AI Agents MC #10 - LangServe Deployment of AI Agent

This commit is contained in:
Cole Medin
2024-08-29 07:59:59 -05:00
parent ef5f6c7c43
commit af684be17e
8 changed files with 938 additions and 0 deletions

View File

@@ -0,0 +1,193 @@
import asana
from asana.rest import ApiException
from dotenv import load_dotenv
from datetime import datetime
import json
import os
from langchain_core.tools import tool
load_dotenv()
configuration = asana.Configuration()
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
api_client = asana.ApiClient(configuration)
# create an instance of the different Asana API classes
projects_api_instance = asana.ProjectsApi(api_client)
tasks_api_instance = asana.TasksApi(api_client)
workspace_gid = os.getenv("ASANA_WORKPLACE_ID", "")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~ AI Agent Tool Functions ~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@tool
def create_asana_task(task_name: str, project_gid: str, due_on: str ="today") -> str:
"""
Creates a task in Asana given the name of the task and when it is due
Example call:
create_asana_task("Test Task", "2024-06-24")
Args:
task_name (str): The name of the task in Asana
project_gid (str): The ID of the project to add the task to
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
Returns:
str: The API response of adding the task to Asana or an error message if the API call threw an error
"""
if due_on == "today":
due_on = str(datetime.now().date())
task_body = {
"data": {
"name": task_name,
"due_on": due_on,
"projects": [project_gid]
}
}
try:
api_response = tasks_api_instance.create_task(task_body, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return f"Exception when calling TasksApi->create_task: {e}"
@tool
def get_asana_projects() -> str:
"""
Gets all of the projects in the user's Asana workspace
Returns:
str: The API response from getting the projects or an error message if the projects couldn't be fetched.
The API response is an array of project objects, where each project object looks like:
{'gid': '1207789085525921', 'name': 'Project Name', 'resource_type': 'project'}
"""
opts = {
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
'workspace': workspace_gid, # str | The workspace or organization to filter projects on.
'archived': False # bool | Only return projects whose `archived` field takes on the value of this parameter.
}
try:
api_response = projects_api_instance.get_projects(opts)
return json.dumps(list(api_response), indent=2)
except ApiException as e:
return "Exception when calling ProjectsApi->create_project: %s\n" % e
@tool
def create_asana_project(project_name: str, due_on=None) -> str:
"""
Creates a project in Asana given the name of the project and optionally when it is due
Example call:
create_asana_project("Test Project", "2024-06-24")
Args:
project_name (str): The name of the project in Asana
due_on (str): The date the project is due in the format YYYY-MM-DD. If not supplied, the project is not given a due date
Returns:
str: The API response of adding the project to Asana or an error message if the API call threw an error
"""
body = {
"data": {
"name": project_name, "due_on": due_on, "workspace": workspace_gid
}
} # dict | The project to create.
try:
# Create a project
api_response = projects_api_instance.create_project(body, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return "Exception when calling ProjectsApi->create_project: %s\n" % e
@tool
def get_asana_tasks(project_gid: str) -> str:
"""
Gets all the Asana tasks in a project
Example call:
get_asana_tasks("1207789085525921")
Args:
project_gid (str): The ID of the project in Asana to fetch the tasks for
Returns:
str: The API response from fetching the tasks for the project in Asana or an error message if the API call threw an error
The API response is an array of tasks objects where each task object is in the format:
{'gid': '1207780961742158', 'created_at': '2024-07-11T16:25:46.380Z', 'due_on': None or date in format "YYYY-MM-DD", 'name': 'Test Task'}
"""
opts = {
'limit': 50, # int | Results per page. The number of objects to return per page. The value must be between 1 and 100.
'project': project_gid, # str | The project to filter tasks on.
'opt_fields': "created_at,name,due_on", # list[str] | This endpoint returns a compact resource, which excludes some properties by default. To include those optional properties, set this query parameter to a comma-separated list of the properties you wish to include.
}
try:
# Get multiple tasks
api_response = tasks_api_instance.get_tasks(opts)
return json.dumps(list(api_response), indent=2)
except ApiException as e:
return "Exception when calling TasksApi->get_tasks: %s\n" % e
@tool
def update_asana_task(task_gid: str, data: dict) -> str:
"""
Updates a task in Asana by updating one or both of completed and/or the due date
Example call:
update_asana_task("1207780961742158", {"completed": True, "due_on": "2024-07-13"})
Args:
task_gid (str): The ID of the task to update
data (dict): A dictionary with either one or both of the keys 'completed' and/or 'due_on'
If given, completed needs to be either True or False.
If given, the due date needs to be in the format 'YYYY-MM-DD'.
Returns:
str: The API response of updating the task or an error message if the API call threw an error
"""
# Data: {"completed": True or False, "due_on": "YYYY-MM-DD"}
body = {"data": data} # dict | The task to update.
try:
# Update a task
api_response = tasks_api_instance.update_task(body, task_gid, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return "Exception when calling TasksApi->update_task: %s\n" % e
@tool
def delete_task(task_gid: str) -> str:
"""
Deletes a task in Asana
Example call:
delete_task("1207780961742158")
Args:
task_gid (str): The ID of the task to delete
Returns:
str: The API response of deleting the task or an error message if the API call threw an error
"""
try:
# Delete a task
api_response = tasks_api_instance.delete_task(task_gid)
return json.dumps(api_response, indent=2)
except ApiException as e:
return "Exception when calling TasksApi->delete_task: %s\n" % e
# Maps the function names to the actual function object in the script
# This mapping will also be used to create the list of tools to bind to the agent
available_asana_functions = {
"create_asana_task": create_asana_task,
"get_asana_projects": get_asana_projects,
"create_asana_project": create_asana_project,
"get_asana_tasks": get_asana_tasks,
"update_asana_task": update_asana_task,
"delete_task": delete_task
}

View File

@@ -0,0 +1,271 @@
from google.auth.transport.requests import Request
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
from googleapiclient.http import MediaFileUpload, MediaIoBaseDownload
from langchain_core.tools import tool
import os
import io
SCOPES = [
'https://www.googleapis.com/auth/drive',
'https://www.googleapis.com/auth/drive.file'
]
def get_google_drive_service():
"""
Gets the Google Drive credentials with the scope of full access to Drive files
"""
creds = None
if os.path.exists("token.json"):
creds = Credentials.from_authorized_user_file("token.json", SCOPES)
# If there are no (valid) credentials available, let the user log in.
if not creds or not creds.valid:
if creds and creds.expired and creds.refresh_token:
creds.refresh(Request())
else:
flow = InstalledAppFlow.from_client_secrets_file(
"credentials/credentials.json", SCOPES
)
creds = flow.run_local_server(port=0)
# Save the credentials for the next run
with open("token.json", "w") as token:
token.write(creds.to_json())
return build("drive", "v3", credentials=creds)
service = get_google_drive_service()
@tool
def search_file(query: str) -> list:
"""
Searches for files in Google Drive based on a query string.
Arguments:
- query (str): The search query to find files. This requires a specific format for Google Drive:
To search for files that have 'example' in the name - query should be: name contains 'example'
To search for files that have 'example text' in the file text - query should be: fullText contains 'example text'
Returns:
- list: A list of dictionaries containing the file ID and name of the matched files.
Example usage:
search_file("name contains 'report'")
"""
try:
results = service.files().list(q=f"mimeType!='application/vnd.google-apps.folder' and {query}", spaces='drive', fields="files(id, name)").execute()
return str(results.get('files', []))
except Exception as e:
return f"Failed to search Google Drive: {e}"
@tool
def download_file(file_id: str, file_name: str, mime_type: str = 'text/plain') -> str:
"""
Downloads a Google Docs file (or similar) from Google Drive and saves it to a specified path.
Arguments:
- file_id (str): The unique ID of the file to be downloaded.
- file_name (str): The name of the file (including the extension) to download it locally as.
- mime_type (str, optional): The MIME type to export the file as. Defaults to 'text/plain'.
Returns:
- str: A message confirming the file has been downloaded to the specified path.
Example usage:
download_file("1aBcDeFgHiJkLmNoPqRsTuVwXyZ", "file.txt", "text/plain")
"""
try:
directory = "data"
if not os.path.exists(directory):
os.makedirs(directory, exist_ok=True)
request = service.files().export_media(fileId=file_id, mimeType=mime_type)
file_path = f"{directory}/{file_name}"
with io.FileIO(file_path, 'wb') as file:
downloader = MediaIoBaseDownload(file, request)
done = False
while not done:
status, done = downloader.next_chunk()
return f"File downloaded to {file_path}"
except Exception as e:
return f"Error downloading the file: {e}"
@tool
def upload_file(file_path: str, folder_id: str = None) -> str:
"""
Uploads a file to a specific folder in Google Drive. If no folder ID is provided, it uploads to the root directory.
Arguments:
- file_path (str): The local path to the file that will be uploaded.
- folder_id (str, optional): The ID of the Google Drive folder where the file will be uploaded. Defaults to None (uploads to root).
Returns:
- str: The ID of the uploaded file.
Example usage:
upload_file("/path/to/local/file.txt", "1aBcDeFgHiJkLmNoPqRsTuVwXyZ")
"""
try:
file_metadata = {'name': file_path.split("/")[-1]}
if folder_id:
file_metadata['parents'] = [folder_id]
media = MediaFileUpload(file_path, resumable=True)
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
return f"File uploaded with ID: {file.get('id')}"
except Exception as e:
return f"Error uploading the file: {e}"
@tool
def delete_file(file_id: str) -> str:
"""
Deletes a file from Google Drive based on its file ID.
Arguments:
- file_id (str): The unique ID of the file to be deleted.
Returns:
- str: A message confirming the deletion of the file.
Example usage:
