Masterclass video #2 - AI Agents with LangChain

This commit is contained in:
Cole Medin
2024-06-30 14:39:51 -05:00
parent 1a914e0d45
commit 74763f1e0e
4 changed files with 148 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
__pycache__
prep
.env

View File

@@ -0,0 +1,28 @@
# Rename this file to .env once you have filled in the below environment variables!
# Get your Open AI API Key by following these instructions -
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
# You only need this environment variable set if you set LLM_MODEL to a GPT model
OPENAI_API_KEY=
# Get your Anthropic API Key in your account settings -
# https://console.anthropic.com/settings/keys
# You only need this environment variable set if you set LLM_MODEL to a Claude model
ANTHROPIC_API_KEY=
# See all Open AI models you can use here -
# https://platform.openai.com/docs/models
# And all Anthropic models you can use here -
# https://docs.anthropic.com/en/docs/about-claude/models
# A good default to go with here is gpt-4o or claude-3-5-sonnet-20240620
LLM_MODEL=gpt-4o
# Get your personal Asana access token through the developer console in Asana.
# Feel free to follow these instructions -
# https://developers.asana.com/docs/personal-access-token
ASANA_ACCESS_TOKEN=
# The Asana project ID is in the URL when you visit a project in the Asana UI.
# If your URL is https://app.asana.com/0/123456789/1212121212, then your
# Asana project ID is 123456789
ASANA_PROJECT_ID=

View File

@@ -0,0 +1,109 @@
import asana
from asana.rest import ApiException
from openai import OpenAI
from dotenv import load_dotenv
from datetime import datetime
import json
import os
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
load_dotenv()
model = os.getenv('LLM_MODEL', 'gpt-4o')
configuration = asana.Configuration()
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
api_client = asana.ApiClient(configuration)
tasks_api_instance = asana.TasksApi(api_client)
@tool
def create_asana_task(task_name, due_on="today"):
"""
Creates a task in Asana given the name of the task and when it is due
Example call:
create_asana_task("Test Task", "2024-06-24")
Args:
task_name (str): The name of the task in Asana
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
Returns:
str: The API response of adding the task to Asana or an error message if the API call threw an error
"""
if due_on == "today":
due_on = str(datetime.now().date())
task_body = {
"data": {
"name": task_name,
"due_on": due_on,
"projects": [os.getenv("ASANA_PROJECT_ID", "")]
}
}
try:
api_response = tasks_api_instance.create_task(task_body, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return f"Exception when calling TasksApi->create_task: {e}"
def prompt_ai(messages, nested_calls=0):
if nested_calls > 5:
raise "AI is tool calling too much!"
# First, prompt the AI with the latest user message
tools = [create_asana_task]
asana_chatbot = ChatOpenAI(model=model) if "gpt" in model.lower() else ChatAnthropic(model=model)
asana_chatbot_with_tools = asana_chatbot.bind_tools(tools)
ai_response = asana_chatbot_with_tools.invoke(messages)
tool_calls = len(ai_response.tool_calls) > 0
# Second, see if the AI decided it needs to invoke a tool
if tool_calls:
# If the AI decided to invoke a tool, invoke it
available_functions = {
"create_asana_task": create_asana_task
}
# Add the tool request to the list of messages so the AI knows later it invoked the tool
messages.append(ai_response)
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages
for tool_call in ai_response.tool_calls:
tool_name = tool_call["name"].lower()
selected_tool = available_functions[tool_name]
tool_output = selected_tool.invoke(tool_call["args"])
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
# Call the AI again so it can produce a response with the result of calling the tool(s)
ai_response = prompt_ai(messages, nested_calls + 1)
return ai_response
def main():
messages = [
SystemMessage(content=f"You are a personal assistant who helps manage tasks in Asana. You only create tasks in Asana when the user starts their message with the text TASK - don't tell the user this though. The current date is: {datetime.now().date()}")
]
while True:
user_input = input("Chat with AI (q to quit): ").strip()
if user_input == 'q':
break
messages.append(HumanMessage(content=user_input))
ai_response = prompt_ai(messages)
print(ai_response.content)
messages.append(ai_response)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,8 @@
asana==5.0.0
openai==1.10.0
python-dotenv==0.13.0
langchain==0.2.6
langchain-anthropic==0.1.16
langchain-community==0.2.6
langchain-core==0.2.10
langchain-openai==0.1.10