mirror of
https://github.com/freqtrade/freqtrade.git
synced 2026-01-20 05:50:36 +00:00
Extract global cached_grouped_trades_per_pair into IStrategy
This commit is contained in:
@@ -7,20 +7,18 @@ import time
|
||||
import typing
|
||||
from collections import OrderedDict
|
||||
from datetime import datetime
|
||||
from typing import Dict, Tuple
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.constants import DEFAULT_ORDERFLOW_COLUMNS
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import DependencyException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Global cache dictionary
|
||||
cached_grouped_trades_per_pair: Dict[str, OrderedDict[Tuple[datetime, datetime], pd.DataFrame]] = {}
|
||||
|
||||
|
||||
def _init_dataframe_with_trades_columns(dataframe: pd.DataFrame):
|
||||
"""
|
||||
@@ -64,8 +62,11 @@ def _calculate_ohlcv_candle_start_and_end(df: pd.DataFrame, timeframe: str):
|
||||
|
||||
|
||||
def populate_dataframe_with_trades(
|
||||
pair: str, config, dataframe: pd.DataFrame, trades: pd.DataFrame
|
||||
):
|
||||
cached_grouped_trades: OrderedDict[Tuple[datetime, datetime], pd.DataFrame],
|
||||
config,
|
||||
dataframe: pd.DataFrame,
|
||||
trades: pd.DataFrame,
|
||||
) -> Tuple[pd.DataFrame, OrderedDict[Tuple[datetime, datetime], pd.DataFrame]]:
|
||||
"""
|
||||
Populates a dataframe with trades
|
||||
:param dataframe: Dataframe to populate
|
||||
@@ -74,15 +75,11 @@ def populate_dataframe_with_trades(
|
||||
"""
|
||||
timeframe = config["timeframe"]
|
||||
config_orderflow = config["orderflow"]
|
||||
cache_size = config_orderflow["cache_size"]
|
||||
|
||||
# create columns for trades
|
||||
_init_dataframe_with_trades_columns(dataframe)
|
||||
|
||||
try:
|
||||
cached_grouped_trades: OrderedDict[Tuple[datetime, datetime], pd.DataFrame] = (
|
||||
cached_grouped_trades_per_pair.get(pair, OrderedDict())
|
||||
)
|
||||
start_time = time.time()
|
||||
# calculate ohlcv candle start and end
|
||||
_calculate_ohlcv_candle_start_and_end(trades, timeframe)
|
||||
@@ -184,7 +181,10 @@ def populate_dataframe_with_trades(
|
||||
)
|
||||
|
||||
# Maintain cache size
|
||||
if len(cached_grouped_trades) > cache_size:
|
||||
if (
|
||||
config.get("runmode") in (RunMode.DRY_RUN, RunMode.LIVE)
|
||||
and len(cached_grouped_trades) > config_orderflow["cache_size"]
|
||||
):
|
||||
cached_grouped_trades.popitem(last=False)
|
||||
else:
|
||||
logger.debug(f"Found NO candles for trades starting with {candle_start}")
|
||||
@@ -196,16 +196,12 @@ def populate_dataframe_with_trades(
|
||||
dataframe["imbalances"] = imbalances_series
|
||||
dataframe["stacked_imbalances_bid"] = stacked_imbalances_bid_series
|
||||
dataframe["stacked_imbalances_ask"] = stacked_imbalances_ask_series
|
||||
# dereference old cache
|
||||
if pair in cached_grouped_trades_per_pair:
|
||||
del cached_grouped_trades_per_pair[pair]
|
||||
cached_grouped_trades_per_pair[pair] = cached_grouped_trades
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Error populating dataframe with trades")
|
||||
raise DependencyException(e)
|
||||
|
||||
return dataframe
|
||||
return dataframe, cached_grouped_trades
|
||||
|
||||
|
||||
def trades_to_volumeprofile_with_total_delta_bid_ask(
|
||||
|
||||
@@ -5,6 +5,7 @@ This module defines the interface to apply for strategies
|
||||
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import OrderedDict
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from math import isinf, isnan
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
@@ -140,6 +141,11 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# A self set parameter that represents the market direction. filled from configuration
|
||||
market_direction: MarketDirection = MarketDirection.NONE
|
||||
|
||||
# Global cache dictionary
|
||||
_cached_grouped_trades_per_pair: Dict[
|
||||
str, OrderedDict[Tuple[datetime, datetime], DataFrame]
|
||||
] = {}
|
||||
|
||||
def __init__(self, config: Config) -> None:
|
||||
self.config = config
|
||||
# Dict to determine if analysis is necessary
|
||||
@@ -1603,8 +1609,19 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
config = self.config
|
||||
config["timeframe"] = self.timeframe
|
||||
pair = metadata["pair"]
|
||||
# TODO: slice trades to size of dataframe for faster backtesting
|
||||
dataframe = populate_dataframe_with_trades(metadata["pair"], config, dataframe, trades)
|
||||
cached_grouped_trades: OrderedDict[Tuple[datetime, datetime], DataFrame] = (
|
||||
self._cached_grouped_trades_per_pair.get(pair, OrderedDict())
|
||||
)
|
||||
dataframe, cached_grouped_trades = populate_dataframe_with_trades(
|
||||
cached_grouped_trades, config, dataframe, trades
|
||||
)
|
||||
|
||||
# dereference old cache
|
||||
if pair in self._cached_grouped_trades_per_pair:
|
||||
del self._cached_grouped_trades_per_pair[pair]
|
||||
self._cached_grouped_trades_per_pair[pair] = cached_grouped_trades
|
||||
|
||||
logger.debug("Populated dataframe with trades.")
