mirror of
https://github.com/coleam00/ai-agents-masterclass.git
synced 2025-11-29 08:33:16 +00:00
AI Agents Masterclass #7 - LangGraph Guide
This commit is contained in:
30
7-langgraph-agent/.env.example
Normal file
30
7-langgraph-agent/.env.example
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
# Rename this file to .env once you have filled in the below environment variables!
|
||||||
|
|
||||||
|
# Get your Open AI API Key by following these instructions -
|
||||||
|
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
|
||||||
|
# You only need this environment variable set if you set LLM_MODEL to a GPT model
|
||||||
|
OPENAI_API_KEY=
|
||||||
|
|
||||||
|
# Get your Anthropic API Key in your account settings -
|
||||||
|
# https://console.anthropic.com/settings/keys
|
||||||
|
# You only need this environment variable set if you set LLM_MODEL to a Claude model
|
||||||
|
ANTHROPIC_API_KEY=
|
||||||
|
|
||||||
|
# See all Open AI models you can use here -
|
||||||
|
# https://platform.openai.com/docs/models
|
||||||
|
# And all Anthropic models you can use here -
|
||||||
|
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||||
|
# A good default to go with here is gpt-4o or claude-3-5-sonnet-20240620
|
||||||
|
LLM_MODEL=gpt-4o
|
||||||
|
|
||||||
|
# Get your personal Asana access token through the developer console in Asana.
|
||||||
|
# Feel free to follow these instructions -
|
||||||
|
# https://developers.asana.com/docs/personal-access-token
|
||||||
|
ASANA_ACCESS_TOKEN=
|
||||||
|
|
||||||
|
# The Asana workspace ID is in the URL when you visit your Asana Admin Console (when logged in).
|
||||||
|
# Go to the URL "https://app.asana.com/admin" and then your workspace ID
|
||||||
|
# will appear in the URL as a slew of digits once the site loads.
|
||||||
|
# If your URL is https://app.asana.com/admin/987654321/insights, then your
|
||||||
|
# Asana workspace ID is 987654321
|
||||||
|
ASANA_WORKPLACE_ID=
|
||||||
88
7-langgraph-agent/langgraph-task-management-agent.py
Normal file
88
7-langgraph-agent/langgraph-task-management-agent.py
Normal file
@@ -0,0 +1,88 @@
|
|||||||
|
from datetime import datetime
|
||||||
|
import streamlit as st
|
||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
import uuid
|
||||||
|
import os
|
||||||
|
|
||||||
|
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage, ToolMessage
|
||||||
|
|
||||||
|
from runnable import get_runnable
|
||||||
|
|
||||||
|
@st.cache_resource
|
||||||
|
def create_chatbot_instance():
|
||||||
|
return get_runnable()
|
||||||
|
|
||||||
|
chatbot = create_chatbot_instance()
|
||||||
|
|
||||||
|
@st.cache_resource
|
||||||
|
def get_thread_id():
|
||||||
|
return str(uuid.uuid4())
|
||||||
|
|
||||||
|
thread_id = get_thread_id()
|
||||||
|
|
||||||
|
system_message = f"""
|
||||||
|
You are a personal assistant who helps manage tasks in Asana.
|
||||||
|
You never give IDs to the user since those are just for you to keep track of.
|
||||||
|
When a user asks to create a task and you don't know the project to add it to for sure, clarify with the user.
