Add trades-generator

This commit is contained in:
Matthias
2024-01-23 19:22:38 +01:00
parent 1ae3b1e622
commit 267f2e352e

View File

@@ -3,7 +3,7 @@ import json
import logging
import re
from copy import deepcopy
from datetime import timedelta
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Optional
from unittest.mock import MagicMock, Mock, PropertyMock
@@ -22,8 +22,7 @@ from freqtrade.exchange import Exchange, timeframe_to_minutes, timeframe_to_seco
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import LocalTrade, Order, Trade, init_db
from freqtrade.resolvers import ExchangeResolver
from freqtrade.util import dt_ts
from freqtrade.util.datetime_helpers import dt_now
from freqtrade.util import dt_now, dt_ts
from freqtrade.worker import Worker
from tests.conftest_trades import (leverage_trade, mock_trade_1, mock_trade_2, mock_trade_3,
mock_trade_4, mock_trade_5, mock_trade_6, short_trade)
@@ -106,6 +105,40 @@ def get_args(args):
return Arguments(args).get_parsed_arg()
def generate_trades_history(n_rows, start_date: Optional[datetime] = None, days=5):
np.random.seed(42)
if not start_date:
start_date = datetime(2020, 1, 1, tzinfo=timezone.utc)
# Generate random data
end_date = start_date + timedelta(days=days)
_start_timestamp = start_date.timestamp()
_end_timestamp = pd.to_datetime(end_date).timestamp()
random_timestamps_in_seconds = np.random.uniform(_start_timestamp, _end_timestamp, n_rows)
timestamp = pd.to_datetime(random_timestamps_in_seconds, unit='s')
id = [f'a{np.random.randint(1e6, 1e7-1)}cd{np.random.randint(100, 999)}' for _ in range(n_rows)]
side = np.random.choice(['buy', 'sell'], n_rows)
# Initial price and subsequent changes
initial_price = 0.019626
price_changes = np.random.normal(0, initial_price * 0.05, n_rows)
price = np.cumsum(np.concatenate(([initial_price], price_changes)))[:n_rows]
amount = np.random.uniform(0.011, 20, n_rows)
cost = price * amount
# Create DataFrame
df = pd.DataFrame({'timestamp': timestamp, 'id': id, 'type': None, 'side': side,
'price': price, 'amount': amount, 'cost': cost})
df['date'] = pd.to_datetime(df['timestamp'], unit='ms', utc=True)
df = df.sort_values('timestamp').reset_index(drop=True)
assert list(df.columns) == constants.DEFAULT_TRADES_COLUMNS + ['date']
return df
def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
np.random.seed(42)