Local LLM Tool Calling

This commit is contained in:
Cole Medin
2024-07-10 15:31:08 -05:00
parent 5146860253
commit 8444e3d2e6
4 changed files with 224 additions and 1 deletions

View File

@@ -0,0 +1,185 @@
import asana
from asana.rest import ApiException
from dotenv import load_dotenv
from datetime import datetime
from typing import List
import streamlit as st
import uuid
import json
import os
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_huggingface import HuggingFacePipeline, HuggingFaceEndpoint, ChatHuggingFace
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage, ToolMessage
load_dotenv()
model = os.getenv('LLM_MODEL', 'meta-llama/Meta-Llama-3-8B-Instruct')
configuration = asana.Configuration()
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
api_client = asana.ApiClient(configuration)
tasks_api_instance = asana.TasksApi(api_client)
def create_asana_task(task_name, due_on="today"):
"""
Creates a task in Asana given the name of the task and when it is due
Example call:
create_asana_task("Test Task", "2024-06-24")
Args:
task_name (str): The name of the task in Asana
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
Returns:
str: The API response of adding the task to Asana or an error message if the API call threw an error
"""
if due_on == "today":
due_on = str(datetime.now().date())
task_body = {
"data": {
"name": task_name,
"due_on": due_on,
"projects": [os.getenv("ASANA_PROJECT_ID", "")]
}
}
try:
api_response = tasks_api_instance.create_task(task_body, {})
return "Task(s) created successfully!"
except ApiException as e:
return f"Failed to create task!"
@st.cache_resource
def get_local_model():
if "gpt" in model:
return model
else:
return HuggingFaceEndpoint(
repo_id=model,
task="text-generation",
max_new_tokens=1024,
do_sample=False
)
# return HuggingFacePipeline.from_model_id(
# model_id=model,
# task="text-generation",
# pipeline_kwargs={
# "max_new_tokens": 1024,
# "top_k": 50,
# "temperature": 0.4
# },
# )
llm = get_local_model()
available_tools = {
"create_asana_task": create_asana_task
}
tool_descriptions = [f"{name}:\n{func.__doc__}\n\n" for name, func in available_tools.items()]
class ToolCall(BaseModel):
name: str = Field(description="Name of the function to run")
args: dict = Field(description="Arguments for the function call (empty if no arguments are needed for the tool call)")
class ToolCallOrResponse(BaseModel):
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
tool_text = f"""
You always respond with a JSON object that has two required keys.
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
Here is the type for ToolCall (object with two keys):
name: str = Field(description="Name of the function to run (NA if you don't need to invoke a tool)")
args: dict = Field(description="Arguments for the function call (empty array if you don't need to invoke a tool or if no arguments are needed for the tool call)")
Don't start your answers with "Here is the JSON response", just give the JSON.
The tools you have access to are:
{"".join(tool_descriptions)}
Any message that starts with "Thought:" is you thinking to yourself. This isn't told to the user so you still need to communicate what you did with them.
Don't repeat an action. If a thought tells you that you already took an action for a user, don't do it again.
"""
def prompt_ai(messages, nested_calls=0, invoked_tools=[]):
if nested_calls > 3:
raise Exception("Failsafe - AI is failing too much!")
# First, prompt the AI with the latest user message
parser = JsonOutputParser(pydantic_object=ToolCallOrResponse)
asana_chatbot = ChatHuggingFace(llm=llm) | parser if "gpt" not in model else ChatOpenAI(model=llm) | parser
try:
ai_response = asana_chatbot.invoke(messages)
except:
return prompt_ai(messages, nested_calls + 1)
print(ai_response)
# Second, see if the AI decided it needs to invoke a tool
has_tool_calls = len(ai_response["tool_calls"]) > 0
if has_tool_calls:
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages
for tool_call in ai_response["tool_calls"]:
if str(tool_call) not in invoked_tools:
tool_name = tool_call["name"].lower()
selected_tool = available_tools[tool_name]
tool_output = selected_tool(**tool_call["args"])
messages.append(AIMessage(content=f"Thought: - I called {tool_name} with args {tool_call['args']} and got back: {tool_output}."))
invoked_tools.append(str(tool_call))
else:
return ai_response
# Prompt the AI again now that the result of calling the tool(s) has been added to the chat history
return prompt_ai(messages, nested_calls + 1, invoked_tools)
return ai_response
def main():
st.title("Asana Chatbot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [
SystemMessage(content=f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}.\n{tool_text}")
]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
message_json = json.loads(message.json())
message_type = message_json["type"]
message_content = message_json["content"]
if message_type in ["human", "ai", "system"] and not message_content.startswith("Thought:"):
with st.chat_message(message_type):
st.markdown(message_content)
# React to user input
if prompt := st.chat_input("What would you like to do today?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append(HumanMessage(content=prompt))
# Display assistant response in chat message container
with st.chat_message("assistant"):
ai_response = prompt_ai(st.session_state.messages)
st.markdown(ai_response['content'])
st.session_state.messages.append(AIMessage(content=ai_response['content']))
if __name__ == "__main__":
main()