|
||||||
|
The current date is: {datetime.now().date()}
|
||||||
|
"""
|
||||||
|
|
||||||
|
async def prompt_ai(messages):
|
||||||
|
config = {
|
||||||
|
"configurable": {
|
||||||
|
"thread_id": thread_id
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async for event in chatbot.astream_events(
|
||||||
|
{"messages": messages}, config, version="v2"
|
||||||
|
):
|
||||||
|
if event["event"] == "on_chat_model_stream":
|
||||||
|
yield event["data"]["chunk"].content
|
||||||
|
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~ Main Function with UI Creation ~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
st.title("Asana Chatbot with LangGraph")
|
||||||
|
|
||||||
|
# Initialize chat history
|
||||||
|
if "messages" not in st.session_state:
|
||||||
|
st.session_state.messages = [
|
||||||
|
SystemMessage(content=system_message)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Display chat messages from history on app rerun
|
||||||
|
for message in st.session_state.messages:
|
||||||
|
message_json = json.loads(message.json())
|
||||||
|
message_type = message_json["type"]
|
||||||
|
if message_type in ["human", "ai", "system"]:
|
||||||
|
with st.chat_message(message_type):
|
||||||
|
st.markdown(message_json["content"])
|
||||||
|
|
||||||
|
# React to user input
|
||||||
|
if prompt := st.chat_input("What would you like to do today?"):
|
||||||
|
# Display user message in chat message container
|
||||||
|
st.chat_message("user").markdown(prompt)
|
||||||
|
# Add user message to chat history
|
||||||
|
st.session_state.messages.append(HumanMessage(content=prompt))
|
||||||
|
|
||||||
|
# Display assistant response in chat message container
|
||||||
|
response_content = ""
|
||||||
|
with st.chat_message("assistant"):
|
||||||
|
message_placeholder = st.empty() # Placeholder for updating the message
|
||||||
|
# Run the async generator to fetch responses
|
||||||
|
async for chunk in prompt_ai(st.session_state.messages):
|
||||||
|
response_content += chunk
|
||||||
|
# Update the placeholder with the current response content
|
||||||
|
message_placeholder.markdown(response_content)
|
||||||
|
|
||||||
|
st.session_state.messages.append(AIMessage(content=response_content))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
10
7-langgraph-agent/requirements.txt
Normal file
10
7-langgraph-agent/requirements.txt
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
asana==5.0.7
|
||||||
|
python-dotenv==0.13.0
|
||||||
|
langchain==0.2.12
|
||||||
|
langchain-anthropic==0.1.22
|
||||||
|
langchain-community==0.2.11
|
||||||
|
langchain-core==0.2.28
|
||||||
|
langchain-openai==0.1.20
|
||||||
|
streamlit==1.36.0
|
||||||
|
langgraph==0.1.19
|
||||||
|
aiosqlite==0.20.0
|
||||||
123
7-langgraph-agent/runnable.py
Normal file
123
7-langgraph-agent/runnable.py
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
from langgraph.graph.message import AnyMessage, add_messages
|
||||||
|
from langgraph.checkpoint.aiosqlite import AsyncSqliteSaver
|
||||||
|
from langchain_core.runnables import RunnableConfig
|
||||||
|
from langgraph.graph import END, StateGraph
|
||||||
|
from typing_extensions import TypedDict
|
||||||
|
from typing import Annotated, Literal, Dict
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
import os
|
||||||
|
|
||||||
|
from langchain_openai import ChatOpenAI
|
||||||
|
from langchain_anthropic import ChatAnthropic
|
||||||
|
from langchain_core.messages import ToolMessage
|
||||||
|
|
||||||
|
from tools import available_functions
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
model = os.getenv('LLM_MODEL', 'gpt-4o')
|
||||||
|
|
||||||
|
tools = [tool for _, tool in available_functions.items()]
|
||||||
|
chatbot = ChatOpenAI(model=model, streaming=True) if "gpt" in model.lower() else ChatAnthropic(model=model, streaming=True)
|
||||||
|
chatbot_with_tools = chatbot.bind_tools(tools)
|
||||||
|
|
||||||
|
### State
|
||||||
|
class GraphState(TypedDict):
|
||||||
|
"""
|
||||||
|
Represents the state of our graph.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
messages: List of chat messages.