delete_file("1aBcDeFgHiJkLmNoPqRsTuVwXyZ")
"""
try:
service.files().delete(fileId=file_id).execute()
return f"File with ID {file_id} has been deleted."
except Exception as e:
return f"Error deleting the file: {e}"
@tool
def update_file(file_id: str, new_file_path: str) -> str:
"""
Updates the contents of a file in Google Drive by replacing it with a new file.
Arguments:
- file_id (str): The unique ID of the file to be updated.
- new_file_path (str): The local path to the new file that will replace the existing file.
Returns:
- str: A message confirming the file has been updated.
Example usage:
update_file("1aBcDeFgHiJkLmNoPqRsTuVwXyZ", "/path/to/new/file.txt")
"""
try:
media = MediaFileUpload(new_file_path, resumable=True)
updated_file = service.files().update(fileId=file_id, media_body=media).execute()
return f"File with ID {file_id} has been updated."
except Exception as e:
return f"Error updating the file: {e}"
@tool
def search_folder(query: str) -> list:
"""
Searches for folders in Google Drive based on a query string.
Arguments:
- query (str): The search query to find folders - just the name or part of the name of folder(s) to search for.
Returns:
- list: A list of dictionaries containing the folder ID and name of the matched folders.
Example usage:
search_folder("name contains 'meeting_notes'")
"""
try:
results = service.files().list(q=f"mimeType='application/vnd.google-apps.folder' and name contains '{query}'",
spaces='drive', fields="files(id, name)").execute()
return str(results.get('files', []))
except Exception as e:
return f"Error searching folders: {e}"
@tool
def create_folder(folder_name: str, parent_folder_id: str = None) -> str:
"""
Creates a folder in Google Drive. If a parent folder ID is provided, the folder is created inside that folder.
Arguments:
- folder_name (str): The name of the folder to be created.
- parent_folder_id (str, optional): The ID of the parent folder where the new folder will be created. Defaults to None (creates in root).
Returns:
- str: The ID of the created folder.
Example usage:
create_folder("New Meeting Folder", "1aBcDeFgHiJkLmNoPqRsTuVwXyZ")
"""
try:
file_metadata = {
'name': folder_name,
'mimeType': 'application/vnd.google-apps.folder'
}
if parent_folder_id:
file_metadata['parents'] = [parent_folder_id]
folder = service.files().create(body=file_metadata, fields='id').execute()
return f"Folder created with ID: {folder.get('id')}"
except Exception as e:
return f"Error creating the folder: {e}"
@tool
def delete_folder(folder_id: str) -> str:
"""
Deletes a folder from Google Drive based on its folder ID.
Arguments:
- folder_id (str): The unique ID of the folder to be deleted.
Returns:
- str: A message confirming the deletion of the folder.
Example usage:
delete_folder("1aBcDeFgHiJkLmNoPqRsTuVwXyZ")
"""
try:
service.files().delete(fileId=folder_id).execute()
return f"Folder with ID {folder_id} has been deleted."
except Exception as e:
return f"Error deleting the folder: {e}"
@tool
def create_text_file(content: str, file_name: str) -> str:
"""
Creates a text file with the given content + file name and returns the file path.
Arguments:
- content (str): The text content to be written to the file.
- file_name (str): The name of the file to be created (including the file extension, typically .txt).
Returns:
- str: The path to the created text file.
Example usage:
create_text_file("Hello, world!", "example.txt")
"""
try:
directory = "data"
if not os.path.exists(directory):
os.makedirs(directory, exist_ok=True)
file_path = f"{directory}/{file_name}"
with open(file_path, "w") as file:
file.write(content)
return file_path
except Exception as e:
return f"Error creating the text file: {e}"
# Maps the function names to the actual function object in the script
# This mapping will also be used to create the list of tools to bind to the agent
available_drive_functions = {
"search_file": search_file,
"download_file": download_file,
"upload_file": upload_file,
"delete_file": delete_file,
"update_file": update_file,
"search_folder": search_folder,
"create_folder": create_folder,
"delete_folder": delete_folder,
"create_text_file": create_text_file
}

