mirror of
https://github.com/freqtrade/freqtrade.git
synced 2026-01-20 14:00:38 +00:00
fix docs
This commit is contained in:
@@ -16,6 +16,7 @@ usage: freqtrade hyperopt [-h] [-v] [--no-color] [--logfile FILE] [-V]
|
||||
[--random-state INT] [--min-trades INT]
|
||||
[--hyperopt-loss NAME] [--disable-param-export]
|
||||
[--ignore-missing-spaces] [--analyze-per-epoch]
|
||||
[--early-stop INT]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
@@ -87,6 +88,8 @@ options:
|
||||
Suppress errors for any requested Hyperopt spaces that
|
||||
do not contain any parameters.
|
||||
--analyze-per-epoch Run populate_indicators once per epoch.
|
||||
--early-stop INT Early stop hyperopt if no improvement after (default:
|
||||
0) epochs.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
|
||||
@@ -490,7 +490,7 @@ freqtrade hyperopt --config config.json --hyperopt-loss <hyperoptlossname> --str
|
||||
```
|
||||
|
||||
The `-e` option will set how many evaluations hyperopt will do. Since hyperopt uses Bayesian search, running too many epochs at once may not produce greater results. Experience has shown that best results are usually not improving much after 500-1000 epochs.
|
||||
The `-es` option will set after how many epochs with no improvements hyperopt will stop. A good value is 20-30% of the total epochs. Early stop is by default disabled (`-es=0`)
|
||||
The `--early-stop` option will set after how many epochs with no improvements hyperopt will stop. A good value is 20-30% of the total epochs. Early stop is by default disabled (`--early-stop=0`)
|
||||
|
||||
Doing multiple runs (executions) with a few 1000 epochs and different random state will most likely produce different results.
|
||||
|
||||
|
||||
@@ -263,7 +263,6 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
default=constants.HYPEROPT_EPOCH,
|
||||
),
|
||||
"early_stop": Arg(
|
||||
"-es",
|
||||
"--early-stop",
|
||||
help="Early stop hyperopt if no improvement after (default: %(default)d) epochs.",
|
||||
type=check_int_positive,
|
||||
|
||||
@@ -335,6 +335,7 @@ class Configuration:
|
||||
]
|
||||
self._args_to_config_loop(config, configurations)
|
||||
if self.args.get("early_stop", 0) > 0:
|
||||
config.update({"early_stop": self.args["early_stop"]})
|
||||
logger.info(
|
||||
f"Parameter --early-stop detected ... Will early stop hyperopt if no improvement "
|
||||
f"after {self.args.get('early_stop')} epochs ..."
|
||||
|
||||
@@ -318,7 +318,7 @@ class Hyperopt:
|
||||
gc.collect()
|
||||
|
||||
if (
|
||||
self.hyperopter.es_batches > 0
|
||||
self.hyperopter.es_epochs > 0
|
||||
and self.hyperopter.es_terminator.should_terminate(self.opt)
|
||||
):
|
||||
logger.info(f"Early stopping after {(i + 1) * jobs} epochs")
|
||||
|
||||
@@ -106,7 +106,6 @@ class HyperOptimizer:
|
||||
self.market_change = 0.0
|
||||
|
||||
self.es_epochs = config.get("early_stop", 0)
|
||||
self.es_batches = self.es_epochs // config.get("hyperopt_jobs", 1)
|
||||
if self.es_epochs > 0 and self.es_epochs < 0.2 * config.get("epochs", 0):
|
||||
logger.warning(f"Early stop epochs {self.es_epochs} lower than 20% of total epochs")
|
||||
|
||||
@@ -430,10 +429,10 @@ class HyperOptimizer:
|
||||
else:
|
||||
sampler = o_sampler
|
||||
|
||||
if self.es_batches > 0:
|
||||
if self.es_epochs > 0:
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(action="ignore", category=ExperimentalWarning)
|
||||
self.es_terminator = Terminator(BestValueStagnationEvaluator(self.es_batches))
|
||||
self.es_terminator = Terminator(BestValueStagnationEvaluator(self.es_epochs))
|
||||
|
||||
logger.info(f"Using optuna sampler {o_sampler}.")
|
||||
return optuna.create_study(sampler=sampler, direction="minimize")
|
||||
|
||||
Reference in New Issue
Block a user