|
||||||
|
"""
|
||||||
|
messages: Annotated[list[AnyMessage], add_messages]
|
||||||
|
|
||||||
|
async def call_model(state: GraphState, config: RunnableConfig) -> Dict[str, AnyMessage]:
|
||||||
|
"""
|
||||||
|
Function that calls the model to generate a response.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state (GraphState): The current graph state
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: The updated state with a new AI message
|
||||||
|
"""
|
||||||
|
print("---CALL MODEL---")
|
||||||
|
messages = state["messages"]
|
||||||
|
|
||||||
|
# Invoke the chatbot with the binded tools
|
||||||
|
response = await chatbot_with_tools.ainvoke(messages, config)
|
||||||
|
print("Response from model:", response)
|
||||||
|
|
||||||
|
# We return an object because this will get added to the existing list
|
||||||
|
return {"messages": response}
|
||||||
|
|
||||||
|
def tool_node(state: GraphState) -> Dict[str, AnyMessage]:
|
||||||
|
"""
|
||||||
|
Function that handles all tool calls.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state (GraphState): The current graph state
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: The updated state with tool messages
|
||||||
|
"""
|
||||||
|
print("---TOOL NODE---")
|
||||||
|
messages = state["messages"]
|
||||||
|
last_message = messages[-1] if messages else None
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
|
||||||
|
if last_message and last_message.tool_calls:
|
||||||
|
for call in last_message.tool_calls:
|
||||||
|
tool = available_functions.get(call['name'], None)
|
||||||
|
|
||||||
|
if tool is None:
|
||||||
|
raise Exception(f"Tool '{call['name']}' not found.")
|
||||||
|
|
||||||
|
output = tool.invoke(call['args'])
|
||||||
|
outputs.append(ToolMessage(
|
||||||
|
output if isinstance(output, str) else json.dumps(output),
|
||||||
|
tool_call_id=call['id']
|
||||||
|
))
|
||||||
|
|
||||||
|
return {'messages': outputs}
|
||||||
|
|
||||||
|
def should_continue(state: GraphState) -> Literal["__end__", "tools"]:
|
||||||
|
"""
|
||||||
|
Determine whether to continue or end the workflow based on if there are tool calls to make.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state (GraphState): The current graph state
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The next node to execute or END
|
||||||
|
"""
|
||||||
|
print("---SHOULD CONTINUE---")
|
||||||
|
messages = state["messages"]
|
||||||
|
last_message = messages[-1] if messages else None
|
||||||
|
|
||||||
|
# If there is no function call, then we finish
|
||||||
|
if not last_message or not last_message.tool_calls:
|
||||||
|
return END
|
||||||
|
else:
|
||||||
|
return "tools"
|
||||||
|
|
||||||
|
def get_runnable():
|
||||||
|
workflow = StateGraph(GraphState)
|
||||||
|
|
||||||
|
# Define the nodes and how they connect
|
||||||
|
workflow.add_node("agent", call_model)
|
||||||
|
workflow.add_node("tools", tool_node)
|
||||||
|
|
||||||
|
workflow.set_entry_point("agent")
|
||||||
|
|
||||||
|
workflow.add_conditional_edges(
|
||||||
|
"agent",
|
||||||
|
should_continue
|
||||||
|
)
|
||||||
|
workflow.add_edge("tools", "agent")
|
||||||
|
|
||||||
|
# Compile the LangGraph graph into a runnable
|
||||||
|
memory = AsyncSqliteSaver.from_conn_string(":memory:")
|
||||||
|
app = workflow.compile(checkpointer=memory)
|
||||||
|
|
||||||
|
return app
|
||||||
191
7-langgraph-agent/tools.py
Normal file
191
7-langgraph-agent/tools.py
Normal file
@@ -0,0 +1,191 @@
|
|||||||
|
import asana
|
||||||
|
from asana.rest import ApiException
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
|
||||||
|
from langchain_core.tools import tool
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
configuration = asana.Configuration()
|
||||||
|
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
|
||||||
|
api_client = asana.ApiClient(configuration)
|
||||||
|
|
||||||
|
# create an instance of the different Asana API classes
|
||||||
|
projects_api_instance = asana.ProjectsApi(api_client)
|
||||||
|
tasks_api_instance = asana.TasksApi(api_client)
|
||||||
|
|
||||||
|
workspace_gid = os.getenv("ASANA_WORKPLACE_ID", "")
|
||||||
|
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~ AI Agent Tool Functions ~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def create_asana_task(task_name, project_gid, due_on="today"):
|
||||||
|
"""
|
||||||
|
Creates a task in Asana given the name of the task and when it is due
|
||||||
|
|
||||||
|
Example call:
|
||||||
|
|
||||||
|
create_asana_task("Test Task", "2024-06-24")
|
||||||
|
Args:
|
||||||
|
task_name (str): The name of the task in Asana
|
||||||
|
project_gid (str): The ID of the project to add the task to
|
||||||
|
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
|
||||||
|
Returns:
|
||||||
|
str: The API response of adding the task to Asana or an error message if the API call threw an error
|
||||||
|
"""
|
||||||
|
if due_on == "today":
|
||||||
|
due_on = str(datetime.now().date())
|
||||||
|
|
||||||
|
task_body = {
|
||||||
|
"data": {
|
||||||
|
"name": task_name,
|
||||||
|
"due_on": due_on,
|
||||||
|
"projects": [project_gid]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
api_response = tasks_api_instance.create_task(task_body, {})
|
||||||
|
return json.dumps(api_response, indent=2)
|
||||||
|
except ApiException as e:
|
||||||
|
return f"Exception when calling TasksApi->create_task: {e}"
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def get_asana_projects():
|
||||||
|
"""
|
||||||
|
Gets all of the projects in the user's Asana workspace
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The API response from getting the projects or an error message if the projects couldn't be fetched.
|
||||||
|
The API response is an array of project objects, where each project object looks like:
|
||||||
|
{'gid': '1207789085525921', 'name': 'Project Name', 'resource_type': 'project'}
|
||||||
|
"""
|
||||||
|
opts = {
|
||||||
|
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
|
||||||
|
'workspace': workspace_gid, # str | The workspace or organization to filter projects on.
|
||||||
|
'archived': False # bool | Only return projects whose `archived` field takes on the value of this parameter.
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
api_response = projects_api_instance.get_projects(opts)
|
||||||
|
return json.dumps(list(api_response), indent=2)
|
||||||
|
except ApiException as e:
|
||||||
|
return "Exception when calling ProjectsApi->create_project: %s\n" % e
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def create_asana_project(project_name, due_on=None):
|
||||||
|
"""
|
||||||
|
Creates a project in Asana given the name of the project and optionally when it is due
|
||||||
|
|
||||||
|
Example call:
|
||||||
|
|
||||||
|
create_asana_project("Test Project", "2024-06-24")
|
||||||
|
Args:
|
||||||
|
project_name (str): The name of the project in Asana
|
||||||
|
due_on (str): The date the project is due in the format YYYY-MM-DD. If not supplied, the project is not given a due date
|
||||||
|
Returns:
|
||||||
|
str: The API response of adding the project to Asana or an error message if the API call threw an error
|
||||||
|
"""
|
||||||
|
body = {
|
||||||
|
"data": {
|
||||||
|
"name": project_name, "due_on": due_on, "workspace": workspace_gid
|
||||||
|
}
|
||||||
|
} # dict | The project to create.