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
@@ -47,15 +49,6 @@ def public_trades_list_simple(testdatadir):
|
||||
return read_csv(testdatadir / "orderflow/public_trades_list_simple_example.csv").copy()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def reset_cache(request):
|
||||
import freqtrade.data.converter.orderflow as orderflow
|
||||
|
||||
global orderflow # noqa F811
|
||||
orderflow.cached_grouped_trades_per_pair = {}
|
||||
yield
|
||||
|
||||
|
||||
def test_public_trades_columns_before_change(
|
||||
populate_dataframe_with_trades_dataframe, populate_dataframe_with_trades_trades
|
||||
):
|
||||
@@ -80,7 +73,7 @@ def test_public_trades_columns_before_change(
|
||||
|
||||
|
||||
def test_public_trades_mock_populate_dataframe_with_trades__check_orderflow(
|
||||
reset_cache, populate_dataframe_with_trades_dataframe, populate_dataframe_with_trades_trades
|
||||
populate_dataframe_with_trades_dataframe, populate_dataframe_with_trades_trades
|
||||
):
|
||||
"""
|
||||
Tests the `populate_dataframe_with_trades` function's order flow calculation.
|
||||
@@ -108,7 +101,7 @@ def test_public_trades_mock_populate_dataframe_with_trades__check_orderflow(
|
||||
},
|
||||
}
|
||||
# Apply the function to populate the data frame with order flow data
|
||||
df = populate_dataframe_with_trades("BTC/UDST", config, dataframe, trades)
|
||||
df, _ = populate_dataframe_with_trades(OrderedDict(), config, dataframe, trades)
|
||||
# Extract results from the first row of the DataFrame
|
||||
results = df.iloc[0]
|
||||
t = results["trades"]
|
||||
@@ -179,7 +172,7 @@ def test_public_trades_mock_populate_dataframe_with_trades__check_orderflow(
|
||||
|
||||
|
||||
def test_public_trades_trades_mock_populate_dataframe_with_trades__check_trades(
|
||||
reset_cache, populate_dataframe_with_trades_dataframe, populate_dataframe_with_trades_trades
|
||||
populate_dataframe_with_trades_dataframe, populate_dataframe_with_trades_trades
|
||||
):
|
||||
"""
|
||||
Tests the `populate_dataframe_with_trades` function's handling of trades,
|
||||
@@ -221,7 +214,7 @@ def test_public_trades_trades_mock_populate_dataframe_with_trades__check_trades(
|
||||
}
|
||||
|
||||
# Populate the DataFrame with trades and order flow data
|
||||
df = populate_dataframe_with_trades("BTC/UDST", config, dataframe, trades)
|
||||
df, _ = populate_dataframe_with_trades(OrderedDict(), config, dataframe, trades)
|
||||
|
||||
# --- DataFrame and Trade Data Validation ---
|
||||
|
||||
@@ -387,8 +380,8 @@ def test_public_trades_config_max_trades(
|
||||
},
|
||||
}
|
||||
|
||||
df = populate_dataframe_with_trades(
|
||||
"BTC/UDST", default_conf | orderflow_config, dataframe, trades
|
||||
df, _ = populate_dataframe_with_trades(
|
||||
OrderedDict(), default_conf | orderflow_config, dataframe, trades
|
||||
)
|
||||
assert df.delta.count() == 1
|
||||
|
||||
|
||||
Reference in New Issue
Block a user