View File

@@ -0,0 +1,119 @@
import hashlib
import re
from langchain_core.tools import tool
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.document_loaders import DirectoryLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_chroma import Chroma
def get_chroma_instance():
# Create the open-source embedding function
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Get the Chroma instance from what is saved to the disk
return Chroma(persist_directory="./chroma_db", embedding_function=embedding_function)
db = get_chroma_instance()
def string_to_vector_id(input_string: str, max_length: int = 64) -> str:
"""
Converts a string into a vector-friendly ID by removing special characters,
replacing spaces with underscores, and optionally hashing the string if it exceeds max length.
Arguments:
- input_string (str): The input string to convert to a vector ID.
- max_length (int, optional): The maximum length of the vector ID. Defaults to 64 characters.
Returns:
- str: A string that can be used as a vector ID.
Example usage:
string_to_vector_id("Example String For Vector ID")
"""
# Remove non-alphanumeric characters (except spaces and underscores)
sanitized_string = re.sub(r'[^a-zA-Z0-9\s_]', '', input_string)
# Replace spaces with underscores
sanitized_string = sanitized_string.replace(" ", "_")
# Truncate if necessary
if len(sanitized_string) > max_length:
# If the string is too long, hash it to fit within the max length
hash_object = hashlib.sha256(sanitized_string.encode())
sanitized_string = hash_object.hexdigest()[:max_length]
return sanitized_string
@tool
def query_documents(question: str) -> str:
"""
Uses RAG to query documents for information to answer a question
that requires specific context that could be found in documents
Example call:
query_documents("What are the action items from the meeting on the 20th?")
Args:
question (str): The question the user asked that might be answerable from the searchable documents
Returns:
str: The list of texts (and their sources) that matched with the question the closest using RAG
"""
try:
similar_docs = db.similarity_search(question, k=3)
docs_formatted = list(map(lambda doc: f"Source: {doc.metadata.get('source', 'NA')}\nContent: {doc.page_content}", similar_docs))
return str(docs_formatted)
except Exception as e:
return f"Error querying the vector DB: {e}"
@tool
def add_doc_to_knowledgebase(file_path: str) -> str:
"""
Adds a local document to the vector DB knowledgbase for RAG.
This function can only be called on local documents - Google Drive docs must be downloaded first.
The content of the file is put in the vector DB with the metadata
including the file source. ID is randomly generated.
Example call:
add_doc_to_knowledgebase("/path/to/local/file")
Args:
file_path (str): The local path to the file to add to the knowledgebase (NOT Google Drive)
Returns:
str: The success of the operation of adding the document to the vector DB
"""
try:
loader = TextLoader(file_path)
doc_arr = loader.load()
db.add_documents(documents=doc_arr, ids=[string_to_vector_id(file_path.split("/")[-1])])
return "Successfully added the file to the knowledgebase."
except Exception as e:
return f"Error adding file to knowledgbase: {e}"
@tool
def clear_knowledgebase() -> str:
"""
Removes all documents from the vector DB knowledgebase to clear it.
Example call:
clear_knowledgebase()
Returns:
str: The success of the operation of clearing the vector DB
"""
try:
db.reset_collection()
return "Successfully cleared the knowledgebase."
except Exception as e:
return f"Error clearing the knowledgbase: {e}"
# Maps the function names to the actual function object in the script
# This mapping will also be used to create the list of tools to bind to the agent
available_vector_db_functions = {
"query_documents": query_documents,
"add_doc_to_knowledgebase": add_doc_to_knowledgebase,
"clear_knowledgebase": clear_knowledgebase
}