mirror of
https://github.com/coleam00/ai-agents-masterclass.git
synced 2025-11-29 08:33:16 +00:00
119 lines
4.7 KiB
Python
119 lines
4.7 KiB
Python
from langchain_core.messages import SystemMessage, AIMessage, ToolMessage, HumanMessage
|
|
from langchain_anthropic import ChatAnthropic
|
|
from langchain_openai import ChatOpenAI
|
|
from dotenv import load_dotenv
|
|
from datetime import datetime
|
|
import streamlit as st
|
|
import asyncio
|
|
import json
|
|
import os
|
|
|
|
from tools import available_functions
|
|
|
|
load_dotenv()
|
|
model = os.getenv('LLM_MODEL', 'gpt-4o')
|
|
|
|
system_message = f"""
|
|
You are a personal assistant who helps with research, managing Google Drive, and managing Slack.
|
|
You never give IDs to the user since those are just for you to keep track of.
|
|
The link to any Google Doc is: https://docs.google.com/document/d/[document ID]
|
|
The current date is: {datetime.now().date()}
|
|
"""
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~ AI Prompting Function ~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
def get_chunk_text(chunk):
|
|
response_content = ""
|
|
chunk_content = chunk.content
|
|
if isinstance(chunk_content, str):
|
|
response_content += chunk_content
|
|
elif isinstance(chunk_content, list):
|
|
for chunk_text in chunk_content:
|
|
if "text" in chunk_text:
|
|
response_content += chunk_text["text"]
|
|
|
|
return response_content
|
|
|
|
def prompt_ai(messages):
|
|
# First, prompt the AI with the latest user message
|
|
tools = [tool for _, tool in available_functions.items()]
|
|
n8n_chatbot = ChatOpenAI(model=model) if "gpt" in model.lower() else ChatAnthropic(model=model)
|
|
n8n_chatbot_with_tools = n8n_chatbot.bind_tools(tools)
|
|
|
|
stream = n8n_chatbot_with_tools.stream(messages)
|
|
first = True
|
|
for chunk in stream:
|
|
if first:
|
|
gathered = chunk
|
|
first = False
|
|
else:
|
|
gathered = gathered + chunk
|
|
|
|
yield get_chunk_text(chunk)
|
|
|
|
has_tool_calls = len(gathered.tool_calls) > 0
|
|
|
|
# Second, see if the AI decided it needs to invoke a tool
|
|
if has_tool_calls:
|
|
# Add the tool request to the list of messages so the AI knows later it invoked the tool
|
|
messages.append(gathered)
|
|
|
|
# If the AI decided to invoke a tool, invoke it
|
|
# For each tool the AI wanted to call, call it and add the tool result to the list of messages
|
|
for tool_call in gathered.tool_calls:
|
|
tool_name = tool_call["name"].lower()
|
|
selected_tool = available_functions[tool_name]
|
|
print(f"\nInvoking tool: {tool_call['name']} with args {tool_call['args']}")
|
|
tool_output = selected_tool.invoke(tool_call["args"])
|
|
print(f"Result of invoking tool: {tool_output}\n")
|
|
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
|
|
|
|
# Call the AI again so it can produce a response with the result of calling the tool(s)
|
|
additional_stream = prompt_ai(messages)
|
|
for additional_chunk in additional_stream:
|
|
yield additional_chunk
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~ Main Function with UI Creation ~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
async def main():
|
|
st.title("n8n LangChain Agent")
|
|
|
|
# Initialize chat history
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = [
|
|
SystemMessage(content=system_message)
|
|
]
|
|
|
|
# Display chat messages from history on app rerun
|
|
for message in st.session_state.messages:
|
|
message_json = json.loads(message.json())
|
|
message_type = message_json["type"]
|
|
if message_type in ["human", "ai", "system"]:
|
|
with st.chat_message(message_type):
|
|
st.markdown(message_json["content"])
|
|
|
|
# React to user input
|
|
if prompt := st.chat_input("What would you like to do today?"):
|
|
# Display user message in chat message container
|
|
st.chat_message("user").markdown(prompt)
|
|
# Add user message to chat history
|
|
st.session_state.messages.append(HumanMessage(content=prompt))
|
|
|
|
# Display assistant response in chat message container
|
|
with st.chat_message("assistant"):
|
|
stream = prompt_ai(st.session_state.messages)
|
|
response = st.write_stream(stream)
|
|
|
|
st.session_state.messages.append(AIMessage(content=response))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |