mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-11-29 08:33:07 +00:00
feat: remove hdf5 datahandler, raise exception when still configured
This commit is contained in:
@@ -1,181 +0,0 @@
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HDF5DataHandler(IDataHandler):
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
def ohlcv_store(
|
||||
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType
|
||||
) -> None:
|
||||
"""
|
||||
Store data in hdf5 file.
|
||||
:param pair: Pair - used to generate filename
|
||||
:param timeframe: Timeframe - used to generate filename
|
||||
:param data: Dataframe containing OHLCV data
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: None
|
||||
"""
|
||||
key = self._pair_ohlcv_key(pair, timeframe)
|
||||
_data = data.copy()
|
||||
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
|
||||
self.create_dir_if_needed(filename)
|
||||
|
||||
_data.loc[:, self._columns].to_hdf(
|
||||
filename,
|
||||
key=key,
|
||||
mode="a",
|
||||
complevel=9,
|
||||
complib="blosc",
|
||||
format="table",
|
||||
data_columns=["date"],
|
||||
)
|
||||
|
||||
def _ohlcv_load(
|
||||
self, pair: str, timeframe: str, timerange: TimeRange | None, candle_type: CandleType
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
Implements the loading and conversion to a Pandas dataframe.
|
||||
Timerange trimming and dataframe validation happens outside of this method.
|
||||
:param pair: Pair to load data
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange.
|
||||
Optionally implemented by subclasses to avoid loading
|
||||
all data where possible.
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: DataFrame with ohlcv data, or empty DataFrame
|
||||
"""
|
||||
key = self._pair_ohlcv_key(pair, timeframe)
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type=candle_type)
|
||||
|
||||
if not filename.exists():
|
||||
# Fallback mode for 1M files
|
||||
filename = self._pair_data_filename(
|
||||
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True
|
||||
)
|
||||
if not filename.exists():
|
||||
return pd.DataFrame(columns=self._columns)
|
||||
try:
|
||||
where = []
|
||||
if timerange:
|
||||
if timerange.starttype == "date":
|
||||
where.append(f"date >= Timestamp({timerange.startts * 1e9})")
|
||||
if timerange.stoptype == "date":
|
||||
where.append(f"date <= Timestamp({timerange.stopts * 1e9})")
|
||||
|
||||
pairdata = pd.read_hdf(filename, key=key, mode="r", where=where)
|
||||
|
||||
if list(pairdata.columns) != self._columns:
|
||||
raise ValueError("Wrong dataframe format")
|
||||
pairdata = pairdata.astype(
|
||||
dtype={
|
||||
"open": "float",
|
||||
"high": "float",
|
||||
"low": "float",
|
||||
"close": "float",
|
||||
"volume": "float",
|
||||
}
|
||||
)
|
||||
pairdata = pairdata.reset_index(drop=True)
|
||||
return pairdata
|
||||
except ValueError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"Error loading data from {filename}. Exception: {e}. Returning empty dataframe."
|
||||
)
|
||||
return pd.DataFrame(columns=self._columns)
|
||||
|
||||
def ohlcv_append(
|
||||
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType
|
||||
) -> None:
|
||||
"""
|
||||
Append data to existing data structures
|
||||
:param pair: Pair
|
||||
:param timeframe: Timeframe this ohlcv data is for
|
||||
:param data: Data to append.
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_store(self, pair: str, data: pd.DataFrame, trading_mode: TradingMode) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
"""
|
||||
key = self._pair_trades_key(pair)
|
||||
|
||||
data.to_hdf(
|
||||
self._pair_trades_filename(self._datadir, pair, trading_mode),
|
||||
key=key,
|
||||
mode="a",
|
||||
complevel=9,
|
||||
complib="blosc",
|
||||
format="table",
|
||||
data_columns=["timestamp"],
|
||||
)
|
||||
|
||||
def trades_append(self, pair: str, data: pd.DataFrame):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: Dataframe containing trades
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(
|
||||
self, pair: str, trading_mode: TradingMode, timerange: TimeRange | None = None
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Load a pair from h5 file.
|
||||
:param pair: Load trades for this pair
|
||||
:param trading_mode: Trading mode to use (used to determine the filename)
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: Dataframe containing trades
|
||||
"""
|
||||
key = self._pair_trades_key(pair)
|
||||
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
|
||||
|
||||
if not filename.exists():
|
||||
return pd.DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
||||
where = []
|
||||
if timerange:
|
||||
if timerange.starttype == "date":
|
||||
where.append(f"timestamp >= {timerange.startts * 1e3}")
|
||||
if timerange.stoptype == "date":
|
||||
where.append(f"timestamp < {timerange.stopts * 1e3}")
|
||||
|
||||
trades: pd.DataFrame = pd.read_hdf(filename, key=key, mode="r", where=where)
|
||||
trades[["id", "type"]] = trades[["id", "type"]].replace({np.nan: None})
|
||||
return trades
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
return "h5"
|
||||
|
||||
@classmethod
|
||||
def _pair_ohlcv_key(cls, pair: str, timeframe: str) -> str:
|
||||
# Escape futures pairs to avoid warnings
|
||||
pair_esc = pair.replace(":", "_")
|
||||
return f"{pair_esc}/ohlcv/tf_{timeframe}"
|
||||
|
||||
@classmethod
|
||||
def _pair_trades_key(cls, pair: str) -> str:
|
||||
return f"{pair}/trades"
|
||||
@@ -23,6 +23,7 @@ from freqtrade.data.converter import (
|
||||
trim_dataframe,
|
||||
)
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
|
||||
|
||||
@@ -549,16 +550,13 @@ def get_datahandlerclass(datatype: str) -> type[IDataHandler]:
|
||||
|
||||
return JsonGzDataHandler
|
||||
elif datatype == "hdf5":
|
||||
from .hdf5datahandler import HDF5DataHandler
|
||||
|
||||
logger.warning(
|
||||
"DEPRECATED: The hdf5 dataformat is deprecated and will be removed in the "
|
||||
"next release. "
|
||||
"Please use the convert-data command to convert your data to a supported format."
|
||||
raise OperationalException(
|
||||
"DEPRECATED: The hdf5 dataformat is deprecated and has been removed in 2025.1. "
|
||||
"Please downgrade to 2024.12 and use the convert-data command to convert your data "
|
||||
"to a supported format."
|
||||
"We recommend using the feather format, as it is faster and is more space-efficient."
|
||||
)
|
||||
|
||||
return HDF5DataHandler
|
||||
elif datatype == "feather":
|
||||
from .featherdatahandler import FeatherDataHandler
|
||||
|
||||
|
||||
Reference in New Issue
Block a user