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Create a project
|
||||||
|
api_response = projects_api_instance.create_project(body, {})
|
||||||
|
return json.dumps(api_response, indent=2)
|
||||||
|
except ApiException as e:
|
||||||
|
return "Exception when calling ProjectsApi->create_project: %s\n" % e
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def get_asana_tasks(project_gid):
|
||||||
|
"""
|
||||||
|
Gets all the Asana tasks in a project
|
||||||
|
|
||||||
|
Example call:
|
||||||
|
|
||||||
|
get_asana_tasks("1207789085525921")
|
||||||
|
Args:
|
||||||
|
project_gid (str): The ID of the project in Asana to fetch the tasks for
|
||||||
|
Returns:
|
||||||
|
str: The API response from fetching the tasks for the project in Asana or an error message if the API call threw an error
|
||||||
|
The API response is an array of tasks objects where each task object is in the format:
|
||||||
|
{'gid': '1207780961742158', 'created_at': '2024-07-11T16:25:46.380Z', 'due_on': None or date in format "YYYY-MM-DD", 'name': 'Test Task'}
|
||||||
|
"""
|
||||||
|
opts = {
|
||||||
|
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
|
||||||
|
'project': project_gid, # str | The project to filter tasks on.
|
||||||
|
'opt_fields': "created_at,name,due_on", # list[str] | This endpoint returns a compact resource, which excludes some properties by default. To include those optional properties, set this query parameter to a comma-separated list of the properties you wish to include.
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Get multiple tasks
|
||||||
|
api_response = tasks_api_instance.get_tasks(opts)
|
||||||
|
return json.dumps(list(api_response), indent=2)
|
||||||
|
except ApiException as e:
|
||||||
|
return "Exception when calling TasksApi->get_tasks: %s\n" % e
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def update_asana_task(task_gid, data):
|
||||||
|
"""
|
||||||
|
Updates a task in Asana by updating one or both of completed and/or the due date
|
||||||
|
|
||||||
|
Example call:
|
||||||
|
|
||||||
|
update_asana_task("1207780961742158", {"completed": True, "due_on": "2024-07-13"})
|
||||||
|
Args:
|
||||||
|
task_gid (str): The ID of the task to update
|
||||||
|
data (dict): A dictionary with either one or both of the keys 'completed' and/or 'due_on'
|
||||||
|
If given, completed needs to be either True or False.
|
||||||
|
If given, the due date needs to be in the format 'YYYY-MM-DD'.
|
||||||
|
Returns:
|
||||||
|
str: The API response of updating the task or an error message if the API call threw an error
|
||||||
|
"""
|
||||||
|
# Data: {"completed": True or False, "due_on": "YYYY-MM-DD"}
|
||||||
|
body = {"data": data} # dict | The task to update.
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Update a task
|
||||||
|
api_response = tasks_api_instance.update_task(body, task_gid, {})
|
||||||
|
return json.dumps(api_response, indent=2)
|
||||||
|
except ApiException as e:
|
||||||
|
return "Exception when calling TasksApi->update_task: %s\n" % e
|
||||||
|
|
||||||
|
@tool
|
||||||
|
def delete_task(task_gid):
|
||||||
|
"""
|
||||||
|
Deletes a task in Asana
|
||||||
|
|
||||||
|
Example call:
|
||||||
|
|
||||||
|
delete_task("1207780961742158")
|
||||||
|
Args:
|
||||||
|
task_gid (str): The ID of the task to delete
|
||||||
|
Returns:
|
||||||
|
str: The API response of deleting the task or an error message if the API call threw an error
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Delete a task
|
||||||
|
api_response = tasks_api_instance.delete_task(task_gid)
|
||||||
|
return json.dumps(api_response, indent=2)
|
||||||
|
except ApiException as e:
|
||||||
|
return "Exception when calling TasksApi->delete_task: %s\n" % e
|
||||||
|
|
||||||
|
# Maps the function names to the actual function object in the script
|
||||||
|
# This mapping will also be used to create the list of tools to bind to the agent
|
||||||
|
available_functions = {
|
||||||
|
"create_asana_task": create_asana_task,
|
||||||
|
"get_asana_projects": get_asana_projects,
|
||||||
|
"create_asana_project": create_asana_project,
|
||||||
|
"get_asana_tasks": get_asana_tasks,
|
||||||
|
"update_asana_task": update_asana_task,
|
||||||
|
"delete_task": delete_task
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user