mirror of
https://github.com/coleam00/ai-agents-masterclass.git
synced 2025-11-29 08:33:16 +00:00
185 lines
6.9 KiB
Python
185 lines
6.9 KiB
Python
import asana
|
|
from asana.rest import ApiException
|
|
from dotenv import load_dotenv
|
|
from datetime import datetime
|
|
from typing import List
|
|
import streamlit as st
|
|
import uuid
|
|
import json
|
|
import os
|
|
|
|
from langchain_core.tools import tool
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain_core.output_parsers import JsonOutputParser
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
from langchain_huggingface import HuggingFacePipeline, HuggingFaceEndpoint, ChatHuggingFace
|
|
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage, ToolMessage
|
|
|
|
load_dotenv()
|
|
|
|
model = os.getenv('LLM_MODEL', 'meta-llama/Meta-Llama-3-8B-Instruct')
|
|
|
|
configuration = asana.Configuration()
|
|
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
|
|
api_client = asana.ApiClient(configuration)
|
|
|
|
tasks_api_instance = asana.TasksApi(api_client)
|
|
|
|
def create_asana_task(task_name, due_on="today"):
|
|
"""
|
|
Creates a task in Asana given the name of the task and when it is due
|
|
|
|
Example call:
|
|
|
|
create_asana_task("Test Task", "2024-06-24")
|
|
Args:
|
|
task_name (str): The name of the task in Asana
|
|
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
|
|
Returns:
|
|
str: The API response of adding the task to Asana or an error message if the API call threw an error
|
|
"""
|
|
if due_on == "today":
|
|
due_on = str(datetime.now().date())
|
|
|
|
task_body = {
|
|
"data": {
|
|
"name": task_name,
|
|
"due_on": due_on,
|
|
"projects": [os.getenv("ASANA_PROJECT_ID", "")]
|
|
}
|
|
}
|
|
|
|
try:
|
|
api_response = tasks_api_instance.create_task(task_body, {})
|
|
return "Task(s) created successfully!"
|
|
except ApiException as e:
|
|
return f"Failed to create task!"
|
|
|
|
@st.cache_resource
|
|
def get_local_model():
|
|
if "gpt" in model:
|
|
return model
|
|
else:
|
|
return HuggingFaceEndpoint(
|
|
repo_id=model,
|
|
task="text-generation",
|
|
max_new_tokens=1024,
|
|
do_sample=False
|
|
)
|
|
|
|
# return HuggingFacePipeline.from_model_id(
|
|
# model_id=model,
|
|
# task="text-generation",
|
|
# pipeline_kwargs={
|
|
# "max_new_tokens": 1024,
|
|
# "top_k": 50,
|
|
# "temperature": 0.4
|
|
# },
|
|
# )
|
|
|
|
llm = get_local_model()
|
|
|
|
available_tools = {
|
|
"create_asana_task": create_asana_task
|
|
}
|
|
|
|
tool_descriptions = [f"{name}:\n{func.__doc__}\n\n" for name, func in available_tools.items()]
|
|
|
|
class ToolCall(BaseModel):
|
|
name: str = Field(description="Name of the function to run")
|
|
args: dict = Field(description="Arguments for the function call (empty if no arguments are needed for the tool call)")
|
|
|
|
class ToolCallOrResponse(BaseModel):
|
|
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
|
|
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
|
|
|
|
tool_text = f"""
|
|
You always respond with a JSON object that has two required keys.
|
|
|
|
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
|
|
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
|
|
|
|
Here is the type for ToolCall (object with two keys):
|
|
name: str = Field(description="Name of the function to run (NA if you don't need to invoke a tool)")
|
|
args: dict = Field(description="Arguments for the function call (empty array if you don't need to invoke a tool or if no arguments are needed for the tool call)")
|
|
|
|
Don't start your answers with "Here is the JSON response", just give the JSON.
|
|
|
|
The tools you have access to are:
|
|
|
|
{"".join(tool_descriptions)}
|
|
|
|
Any message that starts with "Thought:" is you thinking to yourself. This isn't told to the user so you still need to communicate what you did with them.
|
|
Don't repeat an action. If a thought tells you that you already took an action for a user, don't do it again.
|
|
"""
|
|
|
|
def prompt_ai(messages, nested_calls=0, invoked_tools=[]):
|
|
if nested_calls > 3:
|
|
raise Exception("Failsafe - AI is failing too much!")
|
|
|
|
# First, prompt the AI with the latest user message
|
|
parser = JsonOutputParser(pydantic_object=ToolCallOrResponse)
|
|
asana_chatbot = ChatHuggingFace(llm=llm) | parser if "gpt" not in model else ChatOpenAI(model=llm) | parser
|
|
|
|
try:
|
|
ai_response = asana_chatbot.invoke(messages)
|
|
except:
|
|
return prompt_ai(messages, nested_calls + 1)
|
|
print(ai_response)
|
|
|
|
# Second, see if the AI decided it needs to invoke a tool
|
|
has_tool_calls = len(ai_response["tool_calls"]) > 0
|
|
if has_tool_calls:
|
|
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages
|
|
for tool_call in ai_response["tool_calls"]:
|
|
if str(tool_call) not in invoked_tools:
|
|
tool_name = tool_call["name"].lower()
|
|
selected_tool = available_tools[tool_name]
|
|
tool_output = selected_tool(**tool_call["args"])
|
|
|
|
messages.append(AIMessage(content=f"Thought: - I called {tool_name} with args {tool_call['args']} and got back: {tool_output}."))
|
|
invoked_tools.append(str(tool_call))
|
|
else:
|
|
return ai_response
|
|
|
|
# Prompt the AI again now that the result of calling the tool(s) has been added to the chat history
|
|
return prompt_ai(messages, nested_calls + 1, invoked_tools)
|
|
|
|
return ai_response
|
|
|
|
|
|
def main():
|
|
st.title("Asana Chatbot")
|
|
|
|
# Initialize chat history
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = [
|
|
SystemMessage(content=f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}.\n{tool_text}")
|
|
]
|
|
|
|
# Display chat messages from history on app rerun
|
|
for message in st.session_state.messages:
|
|
message_json = json.loads(message.json())
|
|
message_type = message_json["type"]
|
|
message_content = message_json["content"]
|
|
if message_type in ["human", "ai", "system"] and not message_content.startswith("Thought:"):
|
|
with st.chat_message(message_type):
|
|
st.markdown(message_content)
|
|
|
|
# React to user input
|
|
if prompt := st.chat_input("What would you like to do today?"):
|
|
# Display user message in chat message container
|
|
st.chat_message("user").markdown(prompt)
|
|
# Add user message to chat history
|
|
st.session_state.messages.append(HumanMessage(content=prompt))
|
|
|
|
# Display assistant response in chat message container
|
|
with st.chat_message("assistant"):
|
|
ai_response = prompt_ai(st.session_state.messages)
|
|
st.markdown(ai_response['content'])
|
|
|
|
st.session_state.messages.append(AIMessage(content=ai_response['content']))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |