis", False) and self.continual_learning:
self.ft_params.update({"principal_component_analysis": False})
logger.warning("User tried to use PCA with continual learning. Deactivating PCA.")
self.activate_tensorboard: bool = self.freqai_info.get("activate_tensorboard", True)
record_params(config, self.full_path)
@@ -120,10 +121,9 @@ class IFreqaiModel(ABC):
"""
Return an empty state to be pickled in hyperopt
"""
return ({})
return {}
def assert_config(self, config: Config) -> None:
if not config.get("freqai", {}):
raise OperationalException("No freqai parameters found in configuration file.")
@@ -144,7 +144,7 @@ class IFreqaiModel(ABC):
self.can_short = strategy.can_short
if self.live:
self.inference_timer('start')
self.inference_timer("start")
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
dk = self.start_live(dataframe, metadata, strategy, self.dk)
dataframe = dk.remove_features_from_df(dk.return_dataframe)
@@ -162,13 +162,12 @@ class IFreqaiModel(ABC):
dataframe = dk.remove_features_from_df(dk.return_dataframe)
else:
logger.info("Backtesting using historic predictions (live models)")
dk = self.start_backtesting_from_historic_predictions(
dataframe, metadata, self.dk)
dk = self.start_backtesting_from_historic_predictions(dataframe, metadata, self.dk)
dataframe = dk.return_dataframe
self.clean_up()
if self.live:
self.inference_timer('stop', metadata["pair"])
self.inference_timer("stop", metadata["pair"])
return dataframe
@@ -225,7 +224,7 @@ class IFreqaiModel(ABC):
# ensure pair is available in dp
if pair not in strategy.dp.current_whitelist():
self.train_queue.popleft()
logger.warning(f'{pair} not in current whitelist, removing from train queue.')
logger.warning(f"{pair} not in current whitelist, removing from train queue.")
continue
(_, trained_timestamp) = self.dd.get_pair_dict_info(pair)
@@ -238,23 +237,25 @@ class IFreqaiModel(ABC):
) = dk.check_if_new_training_required(trained_timestamp)
if retrain:
self.train_timer('start')
self.train_timer("start")
dk.set_paths(pair, new_trained_timerange.stopts)
try:
self.extract_data_and_train_model(
new_trained_timerange, pair, strategy, dk, data_load_timerange
)
except Exception as msg:
logger.exception(f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping.")
logger.exception(
f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping."
)
self.train_timer('stop', pair)
self.train_timer("stop", pair)
# only rotate the queue after the first has been trained.
self.train_queue.rotate(-1)
self.dd.save_historic_predictions_to_disk()
if self.freqai_info.get('write_metrics_to_disk', False):
if self.freqai_info.get("write_metrics_to_disk", False):
self.dd.save_metric_tracker_to_disk()
def start_backtesting(
@@ -290,8 +291,13 @@ class IFreqaiModel(ABC):
train_it += 1
total_trains = len(dk.backtesting_timeranges)
self.training_timerange = tr_train
len_backtest_df = len(dataframe.loc[(dataframe["date"] >= tr_backtest.startdt) & (
dataframe["date"] < tr_backtest.stopdt), :])
len_backtest_df = len(
dataframe.loc[
(dataframe["date"] >= tr_backtest.startdt)
& (dataframe["date"] < tr_backtest.stopdt),
:,
]
)
if not self.ensure_data_exists(len_backtest_df, tr_backtest, pair):
continue
@@ -327,10 +333,12 @@ class IFreqaiModel(ABC):
dataframe_base_train = dataframe.loc[dataframe["date"] < tr_train.stopdt, :]
dataframe_base_train = strategy.set_freqai_targets(
dataframe_base_train, metadata=metadata)
dataframe_base_train, metadata=metadata
)
dataframe_base_backtest = dataframe.loc[dataframe["date"] < tr_backtest.stopdt, :]
dataframe_base_backtest = strategy.set_freqai_targets(
dataframe_base_backtest, metadata=metadata)
dataframe_base_backtest, metadata=metadata
)
tr_train = dk.buffer_timerange(tr_train)
@@ -346,25 +354,27 @@ class IFreqaiModel(ABC):
dk.find_labels(dataframe_train)
try:
self.tb_logger = get_tb_logger(self.dd.model_type, dk.data_path,
self.activate_tensorboard)
self.tb_logger = get_tb_logger(
self.dd.model_type, dk.data_path, self.activate_tensorboard
)
self.model = self.train(dataframe_train, pair, dk)
self.tb_logger.close()
except Exception as msg:
logger.warning(
f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping.", exc_info=True)
f"Message: {msg}, skipping.",
exc_info=True,
)
self.model = None
self.dd.pair_dict[pair]["trained_timestamp"] = int(
tr_train.stopts)
self.dd.pair_dict[pair]["trained_timestamp"] = int(tr_train.stopts)
if self.plot_features and self.model is not None:
plot_feature_importance(self.model, pair, dk, self.plot_features)
if self.save_backtest_models and self.model is not None:
logger.info('Saving backtest model to disk.')
logger.info("Saving backtest model to disk.")
self.dd.save_data(self.model, pair, dk)
else:
logger.info('Saving metadata to disk.')
logger.info("Saving metadata to disk.")
self.dd.save_metadata(dk)
else:
self.model = self.dd.load_data(pair, dk)
@@ -394,9 +404,11 @@ class IFreqaiModel(ABC):
"""
if not strategy.process_only_new_candles:
raise OperationalException("You are trying to use a FreqAI strategy with "
"process_only_new_candles = False. This is not supported "
"by FreqAI, and it is therefore aborting.")
raise OperationalException(
"You are trying to use a FreqAI strategy with "
"process_only_new_candles = False. This is not supported "
"by FreqAI, and it is therefore aborting."
)
# get the model metadata associated with the current pair
(_, trained_timestamp) = self.dd.get_pair_dict_info(metadata["pair"])
@@ -424,8 +436,10 @@ class IFreqaiModel(ABC):
self.model = self.dd.load_data(metadata["pair"], dk)
dataframe = dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"],
do_corr_pairs=self.get_corr_dataframes
strategy,
prediction_dataframe=dataframe,
pair=metadata["pair"],
do_corr_pairs=self.get_corr_dataframes,
)
if not self.model:
@@ -447,7 +461,6 @@ class IFreqaiModel(ABC):
def build_strategy_return_arrays(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, pair: str, trained_timestamp: int
) -> None:
# hold the historical predictions in memory so we are sending back
# correct array to strategy
@@ -473,18 +486,16 @@ class IFreqaiModel(ABC):
else:
# remaining predictions are made only on the most recent candles for performance and
# historical accuracy reasons.
pred_df, do_preds = self.predict(dataframe.iloc[-self.CONV_WIDTH:], dk, first=False)
pred_df, do_preds = self.predict(dataframe.iloc[-self.CONV_WIDTH :], dk, first=False)
if self.freqai_info.get('fit_live_predictions_candles', 0) and self.live:
if self.freqai_info.get("fit_live_predictions_candles", 0) and self.live:
self.fit_live_predictions(dk, pair)
self.dd.append_model_predictions(pair, pred_df, do_preds, dk, dataframe)
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
return
def check_if_feature_list_matches_strategy(
self, dk: FreqaiDataKitchen
) -> None:
def check_if_feature_list_matches_strategy(self, dk: FreqaiDataKitchen) -> None:
"""
Ensure user is passing the proper feature set if they are reusing an `identifier` pointing
to a folder holding existing models.
@@ -496,7 +507,7 @@ class IFreqaiModel(ABC):
if "training_features_list_raw" in dk.data:
feature_list = dk.data["training_features_list_raw"]
else:
feature_list = dk.data['training_features_list']
feature_list = dk.data["training_features_list"]
if dk.training_features_list != feature_list:
raise OperationalException(
@@ -512,38 +523,35 @@ class IFreqaiModel(ABC):
def define_data_pipeline(self, threads=-1) -> Pipeline:
ft_params = self.freqai_info["feature_parameters"]
pipe_steps = [
('const', ds.VarianceThreshold(threshold=0)),
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
]
("const", ds.VarianceThreshold(threshold=0)),
("scaler", SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1)))),
]
if ft_params.get("principal_component_analysis", False):
pipe_steps.append(('pca', ds.PCA(n_components=0.999)))
pipe_steps.append(('post-pca-scaler',
SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1)))))
pipe_steps.append(("pca", ds.PCA(n_components=0.999)))
pipe_steps.append(
("post-pca-scaler", SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
)
if ft_params.get("use_SVM_to_remove_outliers", False):
svm_params = ft_params.get(
"svm_params", {"shuffle": False, "nu": 0.01})
pipe_steps.append(('svm', ds.SVMOutlierExtractor(**svm_params)))
svm_params = ft_params.get("svm_params", {"shuffle": False, "nu": 0.01})
pipe_steps.append(("svm", ds.SVMOutlierExtractor(**svm_params)))
di = ft_params.get("DI_threshold", 0)
if di:
pipe_steps.append(('di', ds.DissimilarityIndex(di_threshold=di, n_jobs=threads)))
pipe_steps.append(("di", ds.DissimilarityIndex(di_threshold=di, n_jobs=threads)))
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
pipe_steps.append(('dbscan', ds.DBSCAN(n_jobs=threads)))
pipe_steps.append(("dbscan", ds.DBSCAN(n_jobs=threads)))
sigma = self.freqai_info["feature_parameters"].get('noise_standard_deviation', 0)
sigma = self.freqai_info["feature_parameters"].get("noise_standard_deviation", 0)
if sigma:
pipe_steps.append(('noise', ds.Noise(sigma=sigma)))
pipe_steps.append(("noise", ds.Noise(sigma=sigma)))
return Pipeline(pipe_steps)
def define_label_pipeline(self, threads=-1) -> Pipeline:
label_pipeline = Pipeline([
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
])
label_pipeline = Pipeline([("scaler", SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))])
return label_pipeline
@@ -555,7 +563,7 @@ class IFreqaiModel(ABC):
:return:
:boolean: whether the model file exists or not.
"""
if self.dd.model_type == 'joblib':
if self.dd.model_type == "joblib":
file_type = ".joblib"
elif self.dd.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
file_type = ".zip"
@@ -572,9 +580,7 @@ class IFreqaiModel(ABC):
"""
Creates and sets the full path for the identifier
"""
self.full_path = Path(
self.config["user_data_dir"] / "models" / f"{self.identifier}"
)
self.full_path = Path(self.config["user_data_dir"] / "models" / f"{self.identifier}")
self.full_path.mkdir(parents=True, exist_ok=True)
def extract_data_and_train_model(
@@ -615,8 +621,7 @@ class IFreqaiModel(ABC):
dk.find_features(unfiltered_dataframe)
dk.find_labels(unfiltered_dataframe)
self.tb_logger = get_tb_logger(self.dd.model_type, dk.data_path,
self.activate_tensorboard)
self.tb_logger = get_tb_logger(self.dd.model_type, dk.data_path, self.activate_tensorboard)
model = self.train(unfiltered_dataframe, pair, dk)
self.tb_logger.close()
@@ -664,21 +669,21 @@ class IFreqaiModel(ABC):
for label in hist_preds_df.columns:
if hist_preds_df[label].dtype == object:
continue
hist_preds_df[f'{label}_mean'] = 0
hist_preds_df[f'{label}_std'] = 0
hist_preds_df[f"{label}_mean"] = 0
hist_preds_df[f"{label}_std"] = 0
hist_preds_df['do_predict'] = 0
hist_preds_df["do_predict"] = 0
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
hist_preds_df['DI_values'] = 0
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
hist_preds_df["DI_values"] = 0
for return_str in dk.data['extra_returns_per_train']:
hist_preds_df[return_str] = dk.data['extra_returns_per_train'][return_str]
for return_str in dk.data["extra_returns_per_train"]:
hist_preds_df[return_str] = dk.data["extra_returns_per_train"][return_str]
hist_preds_df['high_price'] = strat_df['high']
hist_preds_df['low_price'] = strat_df['low']
hist_preds_df['close_price'] = strat_df['close']
hist_preds_df['date_pred'] = strat_df['date']
hist_preds_df["high_price"] = strat_df["high"]
hist_preds_df["low_price"] = strat_df["low"]
hist_preds_df["close_price"] = strat_df["close"]
hist_preds_df["date_pred"] = strat_df["date"]
def fit_live_predictions(self, dk: FreqaiDataKitchen, pair: str) -> None:
"""
@@ -694,52 +699,51 @@ class IFreqaiModel(ABC):
for label in full_labels:
if self.dd.historic_predictions[dk.pair][label].dtype == object:
continue
f = spy.stats.norm.fit(
self.dd.historic_predictions[dk.pair][label].tail(num_candles))
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
return
def inference_timer(self, do: Literal['start', 'stop'] = 'start', pair: str = ''):
def inference_timer(self, do: Literal["start", "stop"] = "start", pair: str = ""):
"""
Timer designed to track the cumulative time spent in FreqAI for one pass through
the whitelist. This will check if the time spent is more than 1/4 the time
of a single candle, and if so, it will warn the user of degraded performance
"""
if do == 'start':
if do == "start":
self.pair_it += 1
self.begin_time = time.time()
elif do == 'stop':
elif do == "stop":
end = time.time()
time_spent = (end - self.begin_time)
if self.freqai_info.get('write_metrics_to_disk', False):
self.dd.update_metric_tracker('inference_time', time_spent, pair)
time_spent = end - self.begin_time
if self.freqai_info.get("write_metrics_to_disk", False):
self.dd.update_metric_tracker("inference_time", time_spent, pair)
self.inference_time += time_spent
if self.pair_it == self.total_pairs:
logger.info(
f'Total time spent inferencing pairlist {self.inference_time:.2f} seconds')
f"Total time spent inferencing pairlist {self.inference_time:.2f} seconds"
)
self.pair_it = 0
self.inference_time = 0
return
def train_timer(self, do: Literal['start', 'stop'] = 'start', pair: str = ''):
def train_timer(self, do: Literal["start", "stop"] = "start", pair: str = ""):
"""
Timer designed to track the cumulative time spent training the full pairlist in
FreqAI.
"""
if do == 'start':
if do == "start":
self.pair_it_train += 1
self.begin_time_train = time.time()
elif do == 'stop':
elif do == "stop":
end = time.time()
time_spent = (end - self.begin_time_train)
if self.freqai_info.get('write_metrics_to_disk', False):
time_spent = end - self.begin_time_train
if self.freqai_info.get("write_metrics_to_disk", False):
self.dd.collect_metrics(time_spent, pair)
self.train_time += time_spent
if self.pair_it_train == self.total_pairs:
logger.info(
f'Total time spent training pairlist {self.train_time:.2f} seconds')
logger.info(f"Total time spent training pairlist {self.train_time:.2f} seconds")
self.pair_it_train = 0
self.train_time = 0
return
@@ -759,14 +763,14 @@ class IFreqaiModel(ABC):
"""
current_pairlist = self.config.get("exchange", {}).get("pair_whitelist")
if not self.dd.pair_dict:
logger.info('Set fresh train queue from whitelist. '
f'Queue: {current_pairlist}')
logger.info("Set fresh train queue from whitelist. Queue: {current_pairlist}")
return deque(current_pairlist)
best_queue = deque()
pair_dict_sorted = sorted(self.dd.pair_dict.items(),
key=lambda k: k[1]['trained_timestamp'])
pair_dict_sorted = sorted(
self.dd.pair_dict.items(), key=lambda k: k[1]["trained_timestamp"]
)
for pair in pair_dict_sorted:
if pair[0] in current_pairlist:
best_queue.append(pair[0])
@@ -774,8 +778,9 @@ class IFreqaiModel(ABC):
if pair not in best_queue:
best_queue.appendleft(pair)
logger.info('Set existing queue from trained timestamps. '
f'Best approximation queue: {best_queue}')
logger.info(
"Set existing queue from trained timestamps. Best approximation queue: {best_queue}"
)
return best_queue
def cache_corr_pairlist_dfs(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
@@ -790,14 +795,15 @@ class IFreqaiModel(ABC):
if self.get_corr_dataframes:
self.corr_dataframes = dk.extract_corr_pair_columns_from_populated_indicators(dataframe)
if not self.corr_dataframes:
logger.warning("Couldn't cache corr_pair dataframes for improved performance. "
"Consider ensuring that the full coin/stake, e.g. XYZ/USD, "
"is included in the column names when you are creating features "
"in `feature_engineering_*` functions.")
logger.warning(
"Couldn't cache corr_pair dataframes for improved performance. "
"Consider ensuring that the full coin/stake, e.g. XYZ/USD, "
"is included in the column names when you are creating features "
"in `feature_engineering_*` functions."
)
self.get_corr_dataframes = not bool(self.corr_dataframes)
elif self.corr_dataframes:
dataframe = dk.attach_corr_pair_columns(
dataframe, self.corr_dataframes, dk.pair)
dataframe = dk.attach_corr_pair_columns(dataframe, self.corr_dataframes, dk.pair)
return dataframe
@@ -813,8 +819,9 @@ class IFreqaiModel(ABC):
self.pair_it = 1
self.current_candle = self.dd.current_candle
def ensure_data_exists(self, len_dataframe_backtest: int,
tr_backtest: TimeRange, pair: str) -> bool:
def ensure_data_exists(
self, len_dataframe_backtest: int, tr_backtest: TimeRange, pair: str
) -> bool:
"""
Check if the dataframe is empty, if not, report useful information to user.
:param len_dataframe_backtest: the len of backtesting dataframe
@@ -823,14 +830,17 @@ class IFreqaiModel(ABC):
:return: if the data exists or not
"""
if self.config.get("freqai_backtest_live_models", False) and len_dataframe_backtest == 0:
logger.info(f"No data found for pair {pair} from "
f"from {tr_backtest.start_fmt} to {tr_backtest.stop_fmt}. "
"Probably more than one training within the same candle period.")
logger.info(
f"No data found for pair {pair} from "
f"from {tr_backtest.start_fmt} to {tr_backtest.stop_fmt}. "
"Probably more than one training within the same candle period."
)
return False
return True
def log_backtesting_progress(self, tr_train: TimeRange, pair: str,
train_it: int, total_trains: int):
def log_backtesting_progress(
self, tr_train: TimeRange, pair: str, train_it: int, total_trains: int
):
"""
Log the backtesting progress so user knows how many pairs have been trained and
how many more pairs/trains remain.
