mirror of
https://github.com/coleam00/ai-agents-masterclass.git
synced 2025-11-29 00:23:14 +00:00
347 lines
15 KiB
Python
347 lines
15 KiB
Python
import asana
|
|
from asana.rest import ApiException
|
|
from dotenv import load_dotenv
|
|
from datetime import datetime
|
|
from typing import List
|
|
import streamlit as st
|
|
import uuid
|
|
import json
|
|
import os
|
|
|
|
from langchain_core.tools import tool
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain_core.output_parsers import JsonOutputParser
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
from langchain_core.messages import AIMessage, HumanMessage
|
|
|
|
load_dotenv()
|
|
|
|
model = os.getenv('LLM_MODEL', 'o1-mini')
|
|
show_thoughts = os.getenv('SHOW_THOUGHTS', 'true').lower() in ["true", "yes", "1"]
|
|
|
|
configuration = asana.Configuration()
|
|
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
|
|
api_client = asana.ApiClient(configuration)
|
|
|
|
# create an instance of the different Asana API classes
|
|
projects_api_instance = asana.ProjectsApi(api_client)
|
|
tasks_api_instance = asana.TasksApi(api_client)
|
|
|
|
workspace_gid = os.getenv("ASANA_WORKPLACE_ID", "")
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~ AI Agent Tool Functions ~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
@tool
|
|
def create_asana_task(task_name, project_gid, due_on="today"):
|
|
"""
|
|
Creates a task in Asana given the name of the task and when it is due
|
|
|
|
Example call:
|
|
|
|
create_asana_task("Test Task", "2024-06-24")
|
|
Args:
|
|
task_name (str): The name of the task in Asana
|
|
project_gid (str): The ID of the project to add the task to
|
|
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
|
|
Returns:
|
|
str: The API response of adding the task to Asana or an error message if the API call threw an error
|
|
"""
|
|
if due_on == "today":
|
|
due_on = str(datetime.now().date())
|
|
|
|
task_body = {
|
|
"data": {
|
|
"name": task_name,
|
|
"due_on": due_on,
|
|
"projects": [project_gid]
|
|
}
|
|
}
|
|
|
|
try:
|
|
api_response = tasks_api_instance.create_task(task_body, {})
|
|
return json.dumps(api_response, indent=2)
|
|
except ApiException as e:
|
|
return f"Exception when calling TasksApi->create_task: {e}"
|
|
|
|
@tool
|
|
def get_asana_projects():
|
|
"""
|
|
Gets all of the projects in the user's Asana workspace
|
|
|
|
Returns:
|
|
str: The API response from getting the projects or an error message if the projects couldn't be fetched.
|
|
The API response is an array of project objects, where each project object looks like:
|
|
{'gid': '1207789085525921', 'name': 'Project Name', 'resource_type': 'project'}
|
|
"""
|
|
opts = {
|
|
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
|
|
'workspace': workspace_gid, # str | The workspace or organization to filter projects on.
|
|
'archived': False # bool | Only return projects whose `archived` field takes on the value of this parameter.
|
|
}
|
|
|
|
try:
|
|
api_response = projects_api_instance.get_projects(opts)
|
|
return json.dumps(list(api_response), indent=2)
|
|
except ApiException as e:
|
|
return "Exception when calling ProjectsApi->create_project: %s\n" % e
|
|
|
|
@tool
|
|
def create_asana_project(project_name, due_on=None):
|
|
"""
|
|
Creates a project in Asana given the name of the project and optionally when it is due
|
|
|
|
Example call:
|
|
|
|
create_asana_project("Test Project", "2024-06-24")
|
|
Args:
|
|
project_name (str): The name of the project in Asana
|
|
due_on (str): The date the project is due in the format YYYY-MM-DD. If not supplied, the project is not given a due date
|
|
Returns:
|
|
str: The API response of adding the project to Asana or an error message if the API call threw an error
|
|
"""
|
|
body = {
|
|
"data": {
|
|
"name": project_name, "due_on": due_on, "workspace": workspace_gid
|
|
}
|
|
} # dict | The project to create.
|
|
|
|
try:
|
|
# Create a project
|
|
api_response = projects_api_instance.create_project(body, {})
|
|
return json.dumps(api_response, indent=2)
|
|
except ApiException as e:
|
|
return "Exception when calling ProjectsApi->create_project: %s\n" % e
|
|
|
|
@tool
|
|
def get_asana_tasks(project_gid):
|
|
"""
|
|
Gets all the Asana tasks in a project
|
|
|
|
Example call:
|
|
|
|
get_asana_tasks("1207789085525921")
|
|
Args:
|
|
project_gid (str): The ID of the project in Asana to fetch the tasks for
|
|
Returns:
|
|
str: The API response from fetching the tasks for the project in Asana or an error message if the API call threw an error
|
|
The API response is an array of tasks objects where each task object is in the format:
|
|
{'gid': '1207780961742158', 'created_at': '2024-07-11T16:25:46.380Z', 'due_on': None or date in format "YYYY-MM-DD", 'name': 'Test Task'}
|
|
"""
|
|
opts = {
|
|
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
|
|
'project': project_gid, # str | The project to filter tasks on.
|
|
'opt_fields': "created_at,name,due_on", # list[str] | This endpoint returns a compact resource, which excludes some properties by default. To include those optional properties, set this query parameter to a comma-separated list of the properties you wish to include.
|
|
}
|
|
|
|
try:
|
|
# Get multiple tasks
|
|
api_response = tasks_api_instance.get_tasks(opts)
|
|
return json.dumps(list(api_response), indent=2)
|
|
except ApiException as e:
|
|
return "Exception when calling TasksApi->get_tasks: %s\n" % e
|
|
|
|
@tool
|
|
def update_asana_task(task_gid, data):
|
|
"""
|
|
Updates a task in Asana by updating one or both of completed and/or the due date
|
|
|
|
Example call:
|
|
|
|
update_asana_task("1207780961742158", {"completed": True, "due_on": "2024-07-13"})
|
|
Args:
|
|
task_gid (str): The ID of the task to update
|
|
data (dict): A dictionary with either one or both of the keys 'completed' and/or 'due_on'
|
|
If given, completed needs to be either True or False.
|
|
If given, the due date needs to be in the format 'YYYY-MM-DD'.
|
|
Returns:
|
|
str: The API response of updating the task or an error message if the API call threw an error
|
|
"""
|
|
# Data: {"completed": True or False, "due_on": "YYYY-MM-DD"}
|
|
body = {"data": data} # dict | The task to update.
|
|
|
|
try:
|
|
# Update a task
|
|
api_response = tasks_api_instance.update_task(body, task_gid, {})
|
|
return json.dumps(api_response, indent=2)
|
|
except ApiException as e:
|
|
return "Exception when calling TasksApi->update_task: %s\n" % e
|
|
|
|
@tool
|
|
def delete_task(task_gid):
|
|
"""
|
|
Deletes a task in Asana
|
|
|
|
Example call:
|
|
|
|
delete_task("1207780961742158")
|
|
Args:
|
|
task_gid (str): The ID of the task to delete
|
|
Returns:
|
|
str: The API response of deleting the task or an error message if the API call threw an error
|
|
"""
|
|
try:
|
|
# Delete a task
|
|
api_response = tasks_api_instance.delete_task(task_gid)
|
|
return json.dumps(api_response, indent=2)
|
|
except ApiException as e:
|
|
return "Exception when calling TasksApi->delete_task: %s\n" % e
|
|
|
|
# Maps the function names to the actual function object in the script
|
|
# This mapping will also be used to create the list of tools to bind to the agent
|
|
available_tools = {
|
|
"create_asana_task": create_asana_task,
|
|
"get_asana_projects": get_asana_projects,
|
|
"create_asana_project": create_asana_project,
|
|
"get_asana_tasks": get_asana_tasks,
|
|
"update_asana_task": update_asana_task,
|
|
"delete_task": delete_task
|
|
}
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~ Tool Prompt Setup ~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
tool_descriptions = [f"{name}:\n{func.__doc__}\n\n" for name, func in available_tools.items()]
|
|
|
|
class ToolCall(BaseModel):
|
|
name: str = Field(description="Name of the function to run")
|
|
args: dict = Field(description="Arguments for the function call (empty dictionary if no arguments are needed for the tool call)")
|
|
|
|
class ToolCallOrResponse(BaseModel):
|
|
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
|
|
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
|
|
|
|
tool_text = f"""
|
|
You always respond with a JSON object that has two required keys.
|
|
|
|
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
|
|
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
|
|
|
|
Here is the type for ToolCall (object with two keys):
|
|
name: str = Field(description="Name of the function to run (NA if you don't need to invoke a tool)")
|
|
args: dict = Field(description="Arguments for the function call (empty dictionary if you don't need to invoke a tool or if no arguments are needed for the tool call)")
|
|
|
|
Don't start your answers with "Here is the JSON response", just give the JSON.
|
|
|
|
The tools you have access to are:
|
|
|
|
{"".join(tool_descriptions)}
|
|
|
|
Any message that starts with "Thought:" is you thinking to yourself. This isn't told to the user so you still need to communicate what you did with them.
|
|
Don't repeat an action. If a thought tells you that you already took an action for a user, don't do it again.
|
|
"""
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~ AI Prompting Function ~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
def add_thought(thought):
|
|
"""
|
|
Important function that adds LLM "thoughts" to the conversation
|
|
that can optionally be show to the user. This includes things like
|
|
results of tool calls, the LLM correcting itself, etc.
|
|
"""
|
|
st.session_state.messages.append(AIMessage(content=thought))
|
|
|
|
# Show thoughts determined by .env variable SHOW_THOUGHTS
|
|
if show_thoughts:
|
|
with st.chat_message("assistant"):
|
|
st.markdown(thought)
|
|
|
|
def prompt_ai(nested_calls=0, invoked_tools=[]):
|
|
if nested_calls > 10:
|
|
raise Exception("Failsafe - AI is failing too much!")
|
|
|
|
# First, prompt the AI with the latest user message
|
|
parser = JsonOutputParser(pydantic_object=ToolCallOrResponse)
|
|
asana_chatbot = ChatOpenAI(model=model, temperature=1) | parser
|
|
|
|
try:
|
|
ai_response = asana_chatbot.invoke(st.session_state.messages)
|
|
except Exception as e:
|
|
print(e)
|
|
return prompt_ai(nested_calls + 1)
|
|
print(ai_response)
|
|
|
|
# Second, see if the AI decided it needs to invoke a tool
|
|
has_tool_calls = len(ai_response["tool_calls"]) > 0
|
|
if has_tool_calls:
|
|
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages as a "thought" for the LLM
|
|
for tool_call in ai_response["tool_calls"]:
|
|
if str(tool_call) not in invoked_tools:
|
|
tool_name = tool_call["name"].lower()
|
|
selected_tool = available_tools[tool_name]
|
|
|
|
# Invoke the tool and add the response as a thought
|
|
try:
|
|
tool_output = selected_tool.invoke(tool_call["args"])
|
|
except Exception as e:
|
|
# AI gave bad arguments for the function, so add that as a thought and have the LLM correct itself
|
|
add_thought(f"Thought: - I called {tool_name} with args {tool_call['args']} but my arguments were wrong so I got this error: {e}.")
|
|
return prompt_ai(nested_calls + 1, invoked_tools)
|
|
|
|
print(tool_output)
|
|
|
|
# Add a thought so the LLM knows the result of invoking the tool
|
|
add_thought(f"Thought: - I called {tool_name} with args {tool_call['args']} and got back: {tool_output}.")
|
|
|
|
# Add to the list of tool calls so this app can prevent the LLM from repeating itself
|
|
invoked_tools.append(str(tool_call))
|
|
else:
|
|
# In this case the LLM already tried to make the exact same tool call. So add a thought for that so it doesn't loop.
|
|
add_thought(f"Thought: - I already called {tool_call['name']} with args {tool_call['args']} and got a response. I need to respond to the user now and not make another tool call.")
|
|
|
|
# Prompt the AI again now that the result of calling the tool(s) has been added to the chat history
|
|
return prompt_ai(nested_calls + 1, invoked_tools)
|
|
|
|
return ai_response
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~ Main Function with UI Creation ~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
def main():
|
|
st.title("o1 Agent Chatbot")
|
|
|
|
# Initialize chat history
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = [
|
|
HumanMessage(content=f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}.\n{tool_text}")
|
|
]
|
|
|
|
# Display chat messages from history on app rerun
|
|
for message in st.session_state.messages:
|
|
message_json = json.loads(message.json())
|
|
message_type = message_json["type"]
|
|
message_content = message_json["content"]
|
|
if message_type in ["human", "ai"] and (not message_content.startswith("Thought:") or show_thoughts):
|
|
with st.chat_message(message_type):
|
|
st.markdown(message_content)
|
|
|
|
# React to user input
|
|
if prompt := st.chat_input("What would you like to do today?"):
|
|
# Display user message in chat message container
|
|
st.chat_message("user").markdown(prompt)
|
|
# Add user message to chat history
|
|
st.session_state.messages.append(HumanMessage(content=prompt))
|
|
|
|
# Display assistant response in chat message container
|
|
ai_response = prompt_ai()
|
|
with st.chat_message("assistant"):
|
|
st.markdown(ai_response['content'])
|
|
|
|
st.session_state.messages.append(AIMessage(content=ai_response['content']))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |