mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-11-29 08:33:07 +00:00
orderflow: clean up populate_dataframe_with_trades code
This commit is contained in:
@@ -20,16 +20,25 @@ def _init_dataframe_with_trades_columns(dataframe: pd.DataFrame):
|
||||
Populates a dataframe with trades columns
|
||||
:param dataframe: Dataframe to populate
|
||||
"""
|
||||
dataframe["trades"] = dataframe.apply(lambda _: [], axis=1)
|
||||
dataframe["orderflow"] = dataframe.apply(lambda _: {}, axis=1)
|
||||
# Initialize columns with appropriate dtypes
|
||||
dataframe["trades"] = np.nan
|
||||
dataframe["orderflow"] = np.nan
|
||||
dataframe["imbalances"] = np.nan
|
||||
dataframe["stacked_imbalances_bid"] = np.nan
|
||||
dataframe["stacked_imbalances_ask"] = np.nan
|
||||
dataframe["max_delta"] = np.nan
|
||||
dataframe["min_delta"] = np.nan
|
||||
dataframe["bid"] = np.nan
|
||||
dataframe["ask"] = np.nan
|
||||
dataframe["delta"] = np.nan
|
||||
dataframe["min_delta"] = np.nan
|
||||
dataframe["max_delta"] = np.nan
|
||||
dataframe["total_trades"] = np.nan
|
||||
dataframe["stacked_imbalances_bid"] = np.nan
|
||||
dataframe["stacked_imbalances_ask"] = np.nan
|
||||
|
||||
# Ensure the 'trades' column is of object type
|
||||
dataframe["trades"] = dataframe["trades"].astype(object)
|
||||
dataframe["orderflow"] = dataframe["orderflow"].astype(object)
|
||||
dataframe["imbalances"] = dataframe["imbalances"].astype(object)
|
||||
dataframe["stacked_imbalances_bid"] = dataframe["stacked_imbalances_bid"].astype(object)
|
||||
dataframe["stacked_imbalances_ask"] = dataframe["stacked_imbalances_ask"].astype(object)
|
||||
|
||||
|
||||
def _calculate_ohlcv_candle_start_and_end(df: pd.DataFrame, timeframe: str):
|
||||
@@ -61,7 +70,6 @@ def populate_dataframe_with_trades(
|
||||
|
||||
# create columns for trades
|
||||
_init_dataframe_with_trades_columns(dataframe)
|
||||
df = dataframe.copy()
|
||||
|
||||
try:
|
||||
start_time = time.time()
|
||||
@@ -70,18 +78,23 @@ def populate_dataframe_with_trades(
|
||||
|
||||
# get date of earliest max_candles candle
|
||||
max_candles = config_orderflow["max_candles"]
|
||||
start_date = df.tail(max_candles).date.iat[0]
|
||||
start_date = dataframe.tail(max_candles).date.iat[0]
|
||||
# slice of trades that are before current ohlcv candles to make groupby faster
|
||||
trades = trades.loc[trades.candle_start >= start_date]
|
||||
trades.reset_index(inplace=True, drop=True)
|
||||
|
||||
# group trades by candle start
|
||||
trades_grouped_by_candle_start = trades.groupby("candle_start", group_keys=False)
|
||||
# Create Series to hold complex data
|
||||
trades_series = pd.Series(index=dataframe.index, dtype=object)
|
||||
orderflow_series = pd.Series(index=dataframe.index, dtype=object)
|
||||
imbalances_series = pd.Series(index=dataframe.index, dtype=object)
|
||||
stacked_imbalances_bid_series = pd.Series(index=dataframe.index, dtype=object)
|
||||
stacked_imbalances_ask_series = pd.Series(index=dataframe.index, dtype=object)
|
||||
|
||||
for candle_start in trades_grouped_by_candle_start.groups:
|
||||
trades_grouped_df = trades[candle_start == trades["candle_start"]]
|
||||
is_between = candle_start == df["date"]
|
||||
if np.any(is_between == True): # noqa: E712
|
||||
for candle_start, trades_grouped_df in trades_grouped_by_candle_start:
|
||||
is_between = candle_start == dataframe["date"]
|
||||
if is_between.any():
|
||||
from freqtrade.exchange import timeframe_to_next_date
|
||||
|
||||
candle_next = timeframe_to_next_date(timeframe, candle_start)
|
||||
@@ -93,32 +106,34 @@ def populate_dataframe_with_trades(
|
||||
f"might be unfinished, because no finished trades at {candle_next}"
|
||||
)
|
||||
|
||||
# add trades to each candle
|
||||
df.loc[is_between, "trades"] = df.loc[is_between, "trades"].apply(
|
||||
lambda _: trades_grouped_df
|
||||
)
|
||||
# calculate orderflow for each candle
|
||||
df.loc[is_between, "orderflow"] = df.loc[is_between, "orderflow"].apply(
|
||||
lambda _: trades_to_volumeprofile_with_total_delta_bid_ask(
|
||||
trades_grouped_df, scale=config_orderflow["scale"]
|
||||
)
|
||||
)
|
||||
# calculate imbalances for each candle's orderflow
|
||||
df.loc[is_between, "imbalances"] = df.loc[is_between, "orderflow"].apply(
|
||||
lambda x: trades_orderflow_to_imbalances(
|
||||
x,
|
||||
imbalance_ratio=config_orderflow["imbalance_ratio"],
|
||||
imbalance_volume=config_orderflow["imbalance_volume"],
|
||||
)
|
||||
)
|
||||
indices = dataframe.index[is_between].tolist()
|
||||
# Add trades to each candle
|
||||
trades_series.loc[indices] = [trades_grouped_df] * len(indices)
|
||||
|
||||
_stacked_imb = config_orderflow["stacked_imbalance_range"]
|
||||
df.loc[is_between, "stacked_imbalances_bid"] = df.loc[
|
||||
is_between, "imbalances"
|
||||
].apply(lambda x: stacked_imbalance_bid(x, stacked_imbalance_range=_stacked_imb))
|
||||
df.loc[is_between, "stacked_imbalances_ask"] = df.loc[
|
||||
is_between, "imbalances"
|
||||
].apply(lambda x: stacked_imbalance_ask(x, stacked_imbalance_range=_stacked_imb))
|
||||
# Calculate orderflow for each candle
|
||||
orderflow = trades_to_volumeprofile_with_total_delta_bid_ask(
|
||||
trades_grouped_df, scale=config_orderflow["scale"]
|
||||
)
|
||||
orderflow_series.loc[indices] = [orderflow] * len(indices)
|
||||
# Calculate imbalances for each candle's orderflow
|
||||
imbalances = trades_orderflow_to_imbalances(
|
||||
orderflow,
|
||||
imbalance_ratio=config_orderflow["imbalance_ratio"],
|
||||
imbalance_volume=config_orderflow["imbalance_volume"],
|
||||
)
|
||||
imbalances_series.loc[indices] = [imbalances] * len(indices)
|
||||
|
||||
stacked_imbalance_range = config_orderflow["stacked_imbalance_range"]
|
||||
stacked_imbalances_bid_series.loc[indices] = [
|
||||
stacked_imbalance_bid(
|
||||
imbalances, stacked_imbalance_range=stacked_imbalance_range
|
||||
)
|
||||
] * len(indices)
|
||||
stacked_imbalances_ask_series.loc[indices] = [
|
||||
stacked_imbalance_ask(
|
||||
imbalances, stacked_imbalance_range=stacked_imbalance_range
|
||||
)
|
||||
] * len(indices)
|
||||
|
||||
bid = np.where(
|
||||
trades_grouped_df["side"].str.contains("sell"),
|
||||
@@ -131,34 +146,30 @@ def populate_dataframe_with_trades(
|
||||
0,
|
||||
)
|
||||
deltas_per_trade = ask - bid
|
||||
min_delta = 0
|
||||
max_delta = 0
|
||||
delta = 0
|
||||
for d in deltas_per_trade:
|
||||
delta += d
|
||||
if delta > max_delta:
|
||||
max_delta = delta
|
||||
if delta < min_delta:
|
||||
min_delta = delta
|
||||
df.loc[is_between, "max_delta"] = max_delta
|
||||
df.loc[is_between, "min_delta"] = min_delta
|
||||
min_delta = deltas_per_trade.cumsum().min()
|
||||
max_delta = deltas_per_trade.cumsum().max()
|
||||
dataframe.loc[indices, "max_delta"] = max_delta
|
||||
dataframe.loc[indices, "min_delta"] = min_delta
|
||||
|
||||
df.loc[is_between, "bid"] = np.where(
|
||||
trades_grouped_df["side"].str.contains("sell"), trades_grouped_df["amount"], 0
|
||||
).sum()
|
||||
df.loc[is_between, "ask"] = np.where(
|
||||
trades_grouped_df["side"].str.contains("buy"), trades_grouped_df["amount"], 0
|
||||
).sum()
|
||||
df.loc[is_between, "delta"] = df.loc[is_between, "ask"] - df.loc[is_between, "bid"]
|
||||
df.loc[is_between, "total_trades"] = len(trades_grouped_df)
|
||||
# copy to avoid memory leaks
|
||||
dataframe.loc[is_between] = df.loc[is_between].copy()
|
||||
dataframe.loc[indices, "bid"] = bid.sum()
|
||||
dataframe.loc[indices, "ask"] = ask.sum()
|
||||
dataframe.loc[indices, "delta"] = (
|
||||
dataframe.loc[indices, "ask"] - dataframe.loc[indices, "bid"]
|
||||
)
|
||||
dataframe.loc[indices, "total_trades"] = len(trades_grouped_df)
|
||||
else:
|
||||
logger.debug(f"Found NO candles for trades starting with {candle_start}")
|
||||
logger.debug(f"trades.groups_keys in {time.time() - start_time} seconds")
|
||||
|
||||
# Merge the complex data Series back into the DataFrame
|
||||
dataframe["trades"] = trades_series
|
||||
dataframe["orderflow"] = orderflow_series
|
||||
dataframe["imbalances"] = imbalances_series
|
||||
dataframe["stacked_imbalances_bid"] = stacked_imbalances_bid_series
|
||||
dataframe["stacked_imbalances_ask"] = stacked_imbalances_ask_series
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Error populating dataframe with trades:", e)
|
||||
logger.exception("Error populating dataframe with trades")
|
||||
raise DependencyException(e)
|
||||
|
||||
return dataframe
|
||||
|
||||
@@ -227,14 +227,15 @@ def test_public_trades_trades_mock_populate_dataframe_with_trades__check_trades(
|
||||
"volume",
|
||||
"trades",
|
||||
"orderflow",
|
||||
"imbalances",
|
||||
"stacked_imbalances_bid",
|
||||
"stacked_imbalances_ask",
|
||||
"max_delta",
|
||||
"min_delta",
|
||||
"bid",
|
||||
"ask",
|
||||
"delta",
|
||||
"min_delta",
|
||||
"max_delta",
|
||||
"total_trades",
|
||||
"stacked_imbalances_bid",
|
||||
"stacked_imbalances_ask",
|
||||
]
|
||||
# Assert delta, bid, and ask values
|
||||
assert -50.519 == pytest.approx(row["delta"])
|
||||
|
||||
Reference in New Issue
Block a user