@@ -857,30 +867,37 @@ class IFreqaiModel(ABC):
fit_live_predictions_candles = self.freqai_info.get("fit_live_predictions_candles", 0)
if fit_live_predictions_candles:
logger.info("Applying fit_live_predictions in backtesting")
label_columns = [col for col in dk.full_df.columns if (
col.startswith("&") and
not (col.startswith("&") and col.endswith("_mean")) and
not (col.startswith("&") and col.endswith("_std")) and
col not in self.dk.data["extra_returns_per_train"])
label_columns = [
col
for col in dk.full_df.columns
if (
col.startswith("&")
and not (col.startswith("&") and col.endswith("_mean"))
and not (col.startswith("&") and col.endswith("_std"))
and col not in self.dk.data["extra_returns_per_train"]
)
]
for index in range(len(dk.full_df)):
if index >= fit_live_predictions_candles:
self.dd.historic_predictions[self.dk.pair] = (
dk.full_df.iloc[index - fit_live_predictions_candles:index])
self.dd.historic_predictions[self.dk.pair] = dk.full_df.iloc[
index - fit_live_predictions_candles : index
]
self.fit_live_predictions(self.dk, self.dk.pair)
for label in label_columns:
if dk.full_df[label].dtype == object:
continue
if "labels_mean" in self.dk.data:
dk.full_df.at[index, f"{label}_mean"] = (
self.dk.data["labels_mean"][label])
dk.full_df.at[index, f"{label}_mean"] = self.dk.data["labels_mean"][
label
]
if "labels_std" in self.dk.data:
dk.full_df.at[index, f"{label}_std"] = self.dk.data["labels_std"][label]
for extra_col in self.dk.data["extra_returns_per_train"]:
dk.full_df.at[index, f"{extra_col}"] = (
self.dk.data["extra_returns_per_train"][extra_col])
dk.full_df.at[index, f"{extra_col}"] = self.dk.data[
"extra_returns_per_train"
][extra_col]
return
@@ -897,7 +914,8 @@ class IFreqaiModel(ABC):
if key_name not in self.metadata:
metadata = self.metadata
metadata[key_name] = int(
pd.to_datetime(live_dataframe.tail(1)["date"].values[0]).timestamp())
pd.to_datetime(live_dataframe.tail(1)["date"].values[0]).timestamp()
)
self.update_metadata(metadata)
def start_backtesting_from_historic_predictions(
@@ -913,19 +931,20 @@ class IFreqaiModel(ABC):
pair = metadata["pair"]
dk.return_dataframe = dataframe
saved_dataframe = self.dd.historic_predictions[pair]
columns_to_drop = list(set(saved_dataframe.columns).intersection(
dk.return_dataframe.columns))
columns_to_drop = list(
set(saved_dataframe.columns).intersection(dk.return_dataframe.columns)
)
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
dk.return_dataframe = pd.merge(
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
dk.return_dataframe, saved_dataframe, how="left", left_on="date", right_on="date_pred"
)
return dk
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
@abstractmethod
def train(self, unfiltered_df: DataFrame, pair: str,
dk: FreqaiDataKitchen, **kwargs) -> Any:
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahandler
for storing, saving, loading, and analyzing the data.
@@ -966,23 +985,25 @@ class IFreqaiModel(ABC):
"""
throw deprecation warning if this function is called
"""
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
logger.warning(
f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline"
)
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dd = dk.data_dictionary
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
dk.feature_pipeline.fit_transform(
dd["train_features"], dd["train_labels"], dd["train_weights"]
)
)
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
dk.feature_pipeline.transform(
dd["test_features"], dd["test_labels"], dd["test_weights"]
)
)
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
@@ -994,13 +1015,16 @@ class IFreqaiModel(ABC):
"""
throw deprecation warning if this function is called
"""
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
logger.warning(
f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline"
)
dd = dk.data_dictionary
dd["predict_features"], outliers, _ = dk.feature_pipeline.transform(
dd["predict_features"], outlier_check=True)
dd["predict_features"], outlier_check=True
)
if self.freqai_info.get("DI_threshold", 0) > 0:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:

View File

@@ -46,14 +46,19 @@ class CatboostClassifier(BaseClassifierModel):
cbr = CatBoostClassifier(
allow_writing_files=True,
loss_function='MultiClass',
loss_function="MultiClass",
train_dir=Path(dk.data_path),
**self.model_training_parameters,
)
init_model = self.get_init_model(dk.pair)
cbr.fit(X=train_data, eval_set=test_data, init_model=init_model,
log_cout=sys.stdout, log_cerr=sys.stderr)
cbr.fit(
X=train_data,
eval_set=test_data,
init_model=init_model,
log_cout=sys.stdout,
log_cerr=sys.stderr,
)
return cbr

Some files were not shown because too many files have changed in this diff Show More