mirror of
https://github.com/coleam00/ai-agents-masterclass.git
synced 2025-11-29 16:43:14 +00:00
Local LLM Tool Calling
This commit is contained in:
185
local-llm-tool-calling/local-agent-with-ui.py
Normal file
185
local-llm-tool-calling/local-agent-with-ui.py
Normal file
@@ -0,0 +1,185 @@
|
||||
import asana
|
||||
from asana.rest import ApiException
|
||||
from dotenv import load_dotenv
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
import streamlit as st
|
||||
import uuid
|
||||
import json
|
||||
import os
|
||||
|
||||
from langchain_core.tools import tool
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.output_parsers import JsonOutputParser
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_huggingface import HuggingFacePipeline, HuggingFaceEndpoint, ChatHuggingFace
|
||||
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage, ToolMessage
|
||||
|
||||
load_dotenv()
|
||||
|
||||
model = os.getenv('LLM_MODEL', 'meta-llama/Meta-Llama-3-8B-Instruct')
|
||||
|
||||
configuration = asana.Configuration()
|
||||
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
|
||||
api_client = asana.ApiClient(configuration)
|
||||
|
||||
tasks_api_instance = asana.TasksApi(api_client)
|
||||
|
||||
def create_asana_task(task_name, due_on="today"):
|
||||
"""
|
||||
Creates a task in Asana given the name of the task and when it is due
|
||||
|
||||
Example call:
|
||||
|
||||
create_asana_task("Test Task", "2024-06-24")
|
||||
Args:
|
||||
task_name (str): The name of the task in Asana
|
||||
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
|
||||
Returns:
|
||||
str: The API response of adding the task to Asana or an error message if the API call threw an error
|
||||
"""
|
||||
if due_on == "today":
|
||||
due_on = str(datetime.now().date())
|
||||
|
||||
task_body = {
|
||||
"data": {
|
||||
"name": task_name,
|
||||
"due_on": due_on,
|
||||
"projects": [os.getenv("ASANA_PROJECT_ID", "")]
|
||||
}
|
||||
}
|
||||
|
||||
try:
|
||||
api_response = tasks_api_instance.create_task(task_body, {})
|
||||
return "Task(s) created successfully!"
|
||||
except ApiException as e:
|
||||
return f"Failed to create task!"
|
||||
|
||||
@st.cache_resource
|
||||
def get_local_model():
|
||||
if "gpt" in model:
|
||||
return model
|
||||
else:
|
||||
return HuggingFaceEndpoint(
|
||||
repo_id=model,
|
||||
task="text-generation",
|
||||
max_new_tokens=1024,
|
||||
do_sample=False
|
||||
)
|
||||
|
||||
# return HuggingFacePipeline.from_model_id(
|
||||
# model_id=model,
|
||||
# task="text-generation",
|
||||
# pipeline_kwargs={
|
||||
# "max_new_tokens": 1024,
|
||||
# "top_k": 50,
|
||||
# "temperature": 0.4
|
||||
# },
|
||||
# )
|
||||
|
||||
llm = get_local_model()
|
||||
|
||||
available_tools = {
|
||||
"create_asana_task": create_asana_task
|
||||
}
|
||||
|
||||
tool_descriptions = [f"{name}:\n{func.__doc__}\n\n" for name, func in available_tools.items()]
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
name: str = Field(description="Name of the function to run")
|
||||
args: dict = Field(description="Arguments for the function call (empty if no arguments are needed for the tool call)")
|
||||
|
||||
class ToolCallOrResponse(BaseModel):
|
||||
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
|
||||
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
|
||||
|
||||
tool_text = f"""
|
||||
You always respond with a JSON object that has two required keys.
|
||||
|
||||
tool_calls: List[ToolCall] = Field(description="List of tool calls, empty array if you don't need to invoke a tool")
|
||||
content: str = Field(description="Response to the user if a tool doesn't need to be invoked")
|
||||
|
||||
Here is the type for ToolCall (object with two keys):
|
||||
name: str = Field(description="Name of the function to run (NA if you don't need to invoke a tool)")
|
||||
args: dict = Field(description="Arguments for the function call (empty array if you don't need to invoke a tool or if no arguments are needed for the tool call)")
|
||||
|
||||
Don't start your answers with "Here is the JSON response", just give the JSON.
|
||||
|
||||
The tools you have access to are:
|
||||
|
||||
{"".join(tool_descriptions)}
|
||||
|
||||
Any message that starts with "Thought:" is you thinking to yourself. This isn't told to the user so you still need to communicate what you did with them.
|
||||
Don't repeat an action. If a thought tells you that you already took an action for a user, don't do it again.
|
||||
"""
|
||||
|
||||
def prompt_ai(messages, nested_calls=0, invoked_tools=[]):
|
||||
if nested_calls > 3:
|
||||
raise Exception("Failsafe - AI is failing too much!")
|
||||
|
||||
# First, prompt the AI with the latest user message
|
||||
parser = JsonOutputParser(pydantic_object=ToolCallOrResponse)
|
||||
asana_chatbot = ChatHuggingFace(llm=llm) | parser if "gpt" not in model else ChatOpenAI(model=llm) | parser
|
||||
|
||||
try:
|
||||
ai_response = asana_chatbot.invoke(messages)
|
||||
except:
|
||||
return prompt_ai(messages, nested_calls + 1)
|
||||
print(ai_response)
|
||||
|
||||
# Second, see if the AI decided it needs to invoke a tool
|
||||
has_tool_calls = len(ai_response["tool_calls"]) > 0
|
||||
if has_tool_calls:
|
||||
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages
|
||||
for tool_call in ai_response["tool_calls"]:
|
||||
if str(tool_call) not in invoked_tools:
|
||||
tool_name = tool_call["name"].lower()
|
||||
selected_tool = available_tools[tool_name]
|
||||
tool_output = selected_tool(**tool_call["args"])
|
||||
|
||||
messages.append(AIMessage(content=f"Thought: - I called {tool_name} with args {tool_call['args']} and got back: {tool_output}."))
|
||||
invoked_tools.append(str(tool_call))
|
||||
else:
|
||||
return ai_response
|
||||
|
||||
# Prompt the AI again now that the result of calling the tool(s) has been added to the chat history
|
||||
return prompt_ai(messages, nested_calls + 1, invoked_tools)
|
||||
|
||||
return ai_response
|
||||
|
||||
|
||||
def main():
|
||||
st.title("Asana Chatbot")
|
||||
|
||||
# Initialize chat history
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state.messages = [
|
||||
SystemMessage(content=f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}.\n{tool_text}")
|
||||
]
|
||||
|
||||
# Display chat messages from history on app rerun
|
||||
for message in st.session_state.messages:
|
||||
message_json = json.loads(message.json())
|
||||
message_type = message_json["type"]
|
||||
message_content = message_json["content"]
|
||||
if message_type in ["human", "ai", "system"] and not message_content.startswith("Thought:"):
|
||||
with st.chat_message(message_type):
|
||||
st.markdown(message_content)
|
||||
|
||||
# React to user input
|
||||
if prompt := st.chat_input("What would you like to do today?"):
|
||||
# Display user message in chat message container
|
||||
st.chat_message("user").markdown(prompt)
|
||||
# Add user message to chat history
|
||||
st.session_state.messages.append(HumanMessage(content=prompt))
|
||||
|
||||
# Display assistant response in chat message container
|
||||
with st.chat_message("assistant"):
|
||||
ai_response = prompt_ai(st.session_state.messages)
|
||||
st.markdown(ai_response['content'])
|
||||
|
||||
st.session_state.messages.append(AIMessage(content=ai_response['content']))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user